Chase angles, not girls!?
by shiningsunnyday, Jun 3, 2016, 8:53 AM
For all y'all angle-chasers out there, the future isn't as bleak as it seems. As crazy as it sounds, I've discovered an astonishing truth -- girls like geometry.
For those who recognize the world-famous Kpop group Girls Generation (which as it sounds, speak on behalf of all the girls today), see what they have to say:
Do you see that smile? Do you see those curves, as they repetitively sing out "Gee gee gee gee" and "Oh oh oh oh?"
Blog readers: *mind-blown* Wow... I had no clue...
Now don't get ahead of yourselves. Let me start you guys off with the fundamentals. This is the first of two posts in spirit of Oly Geo. This post will be on similar triangles/angle-chasing and the next post will be more similar triangles and power of a point. So if you like geometry, let's get ripped!
Pure angle chasing at its best
Hm... what a bittersweet feeling, attempting this problem for days without solving it and suddenly having that moment of epiphany in bed at 1 AM before a Monday.
Solution
hence the conclusion by converse of Power of a Point.
Yay first JMO problem.
My solution
Better solution
Similar triangles at its best
Now time to finish up those end-of-chapter-1 problems for EGMO and chapter 2.
For those who recognize the world-famous Kpop group Girls Generation (which as it sounds, speak on behalf of all the girls today), see what they have to say:
Girls Generation wrote:
Blog readers: *mind-blown* Wow... I had no clue...
Now don't get ahead of yourselves. Let me start you guys off with the fundamentals. This is the first of two posts in spirit of Oly Geo. This post will be on similar triangles/angle-chasing and the next post will be more similar triangles and power of a point. So if you like geometry, let's get ripped!
Olympiad Forum wrote:
Given triangle
where
is
degree and
is
degree let
be a point inside
such that
and 
Find
Note: Geogebra is failing me, so you guys are gonna have to draw a diagram yourselves.









Find

Note: Geogebra is failing me, so you guys are gonna have to draw a diagram yourselves.
Idea credit to Math_CYCR.
Sometimes we can "force"-construct a cyclic quadrilateral. Construct point
such that
is equilateral (what!?). This allows us to take advantage of the perpendicular bisectors created by the
triangle. For one, line
is a perpendicular bisector, implying
and
is a perpendicular bisector as well, and we can take advantage of the symmetry to get
Now note
is cyclic, which means
after which the problem cracks.
Beautiful!
Sometimes we can "force"-construct a cyclic quadrilateral. Construct point











P55 of 106, Switzerland Final Round 2011 wrote:
Let ABCD be a parallelogram such that the triangle
is acute and has orthocenter
. The line through
parallel to
cuts
and
at
and
, respectively, while the line through
parallel to
cuts
and
at
and
, respectively. Prove that the points
lie on the same circle.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(9.260265047364229cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -3.7187567654619547, xmax = 11.541508281902274, ymin = -2.5506626732332713, ymax = 5.54244873486453; /* image dimensions */
/* draw figures */
draw((-1.32,-1.84)--(6.82,-1.84));
draw((0.7807901362418695,4.998416344724051)--(-1.32,-1.84));
draw((0.7807901362418695,4.998416344724051)--(6.82,-1.84));
draw((0.7807901362418695,4.998416344724051)--(8.92079013624187,4.998416344724049));
draw((8.92079013624187,4.998416344724049)--(6.82,-1.84));
draw((0.7807901362418695,4.998416344724051)--(0.7807901362418695,-1.84));
draw((6.82,-1.84)--(-0.6180393996311587,0.4449968495672343));
draw((2.3116333881035214,4.998416344724051)--(0.21084325186165123,-1.84), linetype("4 4"));
draw((-0.7500531156197822,0.015270558696824732)--(7.389946884380217,0.015270558696824732), linetype("4 4"));
draw((-0.7500531156197822,0.015270558696824732)--(0.21084325186165123,-1.84), blue);
draw((0.21084325186165123,-1.84)--(7.389946884380217,0.015270558696824732), blue);
draw((7.389946884380217,0.015270558696824732)--(2.3116333881035214,4.998416344724051), blue);
draw((-0.7500531156197822,0.015270558696824732)--(2.3116333881035214,4.998416344724051), blue);
/* dots and labels */
dot((0.7807901362418695,4.998416344724051),dotstyle);
label("$D$", (0.6344472906025456,5.145609691079645), NE * labelscalefactor);
dot((-1.32,-1.84),dotstyle);
label("$A$", (-1.5662055885681825,-2.1177473527406687), NE * labelscalefactor);
dot((6.82,-1.84),dotstyle);
label("$B$", (6.9718465655914725,-2.1297727783099076), NE * labelscalefactor);
dot((0.7807901362418694,0.015270558696824732),linewidth(3.pt) + dotstyle);
label("$H$", (0.9350829298335193,0.11898180313777248), NE * labelscalefactor);
dot((8.92079013624187,4.998416344724049),linewidth(3.pt) + dotstyle);
label("$C$", (9.004143486792856,5.121558839941168), NE * labelscalefactor);
dot((-0.6180393996311587,0.4449968495672343),linewidth(3.pt) + dotstyle);
label("$B'$", (-0.8086037777061285,0.5037954213534183), NE * labelscalefactor);
dot((0.7807901362418695,-1.84),linewidth(3.pt) + dotstyle);
label("$D'$", (0.7426761207256961,-2.1538236294483855), NE * labelscalefactor);
dot((-0.7500531156197822,0.015270558696824732),linewidth(3.pt) + dotstyle);
label("$Q$", (-1.0010105868139516,-0.0012724525546168332), NE * labelscalefactor);
dot((7.389946884380217,0.015270558696824732),linewidth(3.pt) + dotstyle);
label("$P$", (7.537041567345703,-0.04937415483157256), NE * labelscalefactor);
dot((2.3116333881035214,4.998416344724051),linewidth(3.pt) + dotstyle);
label("$S$", (2.2939560191575206,5.1335842655104065), NE * labelscalefactor);
dot((0.21084325186165123,-1.84),linewidth(3.pt) + dotstyle);
label("$R$", (0.11735399112527069,-2.1297727783099076), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/d/a/6/da6cb9e4eb575fa8b579bcd0d1f620986b784b4a.png)















![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(9.260265047364229cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -3.7187567654619547, xmax = 11.541508281902274, ymin = -2.5506626732332713, ymax = 5.54244873486453; /* image dimensions */
/* draw figures */
draw((-1.32,-1.84)--(6.82,-1.84));
draw((0.7807901362418695,4.998416344724051)--(-1.32,-1.84));
draw((0.7807901362418695,4.998416344724051)--(6.82,-1.84));
draw((0.7807901362418695,4.998416344724051)--(8.92079013624187,4.998416344724049));
draw((8.92079013624187,4.998416344724049)--(6.82,-1.84));
draw((0.7807901362418695,4.998416344724051)--(0.7807901362418695,-1.84));
draw((6.82,-1.84)--(-0.6180393996311587,0.4449968495672343));
draw((2.3116333881035214,4.998416344724051)--(0.21084325186165123,-1.84), linetype("4 4"));
draw((-0.7500531156197822,0.015270558696824732)--(7.389946884380217,0.015270558696824732), linetype("4 4"));
draw((-0.7500531156197822,0.015270558696824732)--(0.21084325186165123,-1.84), blue);
draw((0.21084325186165123,-1.84)--(7.389946884380217,0.015270558696824732), blue);
draw((7.389946884380217,0.015270558696824732)--(2.3116333881035214,4.998416344724051), blue);
draw((-0.7500531156197822,0.015270558696824732)--(2.3116333881035214,4.998416344724051), blue);
/* dots and labels */
dot((0.7807901362418695,4.998416344724051),dotstyle);
label("$D$", (0.6344472906025456,5.145609691079645), NE * labelscalefactor);
dot((-1.32,-1.84),dotstyle);
label("$A$", (-1.5662055885681825,-2.1177473527406687), NE * labelscalefactor);
dot((6.82,-1.84),dotstyle);
label("$B$", (6.9718465655914725,-2.1297727783099076), NE * labelscalefactor);
dot((0.7807901362418694,0.015270558696824732),linewidth(3.pt) + dotstyle);
label("$H$", (0.9350829298335193,0.11898180313777248), NE * labelscalefactor);
dot((8.92079013624187,4.998416344724049),linewidth(3.pt) + dotstyle);
label("$C$", (9.004143486792856,5.121558839941168), NE * labelscalefactor);
dot((-0.6180393996311587,0.4449968495672343),linewidth(3.pt) + dotstyle);
label("$B'$", (-0.8086037777061285,0.5037954213534183), NE * labelscalefactor);
dot((0.7807901362418695,-1.84),linewidth(3.pt) + dotstyle);
label("$D'$", (0.7426761207256961,-2.1538236294483855), NE * labelscalefactor);
dot((-0.7500531156197822,0.015270558696824732),linewidth(3.pt) + dotstyle);
label("$Q$", (-1.0010105868139516,-0.0012724525546168332), NE * labelscalefactor);
dot((7.389946884380217,0.015270558696824732),linewidth(3.pt) + dotstyle);
label("$P$", (7.537041567345703,-0.04937415483157256), NE * labelscalefactor);
dot((2.3116333881035214,4.998416344724051),linewidth(3.pt) + dotstyle);
label("$S$", (2.2939560191575206,5.1335842655104065), NE * labelscalefactor);
dot((0.21084325186165123,-1.84),linewidth(3.pt) + dotstyle);
label("$R$", (0.11735399112527069,-2.1297727783099076), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/d/a/6/da6cb9e4eb575fa8b579bcd0d1f620986b784b4a.png)
Solution

2011 JMO 5 wrote:
Points
lie on a circle
and point
lies outside the circle. The given points are such that
lines
and
are tangent to
,
are collinear, and 
Prove that
bisects
.
Diagram credit to user "application."
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(8.46cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -6.1, xmax = 9.36, ymin = 0.06, ymax = 7.92; /* image dimensions */
/* draw figures */
draw(circle((1.04,3.6), 2.6220602586515818));
draw((xmin, -0.48998358833808897*xmin + 1.1896814018430788)--(xmax, -0.48998358833808897*xmax + 1.1896814018430788)); /* line */
draw((xmin, 0.48174318840401226*xmin + 6.0094462144839005)--(xmax, 0.48174318840401226*xmax + 6.0094462144839005)); /* line */
draw((xmin, 0.2640449438202246*xmin + 4.929662921348314)--(xmax, 0.2640449438202246*xmax + 4.929662921348314)); /* line */
draw((xmin, 0.2640449438202246*xmin + 1.2754260075975519)--(xmax, 0.2640449438202246*xmax + 1.2754260075975519)); /* line */
draw((-0.09799253674201971,5.962238977394003)--(3.2057252479280893,2.1218815505897997));
draw((-1.4,4.56)--(-0.11371533317053628,1.2454000488390393));
draw((3.2057252479280893,2.1218815505897997)--(2.6880181748443643,5.6394205293128365));
draw((-0.09799253674201971,5.962238977394003)--(2.6880181748443643,5.6394205293128365));
draw((-1.4,4.56)--(-0.09799253674201971,5.962238977394003));
/* dots and labels */
dot((1.04,3.6),dotstyle);
label("$O$", (1.12,3.8), NE * labelscalefactor);
dot((-4.96,3.62),dotstyle);
label("$P$", (-4.88,3.82), NE * labelscalefactor);
dot((-1.4,4.56),dotstyle);
label("$C$", (-1.32,4.76), NE * labelscalefactor);
dot((-0.09799253674201971,5.962238977394003),linewidth(3.pt) + dotstyle);
label("$B$", (-0.02,6.08), NE * labelscalefactor);
dot((2.6880181748443643,5.6394205293128365),linewidth(3.pt) + dotstyle);
label("$A$", (2.76,5.76), NE * labelscalefactor);
dot((-0.11371533317053628,1.2454000488390393),linewidth(3.pt) + dotstyle);
label("$D$", (-0.04,1.36), NE * labelscalefactor);
dot((3.2057252479280893,2.1218815505897997),linewidth(3.pt) + dotstyle);
label("$E$", (3.28,2.24), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/3/2/6/326f5632a6f233f9035cc9473752b18542ea4574.png)









Prove that


Diagram credit to user "application."
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(8.46cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -6.1, xmax = 9.36, ymin = 0.06, ymax = 7.92; /* image dimensions */
/* draw figures */
draw(circle((1.04,3.6), 2.6220602586515818));
draw((xmin, -0.48998358833808897*xmin + 1.1896814018430788)--(xmax, -0.48998358833808897*xmax + 1.1896814018430788)); /* line */
draw((xmin, 0.48174318840401226*xmin + 6.0094462144839005)--(xmax, 0.48174318840401226*xmax + 6.0094462144839005)); /* line */
draw((xmin, 0.2640449438202246*xmin + 4.929662921348314)--(xmax, 0.2640449438202246*xmax + 4.929662921348314)); /* line */
draw((xmin, 0.2640449438202246*xmin + 1.2754260075975519)--(xmax, 0.2640449438202246*xmax + 1.2754260075975519)); /* line */
draw((-0.09799253674201971,5.962238977394003)--(3.2057252479280893,2.1218815505897997));
draw((-1.4,4.56)--(-0.11371533317053628,1.2454000488390393));
draw((3.2057252479280893,2.1218815505897997)--(2.6880181748443643,5.6394205293128365));
draw((-0.09799253674201971,5.962238977394003)--(2.6880181748443643,5.6394205293128365));
draw((-1.4,4.56)--(-0.09799253674201971,5.962238977394003));
/* dots and labels */
dot((1.04,3.6),dotstyle);
label("$O$", (1.12,3.8), NE * labelscalefactor);
dot((-4.96,3.62),dotstyle);
label("$P$", (-4.88,3.82), NE * labelscalefactor);
dot((-1.4,4.56),dotstyle);
label("$C$", (-1.32,4.76), NE * labelscalefactor);
dot((-0.09799253674201971,5.962238977394003),linewidth(3.pt) + dotstyle);
label("$B$", (-0.02,6.08), NE * labelscalefactor);
dot((2.6880181748443643,5.6394205293128365),linewidth(3.pt) + dotstyle);
label("$A$", (2.76,5.76), NE * labelscalefactor);
dot((-0.11371533317053628,1.2454000488390393),linewidth(3.pt) + dotstyle);
label("$D$", (-0.04,1.36), NE * labelscalefactor);
dot((3.2057252479280893,2.1218815505897997),linewidth(3.pt) + dotstyle);
label("$E$", (3.28,2.24), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/3/2/6/326f5632a6f233f9035cc9473752b18542ea4574.png)
My solution
Denote
as
iff
which follows from
being cyclic, which we can show by
Because
is cyclic, 


which is true because they combine to intercept half of the whole circle.











Better solution
Credit to SnowEverywhere.
hence
is cyclic and conclusion follows.


P54 of 106 wrote:
On the sides
and
of rhombus
consider the points
and
such that
Let
and
Prove that points
and
are collinear.
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(6.857420573663827cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -7.952153103819896, xmax = 18.90526746984393, ymin = -3.6146729710638477, ymax = 13.405238672576095; /* image dimensions */
/* draw figures */
draw((0.26,-2.16)--(6.4,-2.16));
draw((8.42172861272408,3.637604110017583)--(6.4,-2.16));
draw((2.2817286127240797,3.6376041100175835)--(0.26,-2.16));
draw((8.42172861272408,3.637604110017583)--(2.2817286127240797,3.6376041100175835));
draw((10.795701717331196,-2.16)--(2.2817286127240797,3.6376041100175835));
draw((5.105717700332717,11.73580811124824)--(6.4,-2.16));
draw((2.2817286127240797,3.6376041100175835)--(5.105717700332717,11.73580811124824));
draw((6.4,-2.16)--(10.795701717331196,-2.16));
draw((10.795701717331196,-2.16)--(8.42172861272408,3.637604110017583));
draw((8.42172861272408,3.637604110017583)--(5.105717700332717,11.73580811124824));
draw((5.86,3.637604110017583)--(2.2817286127240797,3.6376041100175835), green);
draw((7.243504891592546,0.25887432147862655)--(8.42172861272408,3.637604110017583), green);
draw((5.86,3.637604110017583)--(8.42172861272408,3.637604110017583), blue);
draw((7.243504891592546,0.25887432147862655)--(6.4,-2.16), blue);
/* dots and labels */
dot((6.4,-2.16),dotstyle);
label("$D$", (6.412652323412216,-2.8317570354564103), NE * labelscalefactor);
dot((0.26,-2.16),dotstyle);
label("$C$", (-0.19107339432008227,-2.7636773888818507), NE * labelscalefactor);
dot((8.42172861272408,3.637604110017583),dotstyle);
label("$A$", (8.557161190510849,3.976207621999566), NE * labelscalefactor);
dot((2.2817286127240797,3.6376041100175835),linewidth(3.pt) + dotstyle);
label("$B$", (1.7151567097675913,3.976207621999566), NE * labelscalefactor);
dot((5.86,3.637604110017583),dotstyle);
label("$E$", (6.004174443964857,3.976207621999566), NE * labelscalefactor);
dot((7.243504891592546,0.25887432147862655),linewidth(3.pt) + dotstyle);
label("$F$", (7.501926668605171,0.26586688368605893), NE * labelscalefactor);
dot((5.105717700332717,11.73580811124824),linewidth(3.pt) + dotstyle);
label("$P$", (4.98297974534646,12.145765210946738), NE * labelscalefactor);
dot((10.795701717331196,-2.16),linewidth(3.pt) + dotstyle);
label("$Q$", (11.008028467194999,-2.661557919020011), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](//latex.artofproblemsolving.com/3/0/6/30612611e2ee67f6b95f25749e140583ad570204.png)










![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(6.857420573663827cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -7.952153103819896, xmax = 18.90526746984393, ymin = -3.6146729710638477, ymax = 13.405238672576095; /* image dimensions */
/* draw figures */
draw((0.26,-2.16)--(6.4,-2.16));
draw((8.42172861272408,3.637604110017583)--(6.4,-2.16));
draw((2.2817286127240797,3.6376041100175835)--(0.26,-2.16));
draw((8.42172861272408,3.637604110017583)--(2.2817286127240797,3.6376041100175835));
draw((10.795701717331196,-2.16)--(2.2817286127240797,3.6376041100175835));
draw((5.105717700332717,11.73580811124824)--(6.4,-2.16));
draw((2.2817286127240797,3.6376041100175835)--(5.105717700332717,11.73580811124824));
draw((6.4,-2.16)--(10.795701717331196,-2.16));
draw((10.795701717331196,-2.16)--(8.42172861272408,3.637604110017583));
draw((8.42172861272408,3.637604110017583)--(5.105717700332717,11.73580811124824));
draw((5.86,3.637604110017583)--(2.2817286127240797,3.6376041100175835), green);
draw((7.243504891592546,0.25887432147862655)--(8.42172861272408,3.637604110017583), green);
draw((5.86,3.637604110017583)--(8.42172861272408,3.637604110017583), blue);
draw((7.243504891592546,0.25887432147862655)--(6.4,-2.16), blue);
/* dots and labels */
dot((6.4,-2.16),dotstyle);
label("$D$", (6.412652323412216,-2.8317570354564103), NE * labelscalefactor);
dot((0.26,-2.16),dotstyle);
label("$C$", (-0.19107339432008227,-2.7636773888818507), NE * labelscalefactor);
dot((8.42172861272408,3.637604110017583),dotstyle);
label("$A$", (8.557161190510849,3.976207621999566), NE * labelscalefactor);
dot((2.2817286127240797,3.6376041100175835),linewidth(3.pt) + dotstyle);
label("$B$", (1.7151567097675913,3.976207621999566), NE * labelscalefactor);
dot((5.86,3.637604110017583),dotstyle);
label("$E$", (6.004174443964857,3.976207621999566), NE * labelscalefactor);
dot((7.243504891592546,0.25887432147862655),linewidth(3.pt) + dotstyle);
label("$F$", (7.501926668605171,0.26586688368605893), NE * labelscalefactor);
dot((5.105717700332717,11.73580811124824),linewidth(3.pt) + dotstyle);
label("$P$", (4.98297974534646,12.145765210946738), NE * labelscalefactor);
dot((10.795701717331196,-2.16),linewidth(3.pt) + dotstyle);
label("$Q$", (11.008028467194999,-2.661557919020011), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]](http://latex.artofproblemsolving.com/3/0/6/30612611e2ee67f6b95f25749e140583ad570204.png)
Menelaus is hopeless as there's no nice transversals but parallel lines mean a lot of similar triangles staring us in the face, how can we use those? Consider this, if we can prove that
that would imply
and
would be forced to go through
hence collinearity. To do so, consider the following two pairs of similar triangles:
keep in mind
is a rhombus, and that
. Let's go!
Done!








Now time to finish up those end-of-chapter-1 problems for EGMO and chapter 2.

This post has been edited 1 time. Last edited by shiningsunnyday, Jun 3, 2016, 8:54 AM