3 "Cyclic" Problems
by shiningsunnyday, Apr 7, 2016, 1:40 PM
So apparently it's only been 3 days of school after break and for some reason my math skills have already deteriorated.
Thanks a lot my English teacher for making my brain suffer by staying up all night finishing busy work... Thankfully tomorrow is parent teacher conferences so I get tomorrow, Friday off. What better way to spend a cozy Thurs night solving problems? 
In parallelogram
with
show that the circle passing through the projections of
onto
and
respectively, passes through the center of the parallelogram.
Motivation+Solution![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(9.20814618752361cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -1.8132153805884723, xmax = 7.394930806935139, ymin = -1.960435712028557, ymax = 5.675975177969472; /* image dimensions */
/* draw figures */
draw((-1.08,4.72)--(-0.08,-0.84));
draw((-0.08,-0.84)--(7.2,-0.86));
draw((xmin, -0.0027472527472527496*xmin + 4.717032967032967)--(xmax, -0.0027472527472527496*xmax + 4.717032967032967)); /* line */
draw((xmin, -5.56*xmin + 39.172)--(xmax, -5.56*xmax + 39.172)); /* line */
draw((-0.06473293734952489,4.717210804772939)--(-0.08,-0.84));
draw((-1.08,4.72)--(7.2,-0.86));
draw(circle((9.125733845654292,11.875443770970886), 11.649247996667407));
draw((-0.08,-0.84)--(6.2,4.7));
draw((2.18440038999025,2.520077998050049)--(-0.08,-0.84));
draw((-0.08,-0.84)--(6.968399679133661,0.42769778401684555));
/* dots and labels */
dot((-1.08,4.72),dotstyle);
label("$B$", (-1.2575513865137717,4.882169472148472), NE * labelscalefactor);
dot((-0.08,-0.84),dotstyle);
label("$C$", (-0.0033383713165904693,-1.087249435625456), NE * labelscalefactor);
dot((7.2,-0.86),dotstyle);
label("$D$", (7.204417437538098,-1.0554972073926159), NE * labelscalefactor);
dot((6.2,4.7),linewidth(3.pt) + dotstyle);
label("$A$", (6.267726704669316,4.802788901566371), NE * labelscalefactor);
dot((-0.06473293734952489,4.717210804772939),linewidth(3.pt) + dotstyle);
label("$P$", (-0.0033383713165904693,4.818665015682791), NE * labelscalefactor);
dot((-0.06,6.44),dotstyle);
dot((-0.06473293734952489,4.717210804772939),linewidth(3.pt) + dotstyle);
dot((2.18440038999025,2.520077998050049),linewidth(3.pt) + dotstyle);
label("$Q$", (2.441583202612092,2.5642568111511483), NE * labelscalefactor);
dot((6.968399679133661,0.42769778401684555),linewidth(3.pt) + dotstyle);
label("$R$", (7.029780182257477,0.5162380901329661), NE * labelscalefactor);
dot((3.06,1.93),linewidth(3.pt) + dotstyle);
label("$O$", (3.298893364898773,1.9133361323779277), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/3/3/4/3344553d962e602d5ce13102cdc082c38a40ce46.png)
There're multiple ways to prove that
is cyclic, which will solve the problem. We use the fact that
is the midpoint of
, as sicilianfan mentioned below, partly because we can invoke the below fact:
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(8.063798530324561cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -4.441554731834107, xmax = 9.622243798490453, ymin = -2.2000397773934406, ymax = 6.71238007705804; /* image dimensions */
pen qqwuqq = rgb(0.,0.39215686274509803,0.);
draw((-0.701879445107395,-1.0589724984921396)--(-0.7029069466152553,-0.6808519435995346)--(-1.0810275015078603,-0.681879445107395)--(-1.08,-1.06)--cycle, qqwuqq);
/* draw figures */
draw((-1.1,6.3)--(-1.08,-1.06));
draw((4.344229929361752,-1.0452602447571688)--(-1.08,-1.06));
draw((4.344229929361752,-1.0452602447571688)--(-1.1,6.3));
draw((1.6221149646808761,2.6273698776214154)--(-1.08,-1.06));
/* dots and labels */
dot((-1.1,6.3),dotstyle);
label("$A$", (-1.037010347433611,6.480657160842301), NE * labelscalefactor);
dot((-1.08,-1.06),dotstyle);
label("$B$", (-1.4469816607383827,-0.9879506771880403), NE * labelscalefactor);
dot((4.344229929361752,-1.0452602447571688),dotstyle);
label("$C$", (4.417390603490744,-0.8631767992257197), NE * labelscalefactor);
dot((1.6221149646808761,2.6273698776214154),linewidth(3.pt) + dotstyle);
label("$D$", (1.6901901280285663,2.7374408219726787), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/b/5/a/b5ae8e607a8b1313c62f82fddffefb1dba753e71.png)
As you can see, the cevian cleanly divides the right triangle into two isosceles triangles. Trivial angle chasing confirms this fact.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(12.336408480276996cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -2.578107271485672, xmax = 9.758301208791323, ymin = -2.3712592348361796, ymax = 5.4464901189515285; /* image dimensions */
/* draw figures */
draw((-1.08,4.72)--(-0.08,-0.84));
draw((-0.08,-0.84)--(7.2,-0.86));
draw((xmin, -0.0027472527472527496*xmin + 4.717032967032967)--(xmax, -0.0027472527472527496*xmax + 4.717032967032967)); /* line */
draw((xmin, -5.56*xmin + 39.172)--(xmax, -5.56*xmax + 39.172)); /* line */
draw((-0.06473293734952489,4.717210804772939)--(-0.08,-0.84));
draw((-1.08,4.72)--(7.2,-0.86));
draw(circle((9.125733845654292,11.875443770970886), 11.649247996667407));
draw((-0.08,-0.84)--(6.2,4.7));
draw((2.18440038999025,2.520077998050049)--(-0.08,-0.84));
draw((-0.08,-0.84)--(6.968399679133661,0.42769778401684555));
draw((-0.06473293734952489,4.717210804772939)--(2.18440038999025,2.520077998050049), blue);
draw((2.18440038999025,2.520077998050049)--(6.968399679133661,0.42769778401684555), blue);
/* dots and labels */
dot((-1.08,4.72),dotstyle);
label("$B$", (-1.2490898813417626,4.883612165478813), NE * labelscalefactor);
dot((-0.08,-0.84),dotstyle);
label("$C$", (0.0017500152642699305,-1.0891483408149956), NE * labelscalefactor);
dot((7.2,-0.86),dotstyle);
label("$D$", (7.350434407824711,-1.0422418446922692), NE * labelscalefactor);
dot((6.2,4.7),linewidth(3.pt) + dotstyle);
label("$A$", (6.255949498294433,4.789799173233361), NE * labelscalefactor);
dot((-0.06473293734952489,4.717210804772939),linewidth(3.pt) + dotstyle);
label("$P$", (0.0017500152642699305,4.805434671940937), NE * labelscalefactor);
dot((-0.06,6.44),dotstyle);
dot((-0.06473293734952489,4.717210804772939),linewidth(3.pt) + dotstyle);
dot((2.18440038999025,2.520077998050049),linewidth(3.pt) + dotstyle);
label("$Q$", (2.4408878136460332,2.5695583567576517), NE * labelscalefactor);
dot((6.968399679133661,0.42769778401684555),linewidth(3.pt) + dotstyle);
label("$R$", (7.037724433673202,0.5213080260652724), NE * labelscalefactor);
dot((3.06,1.93),linewidth(3.pt) + dotstyle);
label("$O$", (3.3008402425626806,1.9128674110394843), NE * labelscalefactor);
label("$q$", (4.473502645630836,1.256176465321317), NE * labelscalefactor,blue);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/4/3/f/43f7be1f18c88586ce7edbd997988786dba7c726.png)
In our case, note that
Looks like we have to prove that this is equal to
Note that direct chasing is quite futile and gets confusing real quick. So if only we can get some cyclic quadrilaterals to help us out...
Well,
and
are two cyclic quadrilaterals staring straight at us. Howe can we use this fact? We can, by doing the following:
Done!
Let
be a cyclic quadrilateral. Let
be the point not he ray
such that
and let
be the point on the ray
such that
Prove that the line
cuts
at its midpoint.
Motivation+Solution![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(10.32429297536705cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = 1.0378135339428984, xmax = 11.362106509309948, ymin = -3.0096536030615755, ymax = 5.552389364441077; /* image dimensions */
/* draw figures */
draw(circle((5.558148597508003,1.095185313573715), 3.4842368182479277));
draw((2.5015870459027987,2.767709659250999)--(6.72,4.38));
draw((6.72,4.38)--(8.28,-1.08));
draw((8.28,-1.08)--(2.185383787684437,0.22090632878096184));
draw((2.185383787684437,0.22090632878096184)--(2.5015870459027987,2.767709659250999));
draw((2.185383787684437,0.22090632878096184)--(1.801935667044594,-2.8675088767120744));
draw((6.72,4.38)--(8.322805150633103,4.992597033668448));
draw((2.5015870459027987,2.767709659250999)--(8.28,-1.08));
draw((1.801935667044594,-2.8675088767120744)--(8.322805150633103,4.992597033668448));
/* dots and labels */
dot((2.5015870459027987,2.767709659250999),dotstyle);
label("$A$", (2.230447377649092,2.971316120599321), NE * labelscalefactor);
dot((6.72,4.38),dotstyle);
label("$B$", (6.787376690914549,4.555561077164261), NE * labelscalefactor);
dot((8.28,-1.08),dotstyle);
label("$C$", (8.496225183389095,-1.229603090067261), NE * labelscalefactor);
dot((2.185383787684437,0.22090632878096184),dotstyle);
label("$D$", (1.8032352545304555,0.35464186649767887), NE * labelscalefactor);
dot((1.801935667044594,-2.8675088767120744),linewidth(3.pt) + dotstyle);
label("$P$", (1.5362276775813077,-2.7426460261124284), NE * labelscalefactor);
dot((8.322805150633103,4.992597033668448),linewidth(3.pt) + dotstyle);
label("$E$", (8.389422152609436,5.107376736192498), NE * labelscalefactor);
dot((5.062370408838849,1.062544078478187),linewidth(3.pt) + dotstyle);
label("$M$", (5.292134259999321,1.0488615665654615), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/1/1/f/11f2ba7e1244c0961362aa64601a9dea963900b5.png)
So I basically played around with law of sines and quickly got the desired.
First we apply law of sines involving
and
, which should be natural since we want to prove they're equal. We get:

I wrote
as
partly cause I knew this problem had to be finished off by cyclic quadrilaterals.
So it remains to prove that
upon setting
equal to 
So we would like to relate
and
... We can relate them with the cyclic quadrilateral. Specifically:
So we would like to prove that:
But
and
So we're done!
Also, 106 Geo gives a really lovely synthetic proof.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(11.403172241111136cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -4.7711773011078265, xmax = 18.63199494000331, ymin = -4.957130194924772, ymax = 9.873777435690563; /* image dimensions */
/* draw figures */
draw(circle((5.558148597508003,1.095185313573715), 3.4842368182479277));
draw((2.5015870459027987,2.767709659250999)--(6.72,4.38));
draw((6.72,4.38)--(8.28,-1.08));
draw((8.28,-1.08)--(2.185383787684437,0.22090632878096184));
draw((2.185383787684437,0.22090632878096184)--(2.5015870459027987,2.767709659250999));
draw((2.185383787684437,0.22090632878096184)--(1.801935667044594,-2.8675088767120744));
draw((6.72,4.38)--(8.322805150633103,4.992597033668448));
draw((2.5015870459027987,2.767709659250999)--(8.28,-1.08));
draw((1.801935667044594,-2.8675088767120744)--(8.322805150633103,4.992597033668448));
draw((3.201238424761004,8.402928195214072)--(2.5015870459027987,2.767709659250999));
draw((3.201238424761004,8.402928195214072)--(8.322805150633103,4.992597033668448));
draw((6.72,4.38)--(2.185383787684437,0.22090632878096184));
/* dots and labels */
dot((2.5015870459027987,2.767709659250999),dotstyle);
label("$A$", (2.051040208975268,3.08122174086874), NE * labelscalefactor);
dot((6.72,4.38),dotstyle);
label("$B$", (6.826592466033435,4.682959764975196), NE * labelscalefactor);
dot((8.28,-1.08),dotstyle);
label("$C$", (8.635963196968516,-1.3087269177933993), NE * labelscalefactor);
dot((2.185383787684437,0.22090632878096184),dotstyle);
label("$D$", (1.5764511647955746,0.4709819978804409), NE * labelscalefactor);
dot((1.801935667044594,-2.8675088767120744),linewidth(3.pt) + dotstyle);
label("$P$", (1.3688184579669584,-2.67317041981001), NE * labelscalefactor);
dot((8.322805150633103,4.992597033668448),linewidth(3.pt) + dotstyle);
label("$Q$", (8.428330490139901,5.1575488091548864), NE * labelscalefactor);
dot((5.062370408838849,1.062544078478187),linewidth(3.pt) + dotstyle);
label("$M$", (5.462148964016816,1.0345564878438236), NE * labelscalefactor);
dot((1.1022842881863888,-8.502727412675148),dotstyle);
label("$A'$", (2.258672915803884,-4.690173857573695), NE * labelscalefactor);
dot((3.201238424761004,8.402928195214072),linewidth(3.pt) + dotstyle);
label("$P'$", (3.3264982652081945,8.568657564196414), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/e/1/d/e1d692c382bc450d58feb19f00cdebf49c41604a.png)
Let
be the
rotation of
around
. Now note that if
is the midline of triangle
,
will be the midpoint of
. To prove that this is indeed the case, we must have
But
We will show that triangles
and
are in fact congruent. Note that
are equal by the given.
Finally,
by the given, so they're indeed congruent. So we're done.
I really like the synthetic proof. Crazy awesome stuff!
Finally, here's another "cyclic" problem I'm struggling on:
Let
be positive reals such that
Prove that ![$$\frac{a+b}{\sqrt{ab+c}}+\frac{b+c}{\sqrt{bc+a}}+\frac{c+a}{\sqrt{ca+b}} \ge 3 \sqrt[6]{abc}.$$](//latex.artofproblemsolving.com/7/d/f/7df5f219932ad37c674b4bf2dbc825e8cf212699.png)
Solution
EDIT: The two geometry problems are now solved. Yay.
EDIT 2: The solution to the inequality is now posted.




In parallelogram





Motivation+Solution
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(9.20814618752361cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -1.8132153805884723, xmax = 7.394930806935139, ymin = -1.960435712028557, ymax = 5.675975177969472; /* image dimensions */
/* draw figures */
draw((-1.08,4.72)--(-0.08,-0.84));
draw((-0.08,-0.84)--(7.2,-0.86));
draw((xmin, -0.0027472527472527496*xmin + 4.717032967032967)--(xmax, -0.0027472527472527496*xmax + 4.717032967032967)); /* line */
draw((xmin, -5.56*xmin + 39.172)--(xmax, -5.56*xmax + 39.172)); /* line */
draw((-0.06473293734952489,4.717210804772939)--(-0.08,-0.84));
draw((-1.08,4.72)--(7.2,-0.86));
draw(circle((9.125733845654292,11.875443770970886), 11.649247996667407));
draw((-0.08,-0.84)--(6.2,4.7));
draw((2.18440038999025,2.520077998050049)--(-0.08,-0.84));
draw((-0.08,-0.84)--(6.968399679133661,0.42769778401684555));
/* dots and labels */
dot((-1.08,4.72),dotstyle);
label("$B$", (-1.2575513865137717,4.882169472148472), NE * labelscalefactor);
dot((-0.08,-0.84),dotstyle);
label("$C$", (-0.0033383713165904693,-1.087249435625456), NE * labelscalefactor);
dot((7.2,-0.86),dotstyle);
label("$D$", (7.204417437538098,-1.0554972073926159), NE * labelscalefactor);
dot((6.2,4.7),linewidth(3.pt) + dotstyle);
label("$A$", (6.267726704669316,4.802788901566371), NE * labelscalefactor);
dot((-0.06473293734952489,4.717210804772939),linewidth(3.pt) + dotstyle);
label("$P$", (-0.0033383713165904693,4.818665015682791), NE * labelscalefactor);
dot((-0.06,6.44),dotstyle);
dot((-0.06473293734952489,4.717210804772939),linewidth(3.pt) + dotstyle);
dot((2.18440038999025,2.520077998050049),linewidth(3.pt) + dotstyle);
label("$Q$", (2.441583202612092,2.5642568111511483), NE * labelscalefactor);
dot((6.968399679133661,0.42769778401684555),linewidth(3.pt) + dotstyle);
label("$R$", (7.029780182257477,0.5162380901329661), NE * labelscalefactor);
dot((3.06,1.93),linewidth(3.pt) + dotstyle);
label("$O$", (3.298893364898773,1.9133361323779277), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/3/3/4/3344553d962e602d5ce13102cdc082c38a40ce46.png)
There're multiple ways to prove that



![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(8.063798530324561cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -4.441554731834107, xmax = 9.622243798490453, ymin = -2.2000397773934406, ymax = 6.71238007705804; /* image dimensions */
pen qqwuqq = rgb(0.,0.39215686274509803,0.);
draw((-0.701879445107395,-1.0589724984921396)--(-0.7029069466152553,-0.6808519435995346)--(-1.0810275015078603,-0.681879445107395)--(-1.08,-1.06)--cycle, qqwuqq);
/* draw figures */
draw((-1.1,6.3)--(-1.08,-1.06));
draw((4.344229929361752,-1.0452602447571688)--(-1.08,-1.06));
draw((4.344229929361752,-1.0452602447571688)--(-1.1,6.3));
draw((1.6221149646808761,2.6273698776214154)--(-1.08,-1.06));
/* dots and labels */
dot((-1.1,6.3),dotstyle);
label("$A$", (-1.037010347433611,6.480657160842301), NE * labelscalefactor);
dot((-1.08,-1.06),dotstyle);
label("$B$", (-1.4469816607383827,-0.9879506771880403), NE * labelscalefactor);
dot((4.344229929361752,-1.0452602447571688),dotstyle);
label("$C$", (4.417390603490744,-0.8631767992257197), NE * labelscalefactor);
dot((1.6221149646808761,2.6273698776214154),linewidth(3.pt) + dotstyle);
label("$D$", (1.6901901280285663,2.7374408219726787), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/b/5/a/b5ae8e607a8b1313c62f82fddffefb1dba753e71.png)
As you can see, the cevian cleanly divides the right triangle into two isosceles triangles. Trivial angle chasing confirms this fact.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(12.336408480276996cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -2.578107271485672, xmax = 9.758301208791323, ymin = -2.3712592348361796, ymax = 5.4464901189515285; /* image dimensions */
/* draw figures */
draw((-1.08,4.72)--(-0.08,-0.84));
draw((-0.08,-0.84)--(7.2,-0.86));
draw((xmin, -0.0027472527472527496*xmin + 4.717032967032967)--(xmax, -0.0027472527472527496*xmax + 4.717032967032967)); /* line */
draw((xmin, -5.56*xmin + 39.172)--(xmax, -5.56*xmax + 39.172)); /* line */
draw((-0.06473293734952489,4.717210804772939)--(-0.08,-0.84));
draw((-1.08,4.72)--(7.2,-0.86));
draw(circle((9.125733845654292,11.875443770970886), 11.649247996667407));
draw((-0.08,-0.84)--(6.2,4.7));
draw((2.18440038999025,2.520077998050049)--(-0.08,-0.84));
draw((-0.08,-0.84)--(6.968399679133661,0.42769778401684555));
draw((-0.06473293734952489,4.717210804772939)--(2.18440038999025,2.520077998050049), blue);
draw((2.18440038999025,2.520077998050049)--(6.968399679133661,0.42769778401684555), blue);
/* dots and labels */
dot((-1.08,4.72),dotstyle);
label("$B$", (-1.2490898813417626,4.883612165478813), NE * labelscalefactor);
dot((-0.08,-0.84),dotstyle);
label("$C$", (0.0017500152642699305,-1.0891483408149956), NE * labelscalefactor);
dot((7.2,-0.86),dotstyle);
label("$D$", (7.350434407824711,-1.0422418446922692), NE * labelscalefactor);
dot((6.2,4.7),linewidth(3.pt) + dotstyle);
label("$A$", (6.255949498294433,4.789799173233361), NE * labelscalefactor);
dot((-0.06473293734952489,4.717210804772939),linewidth(3.pt) + dotstyle);
label("$P$", (0.0017500152642699305,4.805434671940937), NE * labelscalefactor);
dot((-0.06,6.44),dotstyle);
dot((-0.06473293734952489,4.717210804772939),linewidth(3.pt) + dotstyle);
dot((2.18440038999025,2.520077998050049),linewidth(3.pt) + dotstyle);
label("$Q$", (2.4408878136460332,2.5695583567576517), NE * labelscalefactor);
dot((6.968399679133661,0.42769778401684555),linewidth(3.pt) + dotstyle);
label("$R$", (7.037724433673202,0.5213080260652724), NE * labelscalefactor);
dot((3.06,1.93),linewidth(3.pt) + dotstyle);
label("$O$", (3.3008402425626806,1.9128674110394843), NE * labelscalefactor);
label("$q$", (4.473502645630836,1.256176465321317), NE * labelscalefactor,blue);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/4/3/f/43f7be1f18c88586ce7edbd997988786dba7c726.png)
In our case, note that


Well,



Let









Motivation+Solution
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(10.32429297536705cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = 1.0378135339428984, xmax = 11.362106509309948, ymin = -3.0096536030615755, ymax = 5.552389364441077; /* image dimensions */
/* draw figures */
draw(circle((5.558148597508003,1.095185313573715), 3.4842368182479277));
draw((2.5015870459027987,2.767709659250999)--(6.72,4.38));
draw((6.72,4.38)--(8.28,-1.08));
draw((8.28,-1.08)--(2.185383787684437,0.22090632878096184));
draw((2.185383787684437,0.22090632878096184)--(2.5015870459027987,2.767709659250999));
draw((2.185383787684437,0.22090632878096184)--(1.801935667044594,-2.8675088767120744));
draw((6.72,4.38)--(8.322805150633103,4.992597033668448));
draw((2.5015870459027987,2.767709659250999)--(8.28,-1.08));
draw((1.801935667044594,-2.8675088767120744)--(8.322805150633103,4.992597033668448));
/* dots and labels */
dot((2.5015870459027987,2.767709659250999),dotstyle);
label("$A$", (2.230447377649092,2.971316120599321), NE * labelscalefactor);
dot((6.72,4.38),dotstyle);
label("$B$", (6.787376690914549,4.555561077164261), NE * labelscalefactor);
dot((8.28,-1.08),dotstyle);
label("$C$", (8.496225183389095,-1.229603090067261), NE * labelscalefactor);
dot((2.185383787684437,0.22090632878096184),dotstyle);
label("$D$", (1.8032352545304555,0.35464186649767887), NE * labelscalefactor);
dot((1.801935667044594,-2.8675088767120744),linewidth(3.pt) + dotstyle);
label("$P$", (1.5362276775813077,-2.7426460261124284), NE * labelscalefactor);
dot((8.322805150633103,4.992597033668448),linewidth(3.pt) + dotstyle);
label("$E$", (8.389422152609436,5.107376736192498), NE * labelscalefactor);
dot((5.062370408838849,1.062544078478187),linewidth(3.pt) + dotstyle);
label("$M$", (5.292134259999321,1.0488615665654615), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/1/1/f/11f2ba7e1244c0961362aa64601a9dea963900b5.png)
So I basically played around with law of sines and quickly got the desired.
First we apply law of sines involving






So it remains to prove that



So we would like to relate






Also, 106 Geo gives a really lovely synthetic proof.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(11.403172241111136cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -4.7711773011078265, xmax = 18.63199494000331, ymin = -4.957130194924772, ymax = 9.873777435690563; /* image dimensions */
/* draw figures */
draw(circle((5.558148597508003,1.095185313573715), 3.4842368182479277));
draw((2.5015870459027987,2.767709659250999)--(6.72,4.38));
draw((6.72,4.38)--(8.28,-1.08));
draw((8.28,-1.08)--(2.185383787684437,0.22090632878096184));
draw((2.185383787684437,0.22090632878096184)--(2.5015870459027987,2.767709659250999));
draw((2.185383787684437,0.22090632878096184)--(1.801935667044594,-2.8675088767120744));
draw((6.72,4.38)--(8.322805150633103,4.992597033668448));
draw((2.5015870459027987,2.767709659250999)--(8.28,-1.08));
draw((1.801935667044594,-2.8675088767120744)--(8.322805150633103,4.992597033668448));
draw((3.201238424761004,8.402928195214072)--(2.5015870459027987,2.767709659250999));
draw((3.201238424761004,8.402928195214072)--(8.322805150633103,4.992597033668448));
draw((6.72,4.38)--(2.185383787684437,0.22090632878096184));
/* dots and labels */
dot((2.5015870459027987,2.767709659250999),dotstyle);
label("$A$", (2.051040208975268,3.08122174086874), NE * labelscalefactor);
dot((6.72,4.38),dotstyle);
label("$B$", (6.826592466033435,4.682959764975196), NE * labelscalefactor);
dot((8.28,-1.08),dotstyle);
label("$C$", (8.635963196968516,-1.3087269177933993), NE * labelscalefactor);
dot((2.185383787684437,0.22090632878096184),dotstyle);
label("$D$", (1.5764511647955746,0.4709819978804409), NE * labelscalefactor);
dot((1.801935667044594,-2.8675088767120744),linewidth(3.pt) + dotstyle);
label("$P$", (1.3688184579669584,-2.67317041981001), NE * labelscalefactor);
dot((8.322805150633103,4.992597033668448),linewidth(3.pt) + dotstyle);
label("$Q$", (8.428330490139901,5.1575488091548864), NE * labelscalefactor);
dot((5.062370408838849,1.062544078478187),linewidth(3.pt) + dotstyle);
label("$M$", (5.462148964016816,1.0345564878438236), NE * labelscalefactor);
dot((1.1022842881863888,-8.502727412675148),dotstyle);
label("$A'$", (2.258672915803884,-4.690173857573695), NE * labelscalefactor);
dot((3.201238424761004,8.402928195214072),linewidth(3.pt) + dotstyle);
label("$P'$", (3.3264982652081945,8.568657564196414), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/e/1/d/e1d692c382bc450d58feb19f00cdebf49c41604a.png)
Let















I really like the synthetic proof. Crazy awesome stuff!

Finally, here's another "cyclic" problem I'm struggling on:
Let


![$$\frac{a+b}{\sqrt{ab+c}}+\frac{b+c}{\sqrt{bc+a}}+\frac{c+a}{\sqrt{ca+b}} \ge 3 \sqrt[6]{abc}.$$](http://latex.artofproblemsolving.com/7/d/f/7df5f219932ad37c674b4bf2dbc825e8cf212699.png)
Solution
I had to look at the first line of the solution to solve it. 
Rewrite the condition as
Note that the LHS, or
as desired.
The first inequality invokes the given condition, and the second is AM-GM.
So apparently the key motivation is to realize we can invoke the given condition by noticing that first, we can use the given on
to produce
can be factored into
Inequalities are tricky...

Rewrite the condition as

Note that the LHS, or
![$$\sum_{cyclic} \frac{a+b}{\sqrt{ab+c}} = \sum_{cyclic} \frac{(a+b)\sqrt{c}}{\sqrt{abc+c^2}} \ge \sum_{cyclic} \frac{(a+b)\sqrt{c}}{\sqrt{ab+bc+ca+c^2}} = \frac{(a+b)\sqrt{c}}{\sqrt{(a+c)(b+c)}} \ge 3 \sqrt[3]{\sqrt{abc}},$$](http://latex.artofproblemsolving.com/6/7/d/67de1b1fd878261aedde7480a9eb295cf7aeff0f.png)
The first inequality invokes the given condition, and the second is AM-GM.
So apparently the key motivation is to realize we can invoke the given condition by noticing that first, we can use the given on



EDIT: The two geometry problems are now solved. Yay.
EDIT 2: The solution to the inequality is now posted.
This post has been edited 5 times. Last edited by shiningsunnyday, Apr 9, 2016, 3:38 AM