Yay I don't think I suck at geo anymore D:
by shiningsunnyday, Jun 8, 2016, 2:20 PM
First thing first, today was officially the last day of school but I didn't go because 1) I won't have a place to do math, since a lot of people come to the library (where the antisocial nerd, me, mythically lives) to ask people to sign their yearbooks (which I think has little purpose, story for another day...) and 2) I drank milk tea at 9 PM last night, cause... YOLO, so I ended up not falling asleep until 4 AM, and 3) I'm weird. Anyways, as the bell rang for its final time this school year, laughter reverberating throughout the campus, foreshadowing a night of partying/sleepovers and the like. But me? I'll take some nice geo problems over all that any day. 
...so here we go!
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(8.176238571853332cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -5.823380811362441, xmax = 14.352857760490894, ymin = -4.334778680755408, ymax = 6.36546447043235; /* image dimensions */
/* draw figures */
draw(circle((2.56,0.56), 3.2975475249186914));
draw((10.108740840048487,0.5643715298338)--(2.56,0.56));
draw((3.998762976580706,3.527116576125383)--(10.108740840048487,0.5643715298338));
draw((10.108740840048487,0.5643715298338)--(1.0829846426639882,3.508261405182885));
draw((0.203313076424267,2.8664792267316295)--(10.108740840048487,0.5643715298338));
draw((2.56,0.56)--(-0.7375469719776571,0.5580903669536675));
/* dots and labels */
dot((2.56,0.56),dotstyle);
label("$O$", (2.6191587328882453,0.7212054530896249), NE * labelscalefactor);
dot((10.108740840048487,0.5643715298338),dotstyle);
label("$P$", (10.171336291304584,0.7212054530896249), NE * labelscalefactor);
dot((1.0829846426639882,3.508261405182885),dotstyle);
label("$B$", (1.1405218635562042,3.662579870578087), NE * labelscalefactor);
dot((0.203313076424267,2.8664792267316295),dotstyle);
label("$C$", (0.15476395066817678,3.0902043082560082), NE * labelscalefactor);
dot((3.998762976580706,3.527116576125383),linewidth(3.pt) + dotstyle);
label("$A$", (4.065996959869059,3.6148819070512475), NE * labelscalefactor);
dot((-0.7375469719776571,0.5580903669536675),linewidth(3.pt) + dotstyle);
label("$D$", (-1.0217858163272107,0.5304135989822653), NE * labelscalefactor);
dot((5.49128518079106,2.0704260551156106),linewidth(3.pt) + dotstyle);
label("$E$", (5.560533150376714,2.168043680070436), NE * labelscalefactor);
dot((5.692297685331387,1.5907913899354293),linewidth(3.pt) + dotstyle);
label("$F$", (5.751325004484074,1.6910640448020369), NE * labelscalefactor);
dot((5.857546971977658,0.5619096330463327),linewidth(3.pt) + dotstyle);
label("$G$", (5.926217537415821,0.6576081683871717), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/6/0/5/6051ad34ff98c5d16695e07dfe145d665cda1b72.png)
Power is a powerful tool in geometry. Consider a point
and circle
We all know that the quantity
is constant, independent of whichever secant you choose (consequence of power of a point), but things get interesting when we assign a value as to what that constant is, which we denote by the power of
with respect to
and is defined as
It's not hard to see this value is positive when
is outside the circle, negative inside, and zero on the circle. The three main lemmas that arise out of this are:
The radical axis of two circles
is defined as the locus of points in which the power of a point
with respect to two circles is equal, is a perpendicular line through the two centers, and in the following case, through the intersection of the two circles, specifically as shown:
The radical lemma, which states that if there're two points
on circle
two points on circle
these four points are cyclic if and only if
and
intersect on the radical axis of
and 
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(8.097334085533035cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -9.10964681802779, xmax = 18.987687267505247, ymin = -4.8664695616756015, ymax = 10.034638270919947; /* image dimensions */
/* draw figures */
draw(circle((-0.58,1.42), 5.2109500093553));
draw(circle((7.268639194831133,1.4816595514931006), 4.363096137421303));
draw((xmin, -127.28991704893257*xmin + 492.973281467901)--(xmax, -127.28991704893257*xmax + 492.973281467901)); /* line */
draw((xmin, 1.0193950051511613*xmin + 5.058630771270418)--(xmax, 1.0193950051511613*xmax + 5.058630771270418)); /* line */
draw((xmin, -4.39622452783308*xmin + 25.652304530725015)--(xmax, -4.39622452783308*xmax + 25.652304530725015)); /* line */
/* dots and labels */
dot((-0.58,1.42),dotstyle);
dot((3.84,4.18),dotstyle);
dot((7.268639194831133,1.4816595514931006),dotstyle);
dot((3.8828173415990226,-1.270215860395413),linewidth(3.pt) + dotstyle);
dot((1.2256922172331493,6.308095295370543),dotstyle);
label("$B$", (1.0753600214877324,6.735581707685568), NE * labelscalefactor);
dot((-5.432511733166115,-0.4792445549441988),dotstyle);
label("$A$", (-6.164851362254823,-0.4382057184079812), NE * labelscalefactor);
dot((3.8026441174508783,8.93502719096729),linewidth(3.pt) + dotstyle);
dot((4.6963973911030195,5.005887127506636),dotstyle);
label("$C$", (4.9722322035632365,5.761363662166691), NE * labelscalefactor);
dot((6.4739075072571275,-2.8084464436014804),linewidth(3.pt) + dotstyle);
label("$D$", (7.186364125197045,-3.6708383239933458), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/f/f/5/ff54094600ada390d5a6508b891db8ed98441968.png)
Last but not least, the radical axes of three circles with non-collinear centers (Evan is extremely fussy about emphasizing this) are concurrent.
For now, take these three lemmas for granted. A full treatment is found in, not surprisingly, E.G.M.O!!!
...But first, here's two nice gems aren't specifically under this topic but which I liked:
Solution
Nice problem -- features cyclic quads, PoP, and angle chasing.
Solution
Now let's power through some problems!
Solution
Solution
Wait what I solved this in less than 5 mins. What has EGMO done to me? 
Solution
Solution
...and with that said here're three more good-looking problems, among others, I'll try to solve before moving to Chapter 3 EGMO!

...so here we go!
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(8.176238571853332cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -5.823380811362441, xmax = 14.352857760490894, ymin = -4.334778680755408, ymax = 6.36546447043235; /* image dimensions */
/* draw figures */
draw(circle((2.56,0.56), 3.2975475249186914));
draw((10.108740840048487,0.5643715298338)--(2.56,0.56));
draw((3.998762976580706,3.527116576125383)--(10.108740840048487,0.5643715298338));
draw((10.108740840048487,0.5643715298338)--(1.0829846426639882,3.508261405182885));
draw((0.203313076424267,2.8664792267316295)--(10.108740840048487,0.5643715298338));
draw((2.56,0.56)--(-0.7375469719776571,0.5580903669536675));
/* dots and labels */
dot((2.56,0.56),dotstyle);
label("$O$", (2.6191587328882453,0.7212054530896249), NE * labelscalefactor);
dot((10.108740840048487,0.5643715298338),dotstyle);
label("$P$", (10.171336291304584,0.7212054530896249), NE * labelscalefactor);
dot((1.0829846426639882,3.508261405182885),dotstyle);
label("$B$", (1.1405218635562042,3.662579870578087), NE * labelscalefactor);
dot((0.203313076424267,2.8664792267316295),dotstyle);
label("$C$", (0.15476395066817678,3.0902043082560082), NE * labelscalefactor);
dot((3.998762976580706,3.527116576125383),linewidth(3.pt) + dotstyle);
label("$A$", (4.065996959869059,3.6148819070512475), NE * labelscalefactor);
dot((-0.7375469719776571,0.5580903669536675),linewidth(3.pt) + dotstyle);
label("$D$", (-1.0217858163272107,0.5304135989822653), NE * labelscalefactor);
dot((5.49128518079106,2.0704260551156106),linewidth(3.pt) + dotstyle);
label("$E$", (5.560533150376714,2.168043680070436), NE * labelscalefactor);
dot((5.692297685331387,1.5907913899354293),linewidth(3.pt) + dotstyle);
label("$F$", (5.751325004484074,1.6910640448020369), NE * labelscalefactor);
dot((5.857546971977658,0.5619096330463327),linewidth(3.pt) + dotstyle);
label("$G$", (5.926217537415821,0.6576081683871717), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/6/0/5/6051ad34ff98c5d16695e07dfe145d665cda1b72.png)
Power is a powerful tool in geometry. Consider a point







The radical axis of two circles


The radical lemma, which states that if there're two points







![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(8.097334085533035cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -9.10964681802779, xmax = 18.987687267505247, ymin = -4.8664695616756015, ymax = 10.034638270919947; /* image dimensions */
/* draw figures */
draw(circle((-0.58,1.42), 5.2109500093553));
draw(circle((7.268639194831133,1.4816595514931006), 4.363096137421303));
draw((xmin, -127.28991704893257*xmin + 492.973281467901)--(xmax, -127.28991704893257*xmax + 492.973281467901)); /* line */
draw((xmin, 1.0193950051511613*xmin + 5.058630771270418)--(xmax, 1.0193950051511613*xmax + 5.058630771270418)); /* line */
draw((xmin, -4.39622452783308*xmin + 25.652304530725015)--(xmax, -4.39622452783308*xmax + 25.652304530725015)); /* line */
/* dots and labels */
dot((-0.58,1.42),dotstyle);
dot((3.84,4.18),dotstyle);
dot((7.268639194831133,1.4816595514931006),dotstyle);
dot((3.8828173415990226,-1.270215860395413),linewidth(3.pt) + dotstyle);
dot((1.2256922172331493,6.308095295370543),dotstyle);
label("$B$", (1.0753600214877324,6.735581707685568), NE * labelscalefactor);
dot((-5.432511733166115,-0.4792445549441988),dotstyle);
label("$A$", (-6.164851362254823,-0.4382057184079812), NE * labelscalefactor);
dot((3.8026441174508783,8.93502719096729),linewidth(3.pt) + dotstyle);
dot((4.6963973911030195,5.005887127506636),dotstyle);
label("$C$", (4.9722322035632365,5.761363662166691), NE * labelscalefactor);
dot((6.4739075072571275,-2.8084464436014804),linewidth(3.pt) + dotstyle);
label("$D$", (7.186364125197045,-3.6708383239933458), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/f/f/5/ff54094600ada390d5a6508b891db8ed98441968.png)
Last but not least, the radical axes of three circles with non-collinear centers (Evan is extremely fussy about emphasizing this) are concurrent.
For now, take these three lemmas for granted. A full treatment is found in, not surprisingly, E.G.M.O!!!
...But first, here's two nice gems aren't specifically under this topic but which I liked:
Canada 1997 P4 wrote:
The point
is situated inside the parallelogram
such that
. Prove that
.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(7.237281212948929cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = 0.8686738152158329, xmax = 14.105955028164761, ymin = -3.7514588449191577, ymax = 3.2687856439024827; /* image dimensions */
/* draw figures */
draw((3.52,2.24)--(2.0617552409438877,-2.9596007520017023));
draw((2.0617552409438877,-2.9596007520017023)--(11.99430889316315,-2.9596007520017023));
draw((3.52,2.24)--(13.452553652219263,2.24));
draw((13.452553652219263,2.24)--(11.99430889316315,-2.9596007520017023));
draw((3.52,2.24)--(3.848864903635227,-0.8642373547872702));
draw((3.848864903635227,-0.8642373547872702)--(2.0617552409438877,-2.9596007520017023));
draw((3.848864903635227,-0.8642373547872702)--(13.452553652219263,2.24));
draw((3.848864903635227,-0.8642373547872702)--(11.99430889316315,-2.9596007520017023));
/* dots and labels */
dot((3.52,2.24),dotstyle);
label("$A$", (3.4034723453549893,2.4238528005227606), NE * labelscalefactor);
dot((2.0617552409438877,-2.9596007520017023),dotstyle);
label("$D$", (1.8492131643231609,-3.2090328220087185), NE * labelscalefactor);
dot((11.99430889316315,-2.9596007520017023),dotstyle);
label("$C$", (12.103151251264688,-3.1986015523373643), NE * labelscalefactor);
dot((13.452553652219263,2.24),linewidth(3.pt) + dotstyle);
label("$B$", (13.532235196240261,2.371696452165988), NE * labelscalefactor);
dot((3.848864903635227,-0.8642373547872702),dotstyle);
label("$O$", (3.9354670985940716,-0.6533717525268438), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/7/3/f/73f937e227be1eb3bfd902a249979e687946515a.png)




![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(7.237281212948929cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = 0.8686738152158329, xmax = 14.105955028164761, ymin = -3.7514588449191577, ymax = 3.2687856439024827; /* image dimensions */
/* draw figures */
draw((3.52,2.24)--(2.0617552409438877,-2.9596007520017023));
draw((2.0617552409438877,-2.9596007520017023)--(11.99430889316315,-2.9596007520017023));
draw((3.52,2.24)--(13.452553652219263,2.24));
draw((13.452553652219263,2.24)--(11.99430889316315,-2.9596007520017023));
draw((3.52,2.24)--(3.848864903635227,-0.8642373547872702));
draw((3.848864903635227,-0.8642373547872702)--(2.0617552409438877,-2.9596007520017023));
draw((3.848864903635227,-0.8642373547872702)--(13.452553652219263,2.24));
draw((3.848864903635227,-0.8642373547872702)--(11.99430889316315,-2.9596007520017023));
/* dots and labels */
dot((3.52,2.24),dotstyle);
label("$A$", (3.4034723453549893,2.4238528005227606), NE * labelscalefactor);
dot((2.0617552409438877,-2.9596007520017023),dotstyle);
label("$D$", (1.8492131643231609,-3.2090328220087185), NE * labelscalefactor);
dot((11.99430889316315,-2.9596007520017023),dotstyle);
label("$C$", (12.103151251264688,-3.1986015523373643), NE * labelscalefactor);
dot((13.452553652219263,2.24),linewidth(3.pt) + dotstyle);
label("$B$", (13.532235196240261,2.371696452165988), NE * labelscalefactor);
dot((3.848864903635227,-0.8642373547872702),dotstyle);
label("$O$", (3.9354670985940716,-0.6533717525268438), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/7/3/f/73f937e227be1eb3bfd902a249979e687946515a.png)
Ack. The condition is quite icky,
Direct angle chasing without the help of cyclic quads proves futile quickly as we don't have anything to work with. Though...
reminds us of cyclic quadrilaterals... With dazzling creativity, turns out, we can 'cut and paste'
on top of segment 
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(8.758040069219746cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -1.164777963491038, xmax = 17.59326210572871, ymin = -4.486752813497592, ymax = 5.461364575458236; /* image dimensions */
/* draw figures */
draw((3.52,2.24)--(2.0617552409438877,-2.9596007520017023));
draw((2.0617552409438877,-2.9596007520017023)--(11.99430889316315,-2.9596007520017023));
draw((3.52,2.24)--(13.452553652219263,2.24));
draw((13.452553652219263,2.24)--(11.99430889316315,-2.9596007520017023));
draw((3.52,2.24)--(3.5486108444857685,-1.1296524782935506));
draw((3.5486108444857685,-1.1296524782935506)--(2.0617552409438877,-2.9596007520017023));
draw((3.5486108444857685,-1.1296524782935506)--(13.452553652219263,2.24));
draw((3.5486108444857685,-1.1296524782935506)--(11.99430889316315,-2.9596007520017023));
draw((3.52,2.24)--(4.954866314410439,4.4562056119381825));
draw((4.954866314410439,4.4562056119381825)--(13.452553652219263,2.24));
/* dots and labels */
dot((3.52,2.24),dotstyle);
label("$A$", (3.3584373723491843,2.5050146827521953), NE * labelscalefactor);
dot((2.0617552409438877,-2.9596007520017023),dotstyle);
label("$D$", (1.7620084302879293,-3.378121603732827), NE * labelscalefactor);
dot((11.99430889316315,-2.9596007520017023),dotstyle);
label("$C$", (12.138796553686086,-3.304212856415176), NE * labelscalefactor);
dot((13.452553652219263,2.24),linewidth(3.pt) + dotstyle);
label("$B$", (13.57262625164851,2.431105935434544), NE * labelscalefactor);
dot((4.954866314410439,4.4562056119381825),dotstyle);
label("$O'$", (4.940084564946909,4.751840601208786), NE * labelscalefactor);
dot((3.5486108444857685,-1.1296524782935506),dotstyle);
label("$O$", (3.6688541110833173,-0.8356606960056314), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/c/1/1/c116956a0b0490c04129b6761af603b3fcd7d2b7.png)
Aha! So now
is cyclic.
Obviously
and it's not hard to see quadrilateral
is a parallelogram, and we can use the cyclic quadrilateral
to finish things up: 




![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(8.758040069219746cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -1.164777963491038, xmax = 17.59326210572871, ymin = -4.486752813497592, ymax = 5.461364575458236; /* image dimensions */
/* draw figures */
draw((3.52,2.24)--(2.0617552409438877,-2.9596007520017023));
draw((2.0617552409438877,-2.9596007520017023)--(11.99430889316315,-2.9596007520017023));
draw((3.52,2.24)--(13.452553652219263,2.24));
draw((13.452553652219263,2.24)--(11.99430889316315,-2.9596007520017023));
draw((3.52,2.24)--(3.5486108444857685,-1.1296524782935506));
draw((3.5486108444857685,-1.1296524782935506)--(2.0617552409438877,-2.9596007520017023));
draw((3.5486108444857685,-1.1296524782935506)--(13.452553652219263,2.24));
draw((3.5486108444857685,-1.1296524782935506)--(11.99430889316315,-2.9596007520017023));
draw((3.52,2.24)--(4.954866314410439,4.4562056119381825));
draw((4.954866314410439,4.4562056119381825)--(13.452553652219263,2.24));
/* dots and labels */
dot((3.52,2.24),dotstyle);
label("$A$", (3.3584373723491843,2.5050146827521953), NE * labelscalefactor);
dot((2.0617552409438877,-2.9596007520017023),dotstyle);
label("$D$", (1.7620084302879293,-3.378121603732827), NE * labelscalefactor);
dot((11.99430889316315,-2.9596007520017023),dotstyle);
label("$C$", (12.138796553686086,-3.304212856415176), NE * labelscalefactor);
dot((13.452553652219263,2.24),linewidth(3.pt) + dotstyle);
label("$B$", (13.57262625164851,2.431105935434544), NE * labelscalefactor);
dot((4.954866314410439,4.4562056119381825),dotstyle);
label("$O'$", (4.940084564946909,4.751840601208786), NE * labelscalefactor);
dot((3.5486108444857685,-1.1296524782935506),dotstyle);
label("$O$", (3.6688541110833173,-0.8356606960056314), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/c/1/1/c116956a0b0490c04129b6761af603b3fcd7d2b7.png)
Aha! So now

Obviously




HS Forum wrote:
Let
be a triangle with
,
, and
. The line tangent to the circumcircle of
at
intersects the line
at
, and the circle centered at
passing through
intersects the line
for a second time at
. If the angle bisector of
intersects
at
, compute the length of segment
.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(15.55256211478783cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -16.493925424082587, xmax = 36.05863669070524, ymin = -15.71165718472974, ymax = 12.159008144862254; /* image dimensions */
pen qqwuqq = rgb(0.,0.39215686274509803,0.);
draw(arc((11.059997386776805,1.1264661862241279),1.2423773549595232,108.25626751684904,180.04631065256604)--(11.059997386776805,1.1264661862241279)--cycle, qqwuqq);
draw(arc((3.06,1.12),1.2423773549595232,58.79786939035357,130.58791252607057)--(3.06,1.12)--cycle, qqwuqq);
draw(arc((3.06,1.12),1.2423773549595232,-121.20213060964645,-49.41208747392945)--(3.06,1.12)--cycle, qqwuqq);
draw(arc((-3.4157352090193904,-9.571812451715854),1.2423773549595232,-12.992173745363443,58.79786939035356)--(-3.4157352090193904,-9.571812451715854)--cycle, qqwuqq);
draw(arc((3.06,1.12),1.2423773549595232,0.04631065256602237,58.79786939035356)--(3.06,1.12)--cycle, blue);
draw(arc((16.07228044377464,-14.068171636262198),1.2423773549595232,108.25626751684905,167.0078262546366)--(16.07228044377464,-14.068171636262198)--cycle, blue);
/* draw figures */
draw((3.06,1.12)--(11.059997386776805,1.1264661862241279));
draw((8.24058816721552,9.673449961372697)--(11.059997386776805,1.1264661862241279));
draw((3.06,1.12)--(8.24058816721552,9.673449961372697));
draw(circle((7.057233308567444,4.544580789309355), 5.263613559678153));
draw((xmin, -1.167218282905096*xmin + 4.691687945689594)--(xmax, -1.167218282905096*xmax + 4.691687945689594)); /* line */
draw((-3.4157352090193904,-9.571812451715854)--(16.07228044377464,-14.068171636262198));
draw((-3.4157352090193904,-9.571812451715854)--(11.059997386776805,1.1264661862241279));
draw((3.06,1.12)--(-3.4157352090193904,-9.571812451715854));
draw((11.059997386776805,1.1264661862241279)--(16.07228044377464,-14.068171636262198));
draw((1.0674660895324941,-2.1697884466818023)--(11.059997386776805,1.1264661862241279));
draw((11.059997386776805,1.1264661862241279)--(1.0674660895324941,-2.1697884466818023));
/* dots and labels */
dot((3.06,1.12),dotstyle);
label("$A$", (0.8993575453507378,0.68772390073598), NE * labelscalefactor);
dot((11.059997386776805,1.1264661862241279),dotstyle);
label("$B$", (12.494879524972953,0.8119616362319325), NE * labelscalefactor);
dot((8.24058816721552,9.673449961372697),linewidth(3.pt) + dotstyle);
label("$C$", (8.229383939611925,10.46109242641757), NE * labelscalefactor);
dot((16.07228044377464,-14.068171636262198),linewidth(3.pt) + dotstyle);
label("$T$", (17.754276994301602,-14.75916787926077), NE * labelscalefactor);
dot((-3.4157352090193904,-9.571812451715854),linewidth(3.pt) + dotstyle);
label("$S$", (-4.85699086596172,-10.245196822907833), NE * labelscalefactor);
dot((1.0674660895324941,-2.1697884466818023),linewidth(3.pt) + dotstyle);
label("$P$", (-0.42584496660608695,-2.293981751166878), NE * labelscalefactor);
dot((-2.107643527157205,7.151768004434068),dotstyle);
label("$E$", (-2.1651732635494194,8.266225765989077), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/2/e/9/2e9b8bfee792e6af9af02e072630ce8c282b73cf.png)
















![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(15.55256211478783cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -16.493925424082587, xmax = 36.05863669070524, ymin = -15.71165718472974, ymax = 12.159008144862254; /* image dimensions */
pen qqwuqq = rgb(0.,0.39215686274509803,0.);
draw(arc((11.059997386776805,1.1264661862241279),1.2423773549595232,108.25626751684904,180.04631065256604)--(11.059997386776805,1.1264661862241279)--cycle, qqwuqq);
draw(arc((3.06,1.12),1.2423773549595232,58.79786939035357,130.58791252607057)--(3.06,1.12)--cycle, qqwuqq);
draw(arc((3.06,1.12),1.2423773549595232,-121.20213060964645,-49.41208747392945)--(3.06,1.12)--cycle, qqwuqq);
draw(arc((-3.4157352090193904,-9.571812451715854),1.2423773549595232,-12.992173745363443,58.79786939035356)--(-3.4157352090193904,-9.571812451715854)--cycle, qqwuqq);
draw(arc((3.06,1.12),1.2423773549595232,0.04631065256602237,58.79786939035356)--(3.06,1.12)--cycle, blue);
draw(arc((16.07228044377464,-14.068171636262198),1.2423773549595232,108.25626751684905,167.0078262546366)--(16.07228044377464,-14.068171636262198)--cycle, blue);
/* draw figures */
draw((3.06,1.12)--(11.059997386776805,1.1264661862241279));
draw((8.24058816721552,9.673449961372697)--(11.059997386776805,1.1264661862241279));
draw((3.06,1.12)--(8.24058816721552,9.673449961372697));
draw(circle((7.057233308567444,4.544580789309355), 5.263613559678153));
draw((xmin, -1.167218282905096*xmin + 4.691687945689594)--(xmax, -1.167218282905096*xmax + 4.691687945689594)); /* line */
draw((-3.4157352090193904,-9.571812451715854)--(16.07228044377464,-14.068171636262198));
draw((-3.4157352090193904,-9.571812451715854)--(11.059997386776805,1.1264661862241279));
draw((3.06,1.12)--(-3.4157352090193904,-9.571812451715854));
draw((11.059997386776805,1.1264661862241279)--(16.07228044377464,-14.068171636262198));
draw((1.0674660895324941,-2.1697884466818023)--(11.059997386776805,1.1264661862241279));
draw((11.059997386776805,1.1264661862241279)--(1.0674660895324941,-2.1697884466818023));
/* dots and labels */
dot((3.06,1.12),dotstyle);
label("$A$", (0.8993575453507378,0.68772390073598), NE * labelscalefactor);
dot((11.059997386776805,1.1264661862241279),dotstyle);
label("$B$", (12.494879524972953,0.8119616362319325), NE * labelscalefactor);
dot((8.24058816721552,9.673449961372697),linewidth(3.pt) + dotstyle);
label("$C$", (8.229383939611925,10.46109242641757), NE * labelscalefactor);
dot((16.07228044377464,-14.068171636262198),linewidth(3.pt) + dotstyle);
label("$T$", (17.754276994301602,-14.75916787926077), NE * labelscalefactor);
dot((-3.4157352090193904,-9.571812451715854),linewidth(3.pt) + dotstyle);
label("$S$", (-4.85699086596172,-10.245196822907833), NE * labelscalefactor);
dot((1.0674660895324941,-2.1697884466818023),linewidth(3.pt) + dotstyle);
label("$P$", (-0.42584496660608695,-2.293981751166878), NE * labelscalefactor);
dot((-2.107643527157205,7.151768004434068),dotstyle);
label("$E$", (-2.1651732635494194,8.266225765989077), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/2/e/9/2e9b8bfee792e6af9af02e072630ce8c282b73cf.png)
Solution
Observe that
the first equality coming from the property of a tangent angle. This also means
is cyclic. This implies
and thus triangles
and
are similar, so 
On the other hand, by PoP,
and solving this system yields
Because
is cyclic, triangles
and
are similar, and length-chasing yields
Now all we need is 
By Ptolemy's,
and solving yields
And finally, by the angle bisector theorem, 






On the other hand, by PoP,







By Ptolemy's,



Now let's power through some problems!
P50 of 106 wrote:
Let
be a non-right triangle with orthocenter
and let
be points on its sides
and
Prove that the common chords of circles with diameters
and
passes through 
Diagram attached in solution








Diagram attached in solution
A nice application of the radical axis.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(10.90210924040695cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -6.609470751945979, xmax = 15.292638488460973, ymin = -7.487658116455024, ymax = 6.392005533992962; /* image dimensions */
pen ffqqff = rgb(1.,0.,1.); pen qqwuqq = rgb(0.,0.39215686274509803,0.);
draw((3.856979130653993,2.193207768303674)--(4.240017986739675,1.7459468285629074)--(4.687278926480442,2.12898568464859)--(4.304240070394759,2.5762466243893565)--cycle, qqwuqq);
draw((0.11671747924287534,1.1350485985382244)--(0.6396060929967737,0.8642191114144102)--(0.9104355801205877,1.3871077251683088)--(0.38754696636668934,1.6579372122921228)--cycle, qqwuqq);
/* draw figures */
draw((2.16,5.08)--(-1.88,-2.72));
draw((-1.88,-2.72)--(8.84,-2.72));
draw((8.84,-2.72)--(2.16,5.08));
draw((-0.6663078007713676,-0.3767328826773939)--(8.84,-2.72), ffqqff);
draw((-1.88,-2.72)--(7.610873017304547,-1.2847918465532127), blue);
draw(circle((2.8654365086522735,-2.002395923276606), 4.799387801436755), blue);
draw(circle((4.086846099614316,-1.548366441338697), 4.89542615065665), ffqqff);
draw((2.16,5.08)--(2.16,-2.72));
draw((-1.88,-2.72)--(4.304240070394759,2.5762466243893565));
draw((1.4721560880675542,2.5903040384229588)--(4.810377854273147,-6.3900292751730925));
draw((0.38754696636668934,1.6579372122921228)--(8.84,-2.72));
/* dots and labels */
dot((2.16,5.08),dotstyle);
label("$A$", (2.0514393659335757,5.503707060364291), NE * labelscalefactor);
dot((-1.88,-2.72),dotstyle);
label("$B$", (-2.50109031141337,-3.018406421010772), NE * labelscalefactor);
dot((8.84,-2.72),dotstyle);
label("$C$", (9.130067827662058,-3.1294437302143563), NE * labelscalefactor);
dot((-0.6663078007713676,-0.3767328826773939),dotstyle);
label("$M$", (-1.2519205828730495,-0.32575167282386297), NE * labelscalefactor);
dot((7.610873017304547,-1.2847918465532127),dotstyle);
label("$N$", (7.908657426422634,-1.1862908191516381), NE * labelscalefactor);
dot((2.16,-2.72),linewidth(3.pt) + dotstyle);
dot((4.304240070394759,2.5762466243893565),linewidth(3.pt) + dotstyle);
label("$L$", (4.410982186509736,2.7555336575755898), NE * labelscalefactor);
dot((2.16,0.7398974358974346),linewidth(3.pt) + dotstyle);
label("$H$", (2.273513984340744,0.8956587284155597), NE * labelscalefactor);
dot((4.810377854273147,-6.3900292751730925),linewidth(3.pt) + dotstyle);
label("$I$", (4.910650077925864,-6.210729060613809), NE * labelscalefactor);
dot((1.4721560880675542,2.5903040384229588),linewidth(3.pt) + dotstyle);
label("$J$", (1.5795308018183436,2.7555336575755898), NE * labelscalefactor);
dot((0.38754696636668934,1.6579372122921228),linewidth(3.pt) + dotstyle);
label("$K$", (0.4969170370833991,1.8117165293451267), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/7/3/c/73caa6561071f0a3aae7eab88f96e20a38caf619.png)
The common chord is screaming for us to use the radical axis. It suffices to prove that the power of
with respect to both circles is equal. Using the information we have, the power of
with respect to the blue and pink circles are
and
respectively. Setting them equal, we have
implying conversely, that
is cyclic, which is obvious as 
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(10.90210924040695cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -6.609470751945979, xmax = 15.292638488460973, ymin = -7.487658116455024, ymax = 6.392005533992962; /* image dimensions */
pen ffqqff = rgb(1.,0.,1.); pen qqwuqq = rgb(0.,0.39215686274509803,0.);
draw((3.856979130653993,2.193207768303674)--(4.240017986739675,1.7459468285629074)--(4.687278926480442,2.12898568464859)--(4.304240070394759,2.5762466243893565)--cycle, qqwuqq);
draw((0.11671747924287534,1.1350485985382244)--(0.6396060929967737,0.8642191114144102)--(0.9104355801205877,1.3871077251683088)--(0.38754696636668934,1.6579372122921228)--cycle, qqwuqq);
/* draw figures */
draw((2.16,5.08)--(-1.88,-2.72));
draw((-1.88,-2.72)--(8.84,-2.72));
draw((8.84,-2.72)--(2.16,5.08));
draw((-0.6663078007713676,-0.3767328826773939)--(8.84,-2.72), ffqqff);
draw((-1.88,-2.72)--(7.610873017304547,-1.2847918465532127), blue);
draw(circle((2.8654365086522735,-2.002395923276606), 4.799387801436755), blue);
draw(circle((4.086846099614316,-1.548366441338697), 4.89542615065665), ffqqff);
draw((2.16,5.08)--(2.16,-2.72));
draw((-1.88,-2.72)--(4.304240070394759,2.5762466243893565));
draw((1.4721560880675542,2.5903040384229588)--(4.810377854273147,-6.3900292751730925));
draw((0.38754696636668934,1.6579372122921228)--(8.84,-2.72));
/* dots and labels */
dot((2.16,5.08),dotstyle);
label("$A$", (2.0514393659335757,5.503707060364291), NE * labelscalefactor);
dot((-1.88,-2.72),dotstyle);
label("$B$", (-2.50109031141337,-3.018406421010772), NE * labelscalefactor);
dot((8.84,-2.72),dotstyle);
label("$C$", (9.130067827662058,-3.1294437302143563), NE * labelscalefactor);
dot((-0.6663078007713676,-0.3767328826773939),dotstyle);
label("$M$", (-1.2519205828730495,-0.32575167282386297), NE * labelscalefactor);
dot((7.610873017304547,-1.2847918465532127),dotstyle);
label("$N$", (7.908657426422634,-1.1862908191516381), NE * labelscalefactor);
dot((2.16,-2.72),linewidth(3.pt) + dotstyle);
dot((4.304240070394759,2.5762466243893565),linewidth(3.pt) + dotstyle);
label("$L$", (4.410982186509736,2.7555336575755898), NE * labelscalefactor);
dot((2.16,0.7398974358974346),linewidth(3.pt) + dotstyle);
label("$H$", (2.273513984340744,0.8956587284155597), NE * labelscalefactor);
dot((4.810377854273147,-6.3900292751730925),linewidth(3.pt) + dotstyle);
label("$I$", (4.910650077925864,-6.210729060613809), NE * labelscalefactor);
dot((1.4721560880675542,2.5903040384229588),linewidth(3.pt) + dotstyle);
label("$J$", (1.5795308018183436,2.7555336575755898), NE * labelscalefactor);
dot((0.38754696636668934,1.6579372122921228),linewidth(3.pt) + dotstyle);
label("$K$", (0.4969170370833991,1.8117165293451267), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/7/3/c/73caa6561071f0a3aae7eab88f96e20a38caf619.png)
The common chord is screaming for us to use the radical axis. It suffices to prove that the power of







BAMO 2012 wrote:
Given a segment
in the plane, choose on it a point
different from
and
. Two equilateral triangles
and
in the plane are constructed on the same side of segment
. The circumcircles of the two triangles intersect in point
and another point
. Prove that no matter where one chooses the point
along segment
, all lines
will pass through some fixed point
in the plane.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(12.567908618748916cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -7.58965732228952, xmax = 27.978251296459398, ymin = -7.686932861499198, ymax = 11.17611087405477; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0.);
draw((1.92,-1.12)--(7.7,-1.12)--(4.81,3.8856268338740567)--cycle, zzttqq);
draw((7.7,-1.12)--(15.04,-1.12)--(11.37,5.236626463777779)--cycle, zzttqq);
/* draw figures */
draw((1.92,-1.12)--(15.04,-1.12));
draw((1.92,-1.12)--(7.7,-1.12), zzttqq);
draw((7.7,-1.12)--(4.81,3.8856268338740567), zzttqq);
draw((4.81,3.8856268338740567)--(1.92,-1.12), zzttqq);
draw((7.7,-1.12)--(15.04,-1.12), zzttqq);
draw((15.04,-1.12)--(11.37,5.236626463777779), zzttqq);
draw((11.37,5.236626463777779)--(7.7,-1.12), zzttqq);
draw(circle((4.81,0.5485422779580201), 3.3370845559160367));
draw(circle((11.37,0.9988754879259247), 4.237750975851852));
draw((xmin, -14.56699140724605*xmin + 111.0458338357946)--(xmax, -14.56699140724605*xmax + 111.0458338357946)); /* line */
/* dots and labels */
dot((1.92,-1.12),dotstyle);
label("$A$", (2.024048474582725,-0.8480284462314892), NE * labelscalefactor);
dot((15.04,-1.12),dotstyle);
label("$B$", (15.141291369440482,-0.8480284462314892), NE * labelscalefactor);
dot((7.7,-1.12),dotstyle);
label("$M$", (7.8259059088467335,-0.8480284462314892), NE * labelscalefactor);
dot((4.81,3.8856268338740567),dotstyle);
dot((11.37,5.236626463777779),dotstyle);
dot((7.44487811196122,2.5963583508613004),linewidth(3.pt) + dotstyle);
label("$N$", (7.545622941007892,2.7676218388895535), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/e/0/1/e01f068ad40e5f5d475a894c2866e64188bbef99.png)













![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(12.567908618748916cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -7.58965732228952, xmax = 27.978251296459398, ymin = -7.686932861499198, ymax = 11.17611087405477; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0.);
draw((1.92,-1.12)--(7.7,-1.12)--(4.81,3.8856268338740567)--cycle, zzttqq);
draw((7.7,-1.12)--(15.04,-1.12)--(11.37,5.236626463777779)--cycle, zzttqq);
/* draw figures */
draw((1.92,-1.12)--(15.04,-1.12));
draw((1.92,-1.12)--(7.7,-1.12), zzttqq);
draw((7.7,-1.12)--(4.81,3.8856268338740567), zzttqq);
draw((4.81,3.8856268338740567)--(1.92,-1.12), zzttqq);
draw((7.7,-1.12)--(15.04,-1.12), zzttqq);
draw((15.04,-1.12)--(11.37,5.236626463777779), zzttqq);
draw((11.37,5.236626463777779)--(7.7,-1.12), zzttqq);
draw(circle((4.81,0.5485422779580201), 3.3370845559160367));
draw(circle((11.37,0.9988754879259247), 4.237750975851852));
draw((xmin, -14.56699140724605*xmin + 111.0458338357946)--(xmax, -14.56699140724605*xmax + 111.0458338357946)); /* line */
/* dots and labels */
dot((1.92,-1.12),dotstyle);
label("$A$", (2.024048474582725,-0.8480284462314892), NE * labelscalefactor);
dot((15.04,-1.12),dotstyle);
label("$B$", (15.141291369440482,-0.8480284462314892), NE * labelscalefactor);
dot((7.7,-1.12),dotstyle);
label("$M$", (7.8259059088467335,-0.8480284462314892), NE * labelscalefactor);
dot((4.81,3.8856268338740567),dotstyle);
dot((11.37,5.236626463777779),dotstyle);
dot((7.44487811196122,2.5963583508613004),linewidth(3.pt) + dotstyle);
label("$N$", (7.545622941007892,2.7676218388895535), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/e/0/1/e01f068ad40e5f5d475a894c2866e64188bbef99.png)
Sliding around
it appears
is equidistant to both
and
and this motivates us to conjecture that
is the excircle to
of 
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(12.567908618748916cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -7.58965732228952, xmax = 27.978251296459398, ymin = -7.686932861499198, ymax = 11.17611087405477; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0.);
draw((1.92,-1.12)--(4.462510294780642,-1.12)--(3.1912551473903212,1.0818785046634973)--cycle, zzttqq);
draw((4.462510294780642,-1.12)--(15.04,-1.12)--(9.751255147390324,8.040374792988338)--cycle, zzttqq);
/* draw figures */
draw((1.92,-1.12)--(15.04,-1.12));
draw((1.92,-1.12)--(4.462510294780642,-1.12), zzttqq);
draw((4.462510294780642,-1.12)--(3.1912551473903212,1.0818785046634973), zzttqq);
draw((3.1912551473903212,1.0818785046634973)--(1.92,-1.12), zzttqq);
draw((4.462510294780642,-1.12)--(15.04,-1.12), zzttqq);
draw((15.04,-1.12)--(9.751255147390324,8.040374792988338), zzttqq);
draw((9.751255147390324,8.040374792988338)--(4.462510294780642,-1.12), zzttqq);
draw(circle((3.1912551473903203,-0.3860404984455008), 1.4679190031089981));
draw(circle((9.751255147390323,1.9334582643294451), 6.106916528658894));
draw((xmin, -2.8281972404037425*xmin + 11.500859300971902)--(xmax, -2.8281972404037425*xmax + 11.500859300971902)); /* line */
/* dots and labels */
dot((1.92,-1.12),dotstyle);
label("$A$", (2.024048474582725,-0.8480284462314892), NE * labelscalefactor);
dot((15.04,-1.12),dotstyle);
label("$B$", (15.141291369440482,-0.8480284462314892), NE * labelscalefactor);
dot((4.462510294780642,-1.12),dotstyle);
label("$M$", (4.574623481916178,-0.8480284462314892), NE * labelscalefactor);
dot((3.1912551473903212,1.0818785046634973),dotstyle);
dot((9.751255147390324,8.040374792988338),dotstyle);
dot((3.7186167275671926,0.9838777339471727),linewidth(3.pt) + dotstyle);
label("$N$", (3.8178594687513074,1.1419806254242786), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/0/f/6/0f618cc43713715e7b84cc122a55616827178672.png)
Constructing the ex-center
, note that
implying a)
is equilateral (obvious) and
and
are tangent to both circles. Therefore
implying
has equal power with respect to both circles, and thus lines on the radical axis of the two circles. Done!
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(12.986202424862235cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -14.52946801562957, xmax = 43.456734409232666, ymin = -16.55630848760993, ymax = 14.196027392557289; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0.);
draw((1.92,-1.12)--(6.396462772868644,-1.12)--(4.1582313864343226,2.756730480399576)--cycle, zzttqq);
draw((6.396462772868644,-1.12)--(15.04,-1.12)--(10.718231386434324,6.36552281725226)--cycle, zzttqq);
draw((1.92,-1.12)--(15.04,-1.12)--(8.48,10.242253297651837)--cycle, zzttqq);
/* draw figures */
draw((1.92,-1.12)--(15.04,-1.12));
draw((1.92,-1.12)--(6.396462772868644,-1.12), zzttqq);
draw((6.396462772868644,-1.12)--(4.1582313864343226,2.756730480399576), zzttqq);
draw((4.1582313864343226,2.756730480399576)--(1.92,-1.12), zzttqq);
draw((6.396462772868644,-1.12)--(15.04,-1.12), zzttqq);
draw((15.04,-1.12)--(10.718231386434324,6.36552281725226), zzttqq);
draw((10.718231386434324,6.36552281725226)--(6.396462772868644,-1.12), zzttqq);
draw(circle((4.158231386434321,0.17224349346652504), 2.584486986933051));
draw(circle((10.718231386434322,1.37517427241742), 4.99034854483484));
draw((xmin, -5.453347869044582*xmin + 33.76213663184622)--(xmax, -5.453347869044582*xmax + 33.76213663184622)); /* line */
draw((1.92,-1.12)--(15.04,-1.12), zzttqq);
draw((15.04,-1.12)--(8.48,10.242253297651837), zzttqq);
draw((8.48,10.242253297651837)--(1.92,-1.12), zzttqq);
draw((8.48,10.242253297651834)--(xmin, 1.7320508075688765*xmin-4.445537550532244)); /* ray */
draw((8.48,10.242253297651839)--(xmax, -1.7320508075688787*xmax + 24.93004414583594)); /* ray */
draw((1.92,-1.12)--(8.48,-12.48225329765184));
draw((8.48,-12.48225329765184)--(15.04,-1.12));
/* dots and labels */
dot((1.92,-1.12),dotstyle);
label("$A$", (2.103296115694192,-0.6546548675531796), NE * labelscalefactor);
dot((15.04,-1.12),dotstyle);
label("$B$", (15.217590911545619,-0.6546548675531796), NE * labelscalefactor);
dot((6.396462772868644,-1.12),dotstyle);
label("$M$", (6.5813479972044355,-0.6546548675531796), NE * labelscalefactor);
dot((4.1582313864343226,2.756730480399576),dotstyle);
dot((10.718231386434324,6.36552281725226),dotstyle);
dot((5.792325762074086,2.17456928042747),linewidth(3.pt) + dotstyle);
label("$N$", (5.987320706800015,2.4525648053314724), NE * labelscalefactor);
dot((8.48,10.242253297651837),dotstyle);
label("$C$", (8.683290717096998,10.677558057084962), NE * labelscalefactor);
dot((8.48,-12.48225329765184),linewidth(3.pt) + dotstyle);
label("$O$", (8.683290717096998,-12.215339826962252), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/3/b/d/3bd6b8d59e921e17d2eba2ce5fff5402fcbbca5c.png)







![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(12.567908618748916cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -7.58965732228952, xmax = 27.978251296459398, ymin = -7.686932861499198, ymax = 11.17611087405477; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0.);
draw((1.92,-1.12)--(4.462510294780642,-1.12)--(3.1912551473903212,1.0818785046634973)--cycle, zzttqq);
draw((4.462510294780642,-1.12)--(15.04,-1.12)--(9.751255147390324,8.040374792988338)--cycle, zzttqq);
/* draw figures */
draw((1.92,-1.12)--(15.04,-1.12));
draw((1.92,-1.12)--(4.462510294780642,-1.12), zzttqq);
draw((4.462510294780642,-1.12)--(3.1912551473903212,1.0818785046634973), zzttqq);
draw((3.1912551473903212,1.0818785046634973)--(1.92,-1.12), zzttqq);
draw((4.462510294780642,-1.12)--(15.04,-1.12), zzttqq);
draw((15.04,-1.12)--(9.751255147390324,8.040374792988338), zzttqq);
draw((9.751255147390324,8.040374792988338)--(4.462510294780642,-1.12), zzttqq);
draw(circle((3.1912551473903203,-0.3860404984455008), 1.4679190031089981));
draw(circle((9.751255147390323,1.9334582643294451), 6.106916528658894));
draw((xmin, -2.8281972404037425*xmin + 11.500859300971902)--(xmax, -2.8281972404037425*xmax + 11.500859300971902)); /* line */
/* dots and labels */
dot((1.92,-1.12),dotstyle);
label("$A$", (2.024048474582725,-0.8480284462314892), NE * labelscalefactor);
dot((15.04,-1.12),dotstyle);
label("$B$", (15.141291369440482,-0.8480284462314892), NE * labelscalefactor);
dot((4.462510294780642,-1.12),dotstyle);
label("$M$", (4.574623481916178,-0.8480284462314892), NE * labelscalefactor);
dot((3.1912551473903212,1.0818785046634973),dotstyle);
dot((9.751255147390324,8.040374792988338),dotstyle);
dot((3.7186167275671926,0.9838777339471727),linewidth(3.pt) + dotstyle);
label("$N$", (3.8178594687513074,1.1419806254242786), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/0/f/6/0f618cc43713715e7b84cc122a55616827178672.png)
Constructing the ex-center







![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(12.986202424862235cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -14.52946801562957, xmax = 43.456734409232666, ymin = -16.55630848760993, ymax = 14.196027392557289; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0.);
draw((1.92,-1.12)--(6.396462772868644,-1.12)--(4.1582313864343226,2.756730480399576)--cycle, zzttqq);
draw((6.396462772868644,-1.12)--(15.04,-1.12)--(10.718231386434324,6.36552281725226)--cycle, zzttqq);
draw((1.92,-1.12)--(15.04,-1.12)--(8.48,10.242253297651837)--cycle, zzttqq);
/* draw figures */
draw((1.92,-1.12)--(15.04,-1.12));
draw((1.92,-1.12)--(6.396462772868644,-1.12), zzttqq);
draw((6.396462772868644,-1.12)--(4.1582313864343226,2.756730480399576), zzttqq);
draw((4.1582313864343226,2.756730480399576)--(1.92,-1.12), zzttqq);
draw((6.396462772868644,-1.12)--(15.04,-1.12), zzttqq);
draw((15.04,-1.12)--(10.718231386434324,6.36552281725226), zzttqq);
draw((10.718231386434324,6.36552281725226)--(6.396462772868644,-1.12), zzttqq);
draw(circle((4.158231386434321,0.17224349346652504), 2.584486986933051));
draw(circle((10.718231386434322,1.37517427241742), 4.99034854483484));
draw((xmin, -5.453347869044582*xmin + 33.76213663184622)--(xmax, -5.453347869044582*xmax + 33.76213663184622)); /* line */
draw((1.92,-1.12)--(15.04,-1.12), zzttqq);
draw((15.04,-1.12)--(8.48,10.242253297651837), zzttqq);
draw((8.48,10.242253297651837)--(1.92,-1.12), zzttqq);
draw((8.48,10.242253297651834)--(xmin, 1.7320508075688765*xmin-4.445537550532244)); /* ray */
draw((8.48,10.242253297651839)--(xmax, -1.7320508075688787*xmax + 24.93004414583594)); /* ray */
draw((1.92,-1.12)--(8.48,-12.48225329765184));
draw((8.48,-12.48225329765184)--(15.04,-1.12));
/* dots and labels */
dot((1.92,-1.12),dotstyle);
label("$A$", (2.103296115694192,-0.6546548675531796), NE * labelscalefactor);
dot((15.04,-1.12),dotstyle);
label("$B$", (15.217590911545619,-0.6546548675531796), NE * labelscalefactor);
dot((6.396462772868644,-1.12),dotstyle);
label("$M$", (6.5813479972044355,-0.6546548675531796), NE * labelscalefactor);
dot((4.1582313864343226,2.756730480399576),dotstyle);
dot((10.718231386434324,6.36552281725226),dotstyle);
dot((5.792325762074086,2.17456928042747),linewidth(3.pt) + dotstyle);
label("$N$", (5.987320706800015,2.4525648053314724), NE * labelscalefactor);
dot((8.48,10.242253297651837),dotstyle);
label("$C$", (8.683290717096998,10.677558057084962), NE * labelscalefactor);
dot((8.48,-12.48225329765184),linewidth(3.pt) + dotstyle);
label("$O$", (8.683290717096998,-12.215339826962252), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/3/b/d/3bd6b8d59e921e17d2eba2ce5fff5402fcbbca5c.png)
2012 JMO 1 wrote:
Given a triangle
, let
and
be points on segments
and
, respectively, such that
. Let
and
be distinct points on segment
such that
lies between
and
,
and
Prove that
are concyclic.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(11.267137976618258cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -5.449822481858106, xmax = 25.81731549476015, ymin = -6.375813475339232, ymax = 10.206364505956353; /* image dimensions */
pen qqwuqq = rgb(0.,0.39215686274509803,0.);
draw(arc((5.32,3.12),0.739175838690739,-126.35849197893974,-104.60336200894038)--(5.32,3.12)--cycle, qqwuqq);
draw(arc((12.748538253708311,-3.744503025785759),0.739175838690739,137.25984643600262,180.00030493788594)--(12.748538253708311,-3.744503025785759)--cycle, qqwuqq);
draw(arc((11.815291475204473,2.4354585951520624),0.739175838690739,-81.4125497884481,-65.67394149160917)--(11.815291475204473,2.4354585951520624)--cycle, blue);
draw(arc((3.5314879795615175,-3.744552080495362),0.739175838690739,3.04937885967508e-4,36.7242417666089)--(3.5314879795615175,-3.744552080495362)--cycle, blue);
/* draw figures */
draw((5.32,3.12)--(11.815291475204473,2.4354585951520624));
draw((xmin, 5.322170124254279e-6*xmin-3.744570875675181)--(xmax, 5.322170124254279e-6*xmax-3.744570875675181)); /* line */
draw((9.152380978789576,8.326007021082681)--(14.609031057690258,-3.7444931239265418));
draw((9.152380978789576,8.326007021082681)--(0.26667500337709027,-3.7445694563854452));
draw((5.32,3.12)--(3.5314879795615175,-3.744552080495362));
draw((11.815291475204473,2.4354585951520624)--(12.748538253708311,-3.744503025785759));
draw((12.748538253708311,-3.744503025785759)--(5.32,3.12));
draw((3.5314879795615175,-3.744552080495362)--(11.815291475204473,2.4354585951520624));
/* dots and labels */
dot((5.32,3.12),dotstyle);
label("$P$", (4.553690535089895,3.356668400755501), NE * labelscalefactor);
dot((11.815291475204473,2.4354585951520624),dotstyle);
label("$Q$", (12.388954425211729,2.6914101459338355), NE * labelscalefactor);
dot((3.5314879795615175,-3.744552080495362),dotstyle);
label("$S$", (3.4695659716768112,-4.700348240973558), NE * labelscalefactor);
dot((12.748538253708311,-3.744503025785759),dotstyle);
label("$R$", (12.783181539180122,-4.6757090463505335), NE * labelscalefactor);
dot((9.152380978789576,8.326007021082681),dotstyle);
label("$A$", (9.062663151103404,8.703373633951848), NE * labelscalefactor);
dot((0.26667500337709027,-3.7445694563854452),linewidth(3.pt) + dotstyle);
label("$B$", (-0.22631322177688354,-4.6757090463505335), NE * labelscalefactor);
dot((14.609031057690258,-3.7444931239265418),linewidth(3.pt) + dotstyle);
label("$C$", (14.926791471383266,-4.651069851727509), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/d/e/d/ded4bd1e364d63a476e7f8f56ad1800455bdf26d.png)















![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(11.267137976618258cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -5.449822481858106, xmax = 25.81731549476015, ymin = -6.375813475339232, ymax = 10.206364505956353; /* image dimensions */
pen qqwuqq = rgb(0.,0.39215686274509803,0.);
draw(arc((5.32,3.12),0.739175838690739,-126.35849197893974,-104.60336200894038)--(5.32,3.12)--cycle, qqwuqq);
draw(arc((12.748538253708311,-3.744503025785759),0.739175838690739,137.25984643600262,180.00030493788594)--(12.748538253708311,-3.744503025785759)--cycle, qqwuqq);
draw(arc((11.815291475204473,2.4354585951520624),0.739175838690739,-81.4125497884481,-65.67394149160917)--(11.815291475204473,2.4354585951520624)--cycle, blue);
draw(arc((3.5314879795615175,-3.744552080495362),0.739175838690739,3.04937885967508e-4,36.7242417666089)--(3.5314879795615175,-3.744552080495362)--cycle, blue);
/* draw figures */
draw((5.32,3.12)--(11.815291475204473,2.4354585951520624));
draw((xmin, 5.322170124254279e-6*xmin-3.744570875675181)--(xmax, 5.322170124254279e-6*xmax-3.744570875675181)); /* line */
draw((9.152380978789576,8.326007021082681)--(14.609031057690258,-3.7444931239265418));
draw((9.152380978789576,8.326007021082681)--(0.26667500337709027,-3.7445694563854452));
draw((5.32,3.12)--(3.5314879795615175,-3.744552080495362));
draw((11.815291475204473,2.4354585951520624)--(12.748538253708311,-3.744503025785759));
draw((12.748538253708311,-3.744503025785759)--(5.32,3.12));
draw((3.5314879795615175,-3.744552080495362)--(11.815291475204473,2.4354585951520624));
/* dots and labels */
dot((5.32,3.12),dotstyle);
label("$P$", (4.553690535089895,3.356668400755501), NE * labelscalefactor);
dot((11.815291475204473,2.4354585951520624),dotstyle);
label("$Q$", (12.388954425211729,2.6914101459338355), NE * labelscalefactor);
dot((3.5314879795615175,-3.744552080495362),dotstyle);
label("$S$", (3.4695659716768112,-4.700348240973558), NE * labelscalefactor);
dot((12.748538253708311,-3.744503025785759),dotstyle);
label("$R$", (12.783181539180122,-4.6757090463505335), NE * labelscalefactor);
dot((9.152380978789576,8.326007021082681),dotstyle);
label("$A$", (9.062663151103404,8.703373633951848), NE * labelscalefactor);
dot((0.26667500337709027,-3.7445694563854452),linewidth(3.pt) + dotstyle);
label("$B$", (-0.22631322177688354,-4.6757090463505335), NE * labelscalefactor);
dot((14.609031057690258,-3.7444931239265418),linewidth(3.pt) + dotstyle);
label("$C$", (14.926791471383266,-4.651069851727509), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/d/e/d/ded4bd1e364d63a476e7f8f56ad1800455bdf26d.png)

Solution
The angle conditions directly imply that the circumcircles of
and
are tangent to
and
respectively (proof of this is found in the blog post I wrote on March 25). This motivates us to draw in the two circumcircles. Assume for the sake of contradiction that these two circles are distinct.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(11.67503545235411cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -7.134295002030173, xmax = 24.540740450323938, ymin = -6.828224807714036, ymax = 9.970277051572289; /* image dimensions */
pen qqwuqq = rgb(0.,0.39215686274509803,0.);
draw(arc((5.32,3.12),0.7488188050201917,-126.46341031311174,-104.60336200894038)--(5.32,3.12)--cycle, qqwuqq);
draw(arc((12.748538253708311,-3.744503025785759),0.7488188050201917,137.25984643600262,180.00030493788594)--(12.748538253708311,-3.744503025785759)--cycle, qqwuqq);
draw(arc((11.853498024353822,2.39727241622378),0.7488188050201917,-81.70865883438351,-66.161241249308)--(11.853498024353822,2.39727241622378)--cycle, blue);
draw(arc((3.5314879795615175,-3.744552080495362),0.7488188050201917,3.04937885967508e-4,36.42813272067349)--(3.5314879795615175,-3.744552080495362)--cycle, blue);
/* draw figures */
draw((5.32,3.12)--(11.853498024353822,2.39727241622378));
draw((xmin, 5.322170124254279e-6*xmin-3.744570875675181)--(xmax, 5.322170124254279e-6*xmax-3.744570875675181)); /* line */
draw((9.208855226988247,8.382511395179062)--(14.567303879608376,-3.7444933460056826));
draw((9.208855226988247,8.382511395179062)--(0.24726662071612251,-3.74456955968016));
draw((5.32,3.12)--(3.5314879795615175,-3.744552080495362));
draw((11.853498024353822,2.39727241622378)--(12.748538253708311,-3.744503025785759));
draw((12.748538253708311,-3.744503025785759)--(5.32,3.12));
draw((3.5314879795615175,-3.744552080495362)--(11.853498024353822,2.39727241622378));
draw(circle((8.14,-1.28), 5.226126672785497));
/* dots and labels */
dot((5.32,3.12),dotstyle);
label("$P$", (4.9466483856289205,3.380671567394592), NE * labelscalefactor);
dot((11.853498024353822,2.39727241622378),dotstyle);
label("$Q$", (12.060427033320742,2.681774016042412), NE * labelscalefactor);
dot((3.5314879795615175,-3.744552080495362),dotstyle);
label("$S$", (3.399089521920524,-4.207358990143361), NE * labelscalefactor);
dot((12.748538253708311,-3.744503025785759),dotstyle);
label("$R$", (12.734363957838914,-4.232319616977367), NE * labelscalefactor);
dot((9.208855226988247,8.382511395179062),dotstyle);
label("$A$", (9.115073066907987,8.747206336705974), NE * labelscalefactor);
dot((0.24726662071612251,-3.74456955968016),linewidth(3.pt) + dotstyle);
label("$B$", (-0.12035886167437712,-4.182398363309355), NE * labelscalefactor);
dot((14.567303879608376,-3.7444933460056826),linewidth(3.pt) + dotstyle);
label("$C$", (14.6313715972234,-4.207358990143361), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/d/9/7/d97aa2908e2f8c5e6221d217f1d8367984bd9dbe.png)
The fact
imply that the power of
with respect to both circles is equal, hence it lies on the radical axis of these two circles, which is formed by the two intersections of the circles, namely
and
So
lies on line
which would imply the triangle is degenerate, contradiction. So we're done.




![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(11.67503545235411cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -7.134295002030173, xmax = 24.540740450323938, ymin = -6.828224807714036, ymax = 9.970277051572289; /* image dimensions */
pen qqwuqq = rgb(0.,0.39215686274509803,0.);
draw(arc((5.32,3.12),0.7488188050201917,-126.46341031311174,-104.60336200894038)--(5.32,3.12)--cycle, qqwuqq);
draw(arc((12.748538253708311,-3.744503025785759),0.7488188050201917,137.25984643600262,180.00030493788594)--(12.748538253708311,-3.744503025785759)--cycle, qqwuqq);
draw(arc((11.853498024353822,2.39727241622378),0.7488188050201917,-81.70865883438351,-66.161241249308)--(11.853498024353822,2.39727241622378)--cycle, blue);
draw(arc((3.5314879795615175,-3.744552080495362),0.7488188050201917,3.04937885967508e-4,36.42813272067349)--(3.5314879795615175,-3.744552080495362)--cycle, blue);
/* draw figures */
draw((5.32,3.12)--(11.853498024353822,2.39727241622378));
draw((xmin, 5.322170124254279e-6*xmin-3.744570875675181)--(xmax, 5.322170124254279e-6*xmax-3.744570875675181)); /* line */
draw((9.208855226988247,8.382511395179062)--(14.567303879608376,-3.7444933460056826));
draw((9.208855226988247,8.382511395179062)--(0.24726662071612251,-3.74456955968016));
draw((5.32,3.12)--(3.5314879795615175,-3.744552080495362));
draw((11.853498024353822,2.39727241622378)--(12.748538253708311,-3.744503025785759));
draw((12.748538253708311,-3.744503025785759)--(5.32,3.12));
draw((3.5314879795615175,-3.744552080495362)--(11.853498024353822,2.39727241622378));
draw(circle((8.14,-1.28), 5.226126672785497));
/* dots and labels */
dot((5.32,3.12),dotstyle);
label("$P$", (4.9466483856289205,3.380671567394592), NE * labelscalefactor);
dot((11.853498024353822,2.39727241622378),dotstyle);
label("$Q$", (12.060427033320742,2.681774016042412), NE * labelscalefactor);
dot((3.5314879795615175,-3.744552080495362),dotstyle);
label("$S$", (3.399089521920524,-4.207358990143361), NE * labelscalefactor);
dot((12.748538253708311,-3.744503025785759),dotstyle);
label("$R$", (12.734363957838914,-4.232319616977367), NE * labelscalefactor);
dot((9.208855226988247,8.382511395179062),dotstyle);
label("$A$", (9.115073066907987,8.747206336705974), NE * labelscalefactor);
dot((0.24726662071612251,-3.74456955968016),linewidth(3.pt) + dotstyle);
label("$B$", (-0.12035886167437712,-4.182398363309355), NE * labelscalefactor);
dot((14.567303879608376,-3.7444933460056826),linewidth(3.pt) + dotstyle);
label("$C$", (14.6313715972234,-4.207358990143361), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/d/9/7/d97aa2908e2f8c5e6221d217f1d8367984bd9dbe.png)
The fact






2008 IMO 1 wrote:
Let
be the orthocenter of an acute-angled triangle
. The circle
centered at the midpoint of
and passing through
intersects the sideline
at points
and
. Similarly, define the points
,
,
and
.
Prove that the six points
,
,
,
,
and
are concyclic.
Diagram credit to user "fclvbfm934."
![[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(8cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -3.23024805366, xmax = 6.98560554737, ymin = -1.53508634754, ymax = 4.58657752606; /* image dimensions */
/* draw figures */
draw((1.07322932756,3.89331217285)--(-0.14,-0.18));
draw((-0.14,-0.18)--(5.22,0.32));
draw((5.22,0.32)--(1.07322932756,3.89331217285));
draw((0.466614663782,1.85665608642)--(2.54,0.07));
draw((2.54,0.07)--(3.14661466378,2.10665608642));
draw((3.14661466378,2.10665608642)--(0.466614663782,1.85665608642));
draw(circle((2.54,0.07), 1.88550997846));
draw(circle((0.466614663782,1.85665608642), 0.908953928174));
draw(circle((3.14661466378,2.10665608642), 1.94969602822));
draw((0.433547786318,1.74563691517)--(5.22,0.32));
draw((1.07322932756,3.89331217285)--(1.43945830558,-0.0326624714943));
draw((-0.14,-0.18)--(2.39129283322,2.75752417264));
/* dots and labels */
dot((1.07322932756,3.89331217285),dotstyle);
label("$A$", (1.12555124101,3.97179504302), NE * labelscalefactor);
dot((-0.14,-0.18),dotstyle);
label("$B$", (-0.369462335575,-0.414004251654), NE * labelscalefactor * 1.02);
dot((5.22,0.32),dotstyle);
label("$C$", (5.27206288189,0.40082445009), NE * labelscalefactor);
dot((2.54,0.07),dotstyle);
label("$M$", (2.51208194743,-0.148555641131), NE * labelscalefactor);
dot((3.14661466378,2.10665608642),dotstyle);
label("$N$", (3.20534730063,2.17976950738), NE * labelscalefactor);
dot((0.466614663782,1.85665608642),dotstyle);
label("$P$", (0.314561582545,1.8919989834), NE * labelscalefactor);
dot((1.2975787164,1.48828672451),dotstyle);
label("$H$", (1.3740803299,1.31645793546), NE * labelscalefactor);
dot((1.21510891674,2.37236297685),dotstyle);
label("$X$", (1.32175841645,2.37597668281), NE * labelscalefactor);
dot((0.95371411682,1.08923744814),dotstyle);
label("$Y$", (1.00782693575,0.910963106223), NE * labelscalefactor);
dot((4.35596906992,0.577350190659),dotstyle);
label("$Z$", (4.42183178834,0.374663493365), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/c/6/9/c69c2535a67ca19dd8ecd2781736430afdf67f0f.png)












Prove that the six points






Diagram credit to user "fclvbfm934."
![[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(8cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -3.23024805366, xmax = 6.98560554737, ymin = -1.53508634754, ymax = 4.58657752606; /* image dimensions */
/* draw figures */
draw((1.07322932756,3.89331217285)--(-0.14,-0.18));
draw((-0.14,-0.18)--(5.22,0.32));
draw((5.22,0.32)--(1.07322932756,3.89331217285));
draw((0.466614663782,1.85665608642)--(2.54,0.07));
draw((2.54,0.07)--(3.14661466378,2.10665608642));
draw((3.14661466378,2.10665608642)--(0.466614663782,1.85665608642));
draw(circle((2.54,0.07), 1.88550997846));
draw(circle((0.466614663782,1.85665608642), 0.908953928174));
draw(circle((3.14661466378,2.10665608642), 1.94969602822));
draw((0.433547786318,1.74563691517)--(5.22,0.32));
draw((1.07322932756,3.89331217285)--(1.43945830558,-0.0326624714943));
draw((-0.14,-0.18)--(2.39129283322,2.75752417264));
/* dots and labels */
dot((1.07322932756,3.89331217285),dotstyle);
label("$A$", (1.12555124101,3.97179504302), NE * labelscalefactor);
dot((-0.14,-0.18),dotstyle);
label("$B$", (-0.369462335575,-0.414004251654), NE * labelscalefactor * 1.02);
dot((5.22,0.32),dotstyle);
label("$C$", (5.27206288189,0.40082445009), NE * labelscalefactor);
dot((2.54,0.07),dotstyle);
label("$M$", (2.51208194743,-0.148555641131), NE * labelscalefactor);
dot((3.14661466378,2.10665608642),dotstyle);
label("$N$", (3.20534730063,2.17976950738), NE * labelscalefactor);
dot((0.466614663782,1.85665608642),dotstyle);
label("$P$", (0.314561582545,1.8919989834), NE * labelscalefactor);
dot((1.2975787164,1.48828672451),dotstyle);
label("$H$", (1.3740803299,1.31645793546), NE * labelscalefactor);
dot((1.21510891674,2.37236297685),dotstyle);
label("$X$", (1.32175841645,2.37597668281), NE * labelscalefactor);
dot((0.95371411682,1.08923744814),dotstyle);
label("$Y$", (1.00782693575,0.910963106223), NE * labelscalefactor);
dot((4.35596906992,0.577350190659),dotstyle);
label("$Z$", (4.42183178834,0.374663493365), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/c/6/9/c69c2535a67ca19dd8ecd2781736430afdf67f0f.png)
It's not hard to show that the altitudes from
form the radical axes of
and
By the Radical Lemma (or just note
) quadrilateral
is cyclic, so are
and
Similar to 2012 JMO 1, assume for sake of contradiction the circumcircles of the three quadrilaterals are distinct. Therefore the pairwise radical axes of the three quadrilaterals, or
must be concurrent, which is obviously false. So we're done.
An additional observation is that the circumcircle of
itself,
is the circumcircle of the three cyclic quadrilaterals, and the result follows.








An additional observation is that the circumcircle of


...and with that said here're three more good-looking problems, among others, I'll try to solve before moving to Chapter 3 EGMO!
USAMO 2010 P1 wrote:
Let
be a convex pentagon inscribed in a semicircle of diameter
. Denote by
the feet of the perpendiculars from
onto lines
respectively. Prove that the acute angle formed by lines
and
is half the size of
, where
is the midpoint of segment 










Canada 2007 P5 wrote:
Let the incircle of triangle
touch sides
and
at
and
respectively. Let
, and
denote the circumcircles of triangles
and
respectively. Let
and
intersect at
and
,
and
intersect at
and
and
intersect at
and 
(a) Prove that
, and
intersect in a common point.
(b) Show that lines
and
are concurrent.




















(a) Prove that


(b) Show that lines


IMO 2009 P2 wrote:
Let
be a triangle with circumcenter
. The points
and
are interior points of the sides
and
, respectively. Let
and
be the midpoints of the segments
and
, respectively... (darn character limit)










This post has been edited 2 times. Last edited by shiningsunnyday, Jun 8, 2016, 3:53 PM