462. Diverse probleme de geometrie.

by Virgil Nicula, Aug 3, 2018, 8:20 AM

P1. Let $\triangle ABC$ with the circumcircle $w=C(O,R)$ and with the incircle $C(I,r)$. Define the points $ \left\{\begin{array}{c}D\in (AB\ ,\ E\in (CB\\\\ AD = CE = CA\end{array}\right\|$. Prove that $ OI\perp DE$.

Proof. Denote the power $ p_{w}(X)$ of $X$ w.r.t. the circle $ w$. Thus, $ \left\{\begin{array}{c}p_{w}(D)\equiv OD^{2}-R^{2}=-b(c-b)\\\\ p_{w}(E)\equiv OE^{2}-R^{2}=-b(a-b)\end{array}\right\|$ $ \implies$ $ \boxed{OD^{2}-OE^{2}=b(a-c)}$.

The relations $p\cdot IA^{2}=bc(p-a)$ a.s.o. are well-known. Apply the Stewart's theorem to the rays $ (ID\ ,\ (IE$ in $ \triangle IAB\ ,\ \triangle IAC$ respectively :

$ \left\{\begin{array}{c}b\cdot IB^{2}+(c-b)\cdot IA^{2}=c\cdot ID^{2}+bc(c-b)\\\\ b\cdot IB^{2}+(a-b)\cdot IC^{2}=a\cdot IE^{2}+ab(a-b)\end{array}\right\|$ $ \implies$ $ \boxed{\ ID^{2}-IE^{2}=b(a-c)\ }$. Hence $ OD^{2}-OE^{2}=ID^{2}-IE^{2}$, i.e. $ OI\perp DE$.



P2 (IMO 2010). Let an interior $P$ of $\triangle ABC$. Lines $AP,BP,CP$ meet again the circumcircle $\Gamma$ at $K,L,M$ respectively. The tangent at $C$ to $\Gamma$ meets $AB$ at $S$. Show that $SC = SP\implies MK = ML$.

Proof. Consider the circle which is tangent to $\Gamma$ in $C$ and to $SP$ in $P$. Denote $\{X,Y\}=SP\cap \Gamma$ , where $X\in \mathrm{arc}\ AL$ . From the well-known property obtain $\widehat {MCX}\equiv\widehat {MCY}$ ,

i.e. $\mathrm{arc}\ MX=\mathrm{arc}\ MY$ . Since $SP^2=SC^2=SA\cdot SB$ obtain $SP^2=SA\cdot SB$ $\implies$ $\widehat {SPA}\equiv\widehat{SBP}$ (the line $SP$ is tangent to the circumcircle of $\triangle APB$) , i.e. $\overarc{XL}=\overarc{YK}$.

In conclusion, $\mathrm{arc}\ ML=\mathrm{arc}\ MX+\mathrm{arc}\ XL=\mathrm{arc}\ MY+\mathrm{arc}\ YK=\mathrm{arc}\ MK$ $\implies$ , $\mathrm{arc}\ ML=\mathrm{arc}\ MK$ , i.e. $ML=MK$ . Nice problem !


P3 (Balcan geo 2003). Let $\triangle  ABC$ and the tangent to the circumcircle of $\triangle  ABC$ at $ A$ meet $ BC$ at $ D$. The perpendicular to $ BC$ at $ B$ meets the perpendicular

bisector of $ AB$ at $ E$. The perpendicular to $ BC$ at $ C$ meets the perpendicular bisector of $ AC$ at $ F$. Prove that the points $ D\in EF$. (Valentin Vornicu).


Proof (Virgil NICULA). $ \left\|\ \begin{array}{c}
\frac {DB}{DC}=\frac {c^2}{b^2}\\\\
BE=\frac {c}{2\sin B}\\\\
CF=\frac {b}{2\sin C}\end{array}\ \right\|\ \Longrightarrow\ \frac {BE}{CF}=\frac {DB}{DC}\ \Longrightarrow\ D\in EF$ .


P4 (OME, 2009). Let $ABC$ be an acute triangle with the incircle $ C(I,r)$ and the circumcircle $ C(O,R)$ .

Denote $ D\in BC$ for which $ AD\perp BC$ and $ AD=h_a$ . Prove that $ \boxed {DI^2 = (2R - h_a)(h_a - 2r)}$ .


Proof. From the identity $ \boxed{a\cdot XA^2+b\cdot XB^2+c\cdot XC^2=(a+b+c)\cdot XI^2+abc}$ for $ X: =D$ obtain $ a\cdot DA^2+b\cdot DB^2+c\cdot DC^2=2s\cdot DI^2+abc$ .

Therefore, $ \underline{2s\cdot DI}^2=ah_a^2+b\cdot\left(c^2-h_a^2\right)+c\left(b^2-h_a^2\right)-abc$ $=2(s-a)bc-2(s-a)h_a^2=2(s-a)\left(2Rh_a-h_a^2\right)=$ $ \left(2sh_a-2ah_a\right)\left(2R-h_a\right)=$

$\left(2sh_a-4sr\right)\left(2R-h_a\right)$ $=\underline{2s\left(h_a-2r\right)\left(2R-h_a\right)}$ . In conclusion, $ 2s\cdot DI^2=2s\left(h_a-2r\right)\left(2R-h_a\right)$ , i.e. $ DI^2 = (2R - h_a)(h_a - 2r)$ .



Extension (Virgil NICULA). Let an acute $\triangle ABC$ with the incircle $ w = C(I,r)$ and the circumcircle $ C(O,R)$ . Let $ D\in BC$

so that $ AD\perp BC$ , $ X\in (AD)$ and $ AD = h_a$ , $ AX = x$ . Prove that $ \boxed {XI^2 = (2R - x)(h_a - 2r) - x(h_a - x)}$ .

Particular cases. $ \left\|\begin{array}{ccccc} x = R & \implies & IX^2 = R(R - 2r) & \implies & IX = IO \\
 \\
x = 0 & \implies & IA^2 = 2R(h_a - r) & \implies & IA^2 = \frac {bc(s - a)}{s}\end{array}\right\|$ what are evidently. Thus we

verified the upper identity ! Also we can find easily the points $ \{X,Y\}\subset (AD)$ for which $ IX = IY = r$ , i.e. $ AD\cap w$ .


Proof. Let $ P\in AD$ for which $ IP\perp AD$ . Apply the generalized Pythagoras' in $ \triangle AIX$ : $ XI^2 = AX^2 + AI^2 - 2\cdot AX\cdot AP= x^2 + \frac {bc(s - a)}{s} - 2x(h_a - r)$ $ = $ $sx^2 + bc(s - a) - xh_a(b + c)$ $ \implies$ $ s\cdot XI^2 = sx^2 - xh_a(b + c) + bc(s - a) - (s - a)h^2_a + (s - a)h^2_a =$ $ sx^2 - xh_a(b + c) + (s - a)h^2_a + (s - a)\left(bc - h^2_a\right) =$ $sx^2-xh_a(b + c) + (s - a)h^2_a + h_a(s - a)\left(2R - h_a\right) =$ $ \left[sx - (s - a)h_a\right]\left(x - h_a\right) + h_a(s - a)\left(2R - h_a\right) =$ $h_a(s - a)\left(2R - h_a\right) + sx\left(x - h_a\right) - h_a(s - a)\left(x - h_a\right) =$ $ h_a(s - a)(2R - x) - sx\left(h_a - x\right)$. Since $ h_a(s - a) = sh_a - ah_a = sh_a - 2sr = s\left(h_a - 2r\right)$ obtain $ XI^2 = (2R - x)(h_a - 2r) - x(h_a - x)$ .


P5 (USA TST 2006). Let $ABC$ be a triangle. Triangles $PAB$ and $QAC$ are constructed outside of triangle $ABC$ such that $AP = AB\ ,$

$AQ = AC$ and $\angle{BAP}= \angle{CAQ}$. Segments $BQ$ and $CP$ meet at $R$. Let $O$ be the circumcenter of triangle $BCR$. Prove that $AO \perp PQ.$

Proof. I"ll show that $OP^{2}-OQ^{2}=c^{2}-b^{2}$, i.e. $AO\perp PQ$. Let $2x=m(\widehat{BAP})$, the circumcircle $C(O,\rho )$ of $\triangle BRC$ and $S\in AR\cap BC$. Thus, $\left\{\begin{array}{c}AC=AQ\\\\ AP=AB\\\\ \widehat{CAP}\equiv\widehat{QAB}\end{array}\right\|$ $\implies$ $\triangle ACP\sim\triangle AQB$

$\implies$ $\left\{\begin{array}{c}CP=QB\\\\ \widehat{APC}\equiv\widehat{ABQ}\\\\ \widehat{ACP}\equiv\widehat{AQB}\end{array}\right\|$ $\implies$ $\left\{\begin{array}{c}\widehat{APR}\equiv\widehat{ABR}\\\\ \widehat{ACR}\equiv\widehat{AQR}\end{array}\right\|$ $\implies$ the quadrilaterals $APBR$, $AQCR$ are cyclically with the radical axis $AR$. Observe that $\left\{\begin{array}{c}m(\widehat{BRS})=m(\widehat{BPA})=90^{\circ}-x\\\\ m(\widehat{CRS})=m(\widehat{CQA})=90^{\circ}-x\\\\ m(\widehat{BRP})=m(\widehat{BAP})=2x\end{array}\right\|$ $\implies$ the

ray $[RS$ is the bisector of the angle $\widehat{BRC}$. Prove easily that $\left\{\begin{array}{c}m(\widehat{BOC})=4x\\\\ a=2\rho\sin 2x\end{array}\right\|$. Thus, $\left\{\begin{array}{c}PA=c\ ,\ QA=b\\\\ PB=2c\cdot\sin x\\\\ QC=2b\cdot \sin x\end{array}\right\|$ and $\left\{\begin{array}{c}m(\widehat{CBO})=m(\widehat{BCO})=90^{\circ}-2x\\\\ m(\widehat{PBO})=180^{\circ}+3x-B\\\\ m(\widehat{QCO})=180^{\circ}+3x-C\end{array}\right\|$. Apply the generalized Pythagoras'

to $\triangle POB$ , $\triangle QOC\ :\ \left\{\begin{array}{c}OP^{2}=BP^{2}+\rho^{2}-2\rho\cdot BP\cos \widehat{PBO}\\\\ OQ^{2}=CQ^{2}+\rho^{2}-2\rho\cdot CQ\cos \widehat{QCO}\end{array}\right\|$ $\implies$ $OP^{2}-OQ^{2}=$ $4\left(c^{2}-b^{2}\right)\sin^{2}x+4c\rho\sin x\cos (B-3x)-4b\rho \sin x\cos (C-3x)=$ $4\left(c^{2}-b^{2}\right)\sin^{2}x+$

$4c\rho \sin x(\cos B\cos 3x+\sin B\sin 3x)$ $-4b\rho \sin x(\cos C\cos 3x+\sin C\sin 3x)=$ $4\left(c^{2}-b^{2}\right)\sin^{2}x+4\rho\sin x\cos 3x$ $(c\cos B-b\cos C)+4\rho \sin x\sin 3x(c\sin B-b\sin C)=$

$4\left(c^{2}-b^{2}\right)\sin^{2}x+4\rho\sin x\cos 3x\left(\frac{a^{2}+c^{2}-b^{2}}{2a}-\frac{a^{2}+b^{2}-c^{2}}{2a}\right)=$ $4\left(c^{2}-b^{2}\right)\sin^{2}x+\frac{4\rho \left(c^{2}-b^{2}\right)}{a}\sin x\cos 3x=$ $\left(c^{2}-b^{2}\right)\left(4\sin^{2}x+\frac{2\sin x\cos 3x}{\sin 2x}\right)=c^{2}-b^{2}$.

I used the following simple identities $:\ c\sin B=b\sin C$ and $4\sin^{2}x+\frac{2\sin x\cos 3x}{\sin 2x}=1$.


P6. For $\triangle ABC$ and $M\in (AB)$ construct the parallelogram $AMPC$. Let $ N\in BC\cap MP$.

Prove that the circumcenter of $\triangle BMN$ belongs to the circumcircle of $ \triangle AMP\iff AB=AC$.


Proof.


P7 (France TST 2007). Let $\triangle ABC$ such that $C<A<\frac{\pi}{2}$. Let $D\in [AC]$ such that $BD=BA$. The incircle $w=C(I,r)$ of $\triangle ABC$

touches its sides in $K\in [AB]$ and $L\in [AC]$. Let $w_{1}=C(J,r_{1})$ be the incircle of $\triangle BCD$. Denote $T\in KL\cap AJ$. Prove that $TA=TJ$.


Proof.. The incircle $w_{1}$ touches $\triangle BCD$ in $U\in BD$, $V\in BC$ and $W\in BC$. Observe that $DC=AC-AD=b-2c\cdot\cos A=$ $\frac{b^{2}-(b^{2}+c^{2}-a^{2})}{b}$ $\implies$ $DC=\frac{a^{2}-c^{2}}{b}$. Thus,

$VC=\frac{1}{2}\cdot (BC+CD-BD)=\frac{1}{2}\cdot(a+\frac{a^{2}-c^{2}}{b}-c)\implies VC=\frac{p(a-c)}{b}$ . Since $VC=JC\cdot\cos \frac{C}{2}$ obtain that $\boxed{JC=\frac{p(a-c)}{b\cdot\cos\frac{C}2}}$. Denote $P\in KL\cap CI$. The property $PC\perp PB$

is well-known (see the lower remark). Thus, $APJW$ is cyclically. Analogously $P\in UV\cap CJ$, i.e. $\boxed{\ P\in KL\cap UV\ }$. Observe that $\boxed{PC=a\cdot \cos \frac{C}{2}}\implies$ $\frac{PC}{JC}=\frac{ab\cdot\cos^{2}\frac{C}{2}}{p(a-c)}=\frac{p-c}{a-c}$ $\implies$

$\frac{PC}{p-c}=\frac{JC}{a-c}=\frac{PJ}{p-a}$ $\implies$ $\boxed{\ \frac{PJ}{PC}=\frac{p-a}{p-c}\ }$. Apply the Menelaus' theorem to transversal $\overline{PTL}$ in $\triangle AJC$ : $\frac{PJ}{PC}\cdot\frac{LC}{LA}\cdot\frac{TA}{TJ}=1$ $\implies$ $\frac{p-a}{p-c}\cdot\frac{p-c}{p-a}\cdot\frac{TA}{TJ}=1$ $\implies TA=TJ$.

So $PC\perp PB$ $\Longleftrightarrow$ the quad. $PKIB$ is cyclically $\Longleftrightarrow$ $m(\widehat{PKB})=m(\widehat{PIB})=\frac{B+C}{2}$ or $m(\widehat{PKA})=m(\widehat{PIB})=\frac{B+C}{2}$



P8. Let $ ABC$ be a triangle with $ A = 60^{\circ}$ . Let $ AP$ bisect $ \widehat { BAC}$ and let $ BQ$ bisect $ \widehat {ABC}$ , where $ P\in BC$ and $ Q\in AC$ . If $ AB + BP = AQ + QB$ , then what are the angles of the triangle ?

Proof I (metric). Let $ l_b = BQ$ . Thus, $ l_b = \frac {2ac}{a + c}\cdot\cos\frac B2$ . Thus, $ AB + BP = AQ + QB$ $ \Longleftrightarrow$ $ c + \frac {ac}{b + c} = \frac {bc}{a + c} + l_b$ $\Longleftrightarrow$ $ c(c + a)(c + b) + ac(a + c) = bc(b + c) + 2ac(b + c)\cdot\cos\frac B2$

$ \Longleftrightarrow$ $ ab + (a + c)^2 - b^2 = 2a(b + c)\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ ab + 4p(p - b) = 2a(b + c)\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ ab + 4ac\cdot\cos^2\frac B2 = 2a(b + c)\cdot \cos\frac B2$ $ \Longleftrightarrow$ $ b\left(1 - 2\cdot\cos\frac B2\right) =$

$ 2c\cdot\cos\frac B2\cdot\left(1 - 2\cdot\cos\frac B2\right)$ $ \Longleftrightarrow$ $ b = 2c\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ \sin B = 2\cdot\sin C\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ 2\sin\frac B2\cos\frac B2 = 2\sin C\cos\frac B2$ $ \Longleftrightarrow$ $ \sin\frac B2 = \sin C$ $ \Longleftrightarrow$ $ B = 2C$ $ \Longleftrightarrow$

$ C = 40^{\circ}$ , $ B = 80^{\circ}$ because $ A = 60^{\circ}$ .

Proof II (trigonometric) Denote ${ x=m(\widehat ABQ})$ . I"ll apply the Sinus' theorem in the triangles $ ABP$ , $ ABQ$ : $ AB+BP=AQ+QB$ $ \Longleftrightarrow$ $ 1+\frac {BP}{BA}=\frac {AQ+QB}{AB}$ $ \Longleftrightarrow$

$ 1+\frac {\sin 30}{\sin (30+2x)}=\frac {\sin x+\sin 60}{\sin (60+x)}$ $ \Longleftrightarrow$ $ \sin (60+x)\left[\sin (30+2x)+\frac 12\right]=\sin (30+2x)(\sin x+\sin 60)$ $ \Longleftrightarrow$ $ \cos (x-30)-\cos (90+3x)+\cos (30-x)=$

$ \cos (x+30)-\cos (30+3x)+\cos (2x-30)-\cos (90+2x)$ $ \Longleftrightarrow$ $ \underline {\cos (x-30)}+\underline {\underline {\sin 3x}}+\underline {\underline {\underline {\cos (x-30)}}}=$ $ \underline {\underline {\underline {\cos (x+30)}}}-\underline {\underline {\cos (30+3x)}}+\cos (2x-30)+\underline {\sin 2x}$ $ \Longleftrightarrow$

$ [\cos (x-30)-\cos (90-2x)]+$ $[\sin 3x+\sin (60-3x)]=$ $ [\cos (x+30)-\cos (x-30)]+\cos (2x-30)$ $\Longleftrightarrow$ $ 2\sin \left(30-\frac x2\right)\sin\left(60-\frac {3x}{2}\right)+2\sin 30\cos (3x-30)=$

$\cos (2x-30)-2\sin 30\sin x$ $ \Longleftrightarrow$ $ \cos (3x-30)+2\sin\left(30-\frac x2\right)\sin \left(60-\frac {3x}{2}\right)=$ $\cos (2x-30)-\cos (90-x)$ $ \Longleftrightarrow$ $ \cos (3x-30)+$ $2\sin\left(30-\frac x2\right)\sin \left(60-\frac {3x}{2}\right)=$

$2\sin \left(30+\frac x2\right)\sin\left(60-\frac {3x}{2}\right)$ $ \Longleftrightarrow$ $ \sin (120-3x)=$ $2\sin\left(60-\frac {3x}{2}\right)\left[\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)\right]$ $\Longleftrightarrow$ $ 2\sin\left(60-\frac {3x}{2}\right)\cos\left(60-\frac {3x}{2}\right)=$

$2\sin\left(60-\frac {3x}{2}\right)\left[\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)\right]$ $ \Longleftrightarrow$ $ \sin\left(60-\frac {3x}{2}\right)=0\ \ \vee\ \ \cos\left(60-\frac {3x}{2}\right)=\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)$ .

Thus, $ \boxed {\ x=40\ }$ or $ \sin\left(30+\frac {3x}{2}\right)+\sin\left(30-\frac x2\right)=\sin\left(30+\frac x2\right)$ $ \Longleftrightarrow$ $ 2\sin\left(30+\frac x2\right)\cos x=\sin\left(30+\frac x2\right)$ $ \Longleftrightarrow$ $ x\in\emptyset$ .




Extension (Virgil NICULA). Let an acute $\triangle ABC$ with the incircle $ w = C(I,r)$ and the circumcircle $ C(O,R)$ . Let $ D\in BC$

so that $ AD\perp BC$ , $ X\in (AD)$ and $ AD = h_a$ , $ AX = x$ . Prove that $ \boxed {XI^2 = (2R - x)(h_a - 2r) - x(h_a - x)}$ .
This post has been edited 134 times. Last edited by Virgil Nicula, Mar 28, 2019, 1:43 PM

461. Problems for the relaxation in ... weekend (II).

by Virgil Nicula, Jan 26, 2018, 7:36 PM

P1. Sa se rationalizeze fractia $\boxed{\ F=\frac 1{\sqrt[3]4+\sqrt [3]{10}+\sqrt[3]{25}}\ }$ (clasa a VII - a).

Proof. Daca notam $\sqrt[3]2=a$ si $\sqrt [3]5=b\ ,$ atunci fractia $F$ devine $\frac 1{a^2+ab+b^2}\ ,$ adica $F=\frac {b-a}{(b-a)\left(b^2+ab+a^2\right)}=$ $\frac {b-a}{b^3-a^3}=\frac{\sqrt [3]5-\sqrt [3]2}{5-2}\implies$ $\boxed{\ F=\frac{\sqrt [3]5-\sqrt [3]2}3\ }\ .$


P2 (Adil ABDULLAYEV, Baku). Prove that in any $\triangle ABC$ the following relationship holds $\ :\ \frac {\left(r_a+r_b\right)\left(r_b+r_c\right)\left(r_c+r_a\right)}{8r_ar_br_c}=\frac R{2r}\ge \frac{h_a^2+h_b^2+h_c^2}{h_ah_b+h_bh_c+h_ch_a}\ge 1$ (standard notations).

Proof. Prove easily that $rr_ar_br_c=S^2=s^2r^2\ ,$ i.e. $\boxed{ r_ar_br_c=s^2r\ }\ (1)$ and $\frac {\left(r_a+r_b\right)\left(r_b+r_c\right)\left(r_c+r_a\right)}{8r_ar_br_c}=$ $\prod\frac{r_b+r_c}{2r_a}=$ $\frac 18\cdot\prod\left(\frac{r_b}{r_a}+\frac{r_c}{r_a}\right)=$ $\frac 18\cdot\prod\left(\frac{s-a}{s-b}+\frac{s-a}{s-c}\right)=$

$\frac 18\cdot\prod\frac{a(s-a)}{(s-b)(s-c)}=$ $\frac {abc}{8(s-a)(s-b)(s-c)}=$ $\frac{4R\cancel s\cancel r}{8\cancel sr^{\cancel 2}}=\frac R{2r}\ ,$ i.e. $\boxed{\ \frac {\left(r_a+r_b\right)\left(r_b+r_c\right)\left(r_c+r_a\right)}{8r_ar_br_c}=\frac R{2r}\ }\ (2)\ .$ Observe that $\boxed{\ ah_a=2sr\ }\ \mathrm{a.s.o.}\iff$ $ \boxed{\ h_a=\frac {2sr}a\ }\ \mathrm{a.s.o.}\implies $

$h_bh_c=\frac {2sr}{b}\cdot\frac {2sr}{c}=\frac {4s^2r^2}{bc}\ \mathrm{a.s.o.}\implies$ $\sum \left(h_bh_c\right)=4s^2r^2\cdot\sum\frac 1{bc}=$ $4s^2r^2\cdot\frac{a+b+c}{abc}=$ $4s^2r^2\cdot\frac{2s}{4Rrs}=$ $4s^2r^2\cdot\frac{2s}{4Rrs}=$ $\frac {2s^2r}{R}\implies$ $\boxed{\ h_ah_b+h_bh_c+h_ch_a=\frac {2s^2r}R\ }\ (3)\ .$

Otherwise. $\boxed{\ bc=2Rh_a\ }\ \mathrm{a.s.o.}\implies$ $\boxed{\ h_a=\frac {bc}{2R}\ }\ \mathrm{a.s.o.}\implies$ $h_bh_c=\frac {ac}{2R}\cdot\frac {ab}{2R}=a\cdot \frac {abc}{4R^2}=\frac {a\cdot 4RS}{4R^2}=\frac {aS}R\implies$ $\boxed{\ h_bh_c=\frac {aS}R\ }\implies$ $\sum h_bh_c=\frac SR\cdot \sum a=\frac {2s\cdot sr}R\implies$

$\boxed{\ \sum h_bh_c=\frac {2s^2r}R\ }\ .$ From $a^2\ge a^2-(b-c)^2=(a+b-c)(a-b+c)=4(s-b)(s-c)\ \mathrm{a.s.o.}$ obtain that $\boxed{\ a^2\ge 4(s-b)(s-c)\ }\ \mathrm{a.s.o.}\implies$ $4s(s-a)(s-b)(s-c)=$

$(2S)^2=\left(ah_a\right)^2=a^2h_a^2\ge 4(s-b)(s-c)\cdot h_a^2\implies$ $\cancel 4s(s-a)\cancel{(s-b)(s-c)}\ge \cancel 4\cancel{(s-b)(s-c)}\cdot h_a^2\implies$ $\boxed{\ h_a^2\le s(s-a)\ }\implies$ $\sum h_a^2\le s\sum (s-a)\implies$

$\boxed{\ h_a^2+h_b^2+h_c^2\le s^2\ }\ (4)\ .$ Remain to prove $\frac {\sum h_a^2}{\sum \left(h_bh_c\right)}\le \frac R{2r}\ .$ Indeed, from the relation $(3)$ obtain that $\left(h_a^2+h_b^2+h_c^2\right)\cdot\frac {\cancel R}{\cancel 2s^2\cancel r}\le \frac {\cancel R}{\cancel 2\cancel r}\ ,$ i.e. the true relation $(4)\ .$

Remark. Prove easily that $h_ah_b+h_bh_c+h_ch_a\le 3S\sqrt 3\le 3r(4R+r)\le s^2\ .$



P3 (Θεόδωρος Σαμπάς, Greece). Prove that the following exercise (<= click).

Proof. $\prod\cos A=\frac 18\iff$ $4\cos A\cdot 2\cos B\cos C=1\iff$ $4\cos A[\cos (B-C)-\cos A]=1\iff$ $4\cos^2A-4\cos A\cos (B-C)+1=0\iff$

$[2\cos A-\cos (B-C)]^2+\sin^2(B-C)=0\iff$ $B=C$ and $2\cos A=\cos (B-C)=\cos 0=1\ ,$ i.e. $A=60^{\circ}$ and $A=B=C\ .$



P4 (Θεόδωρος Σαμπάς, Greece). Prove that the following identity $:\ \left(\frac bc+\frac cb\right)\cdot\cos A+\left(\frac ca+\frac ac\right)\cdot\cos B+\left(\frac ab+\frac ba\right)\cdot \cos C=3\ .$

Proof. Prove easily that $\boxed{\ \sum_{\mathrm{cyc}}\frac{b\cdot\cos A}c=\sum_{\mathrm{cyc}}\frac{a\cdot\cos C}b\ }\ (*)$ and I"ll use the well known identities $\boxed{\ b\cdot \cos C+c\cdot\cos B=a\ }\ (1)\ .$ Thus, $\sum_{\mathrm{cyc}}\left(\frac bc+\frac cb\right)\cdot\cos A=$

$ \sum_{\mathrm{cyc}}\frac {b\cdot \cos A}c+\sum_{\mathrm{cyc}}\frac {c\cdot \cos A}b\ \stackrel{(*)}{=}\ \sum_{\mathrm{cyc}}\frac{a\cdot\cos C}b+\sum_{\mathrm{cyc}}\frac {c\cos A}b=$ $\sum_{\mathrm{cyc}}\frac{a\cdot\cos C+c\cdot\cos A}b\ \stackrel{(1)}{=}\ \sum_{\mathrm{cyc}}\frac bb=3\implies$ $\sum_{\mathrm{cyc}}\left(\frac bc+\frac cb\right)\cdot\cos A=3\ .$



P5 (Nguyen Viet Hung). Prove the following inequality (<= click) $:\ \frac{h_bh_c}{h_ar_a^2}+\frac{h_ch_a}{h_br_b^2}+\frac{h_ah_b}{h_cr_c^2}\le\frac 1r\ .$

Proof. $\frac {h_bh_c}{h_ar_a^2}=\frac{2\cancel S}b\cdot\frac {\cancel 2\cancel S}c\cdot\frac a{\cancel 2S}\cdot \frac {(s-a)^2}{\cancel{S^2}}=$ $\frac {2a(s-a)^2}{bcS}=$ $\frac {2a^2(s-a)^2}{abcS}=$ $\frac {a^2(s-a)^2}{2RS^2}\implies$ $\frac {h_bh_c}{h_ar_a^2}=\frac {a^2(s-a)^2}{2RS^2}\ .$ Hence $\boxed{\ \sum \frac {h_bh_c}{h_ar_a^2}=\frac 1{2RS^2}\cdot \sum a^2(s-a)^2\
 }\ (1)\ .$

In conclusion, the required inequality $\boxed{\ \sum\frac{h_bh_c}{h_ar_a^2}\le\frac 1r\ }\ (*)$ is equivalent with the inequality $\sum a^2(s-a)^2\le 2Rs^2r\iff$ $\boxed{\ \sum a^2(b+c-a)^2\le abc(a+b+c)\ }\ (2)\ .$

Prove easily that $\sum a^2(s - a)^2 = 2r^2\left[\left(4R + r\right)^2 - s^2\right]$ starting from the development of $\left[\sum a(s-a)\right]^2 = \ldots$ The inequality becomes $2r^2\left[(4R+r)^2-s^2\right]\le 2Rs^2r\iff$

$r\left[(4R+r)^2-s^2\right]\le Rs^2\iff$ $r(4R+r)^2\le s^2(R+r)\iff$ $\boxed{\ s^2\ge \frac {r(4R+r)^2}{R+r}\ }\ .$ Is well known $s^2\ge 16Rr-5r^2$ and observe that $16Rr-5r^2\ge \frac {r(4R+r)^2}{R+r}\iff$

$(16R-5r)(R+r)\ge (4R+r)^2\iff$ $16R^2+16Rr-5Rr-5r^2\ge 16R^2+8Rr+r^2\iff$ $3Rr\ge 6r^2\iff$ $R\ge 2r\ .$ Hence $s^2\ge 16Rr-5r^2\ge \frac {r(4R+r)^2}{R+r}\implies$

$ s^2\ge \frac {r(4R+r)^2}{R+r}\ .$ In conclusion, our inequality $(*)$ is true. Very nice!



P6 (G. Baron). Solve the following system from here.

Proof. Denote $x+y=S\ ,$ $xy=P\ .$ Thus, $\left\{\begin{array}{ccc}
x^2+x & = & y^3-y\\\\
y^2+y & = & x^3-x\end{array}\right\|\implies$ $\left(y^3-\cancel y\right)+\left(y^2+\cancel y\right)=\left(x^2+\cancel x\right)+\left(x^3-\cancel x\right)\iff$

$y^3+y^2=x^3+x^2\iff$ $\left(y^3-x^3\right)+\left(y^2-x^2\right)=0\iff$ $(y-x)\left(y^2+xy+x^2+y+x\right)=0\ .$ Appear two cases $:$

$1.\blacktriangleright\ x=y\iff x^2+x=x^3-x\iff$ $x^3-x^2-2x=0\iff$ $x(x+1)(x-2)=0\iff$ $x=y\in\{-1,0,2\}\ .$

$2.\blacktriangleright\ x\ne y\iff\left(x^2+y^2\right)+(x+y)+xy=0\iff$ $S^2-2P+S+P=0\iff$ $\boxed{\ S^2+S=P\
 }\ (1)\ .$ Observe that

$\left(x^2+x\right)+\left(y^2+y\right)=\left(y^3+x^3\right)-(x+y)\iff$ $\left(x^2+y^2\right)+2(x+y)=\left(x^3+y^3\right)\iff$ $\left(S^2-2P\right)+2S=$ $S^3-3PS\iff$

$P(3S-2)=S^3-S^2-2S\ \stackrel{(1)}{\iff}\ S(S+1)(3S-2)=S(S+1)(S-2)\iff$ $S\in\{0,-1\}$ or $3S-2=S-2\ ,$ i.e. $S=0\ .$

Therefore: for $S=0$ obtain $P=0\ ,$ i.e. $x=y=0\ ;$ for $S=-1$ obtain $P=0\ ,$ i.e. $(\ x=0\ \wedge\ y=-1\ )\ \vee\ (\ x=-1\ \wedge\ y=0\ )\ .$

In conclusion, the solutions of this system are $:\ (x,y)\ \in\ \left\{\ (-1,-1)\ ;\ (0,0)\ ;\ (2,2)\ ;\ (0,-1)\ ;\ (-1,0)\ \right\}\ .$



P7 (Marian URSARESCU). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)\ .$ The lines $AI\ ,$ $BI$ and $CI$ meet again $w$ in $D\ ,$ $E$ and $F$ respectively. Prove that the inequality $\boxed{\ \frac{ID}{IA}+\frac {IE}{IB}+\frac{IF}{IC}\ge 3\ }\ (*)\ .$

Proof. $\sum\frac {ID}{IA}=$ $\sum\frac {ID^2}{IA\cdot ID}=$ $\sum\frac {ID^2}{p_w(I)}=$ $\frac 1{2Rr}\cdot\sum BD^2=$ $\frac 1{2Rr}\cdot\sum \left(2R\sin\frac A2\right)^2=$ $\frac {\cancel 2R^{\cancel 2}}{\cancel 2\cancel Rr}\cdot\sum \left(2\sin^2\frac A2\right)=$ $\frac Rr\cdot\sum \left(1-\cos A\right)=$ $\frac Rr\cdot\left[3-\left(1+\frac rR\right)\right]=$ $\frac {\cancel R}r\cdot \frac {2R-r}{\cancel R}=$

$\frac {2R-r}r\ge 3$ because $2R-r\ge 3r\iff R\ge 2r\ ,$ what is true. In conclusion, $\sum\frac {ID}{IA}\ge 3\ .$ I used the well known relations $DI=DB$ and the power of $I$ w.r.t. $w$ is $p_w(I)=-2Rr\ .$



P8 (M. URSARESCU). Let the Gergonne's point $\Gamma$ of $\triangle ABC$ and $A\Gamma\ ,$ $B\Gamma\ ,$ $C\Gamma$ meet again $BC\ ,$ $CA\ ,$ $AB$ at $D\ ,$ $E\ ,$ $F$ respectively. Prove that $\boxed{\ a\cdot AD^2+b\cdot BE^2+c\cdot CF^2\ge 54r^3\sqrt 3\ }\ (*)\ .$

Proof. Prove easily the following identities $:\ \left\{\begin{array}{cccc}
\sum a(s-b)(s-c) & = & 2sr(2R-r) & (1)\\\\
 \sum a^2(s-a) & = & 4sr(R+r) & (2)\end{array}\right\|\ .$ Apply the Stewart's relation to the cevian $AD\ ,$ where $DB=s-b$ and $DC=s-c\ :$

$a\cdot AD^2+a(s-b)(s-c)=b^2(s-b)+c^2(s-c)\implies$ $\sum a\cdot AD^2+\sum a(s-b)(s-c)=$ $\sum\left[b^2(s-b)+c^2(s-c)\right]\ \stackrel{(1\wedge 2)}{\iff}\sum a\cdot AD^2+2sr(2R-r)=$ $2\cdot 4sr(R+r)\iff$

$\sum a\cdot AD^2=2sr\left[4(R+r)-(2R-r)\right]=2sr(2R+5r)\implies$ $\boxed{\ \sum a\cdot AD^2=2sr(2R+5r)\ }\ (3)\ .$ Apply the well known inequalities $3r\sqrt 3\le s$ and $R\ge 2r\ :$

$\ 2sr(2R+5r)\ge 2\cdot 3r^2\sqrt 3(2\cdot 2r+5r)=6r^2\sqrt 3\cdot 9r=54r^3\sqrt 3\ .$ In conclusion, $2sr(2R+5r)\ge 54r^3\sqrt 3\ \stackrel{(3)}{\implies}\ \sum a\cdot AD^2\ge 54r^3\sqrt 3\ .$

Remark.

$1.\blacktriangleright\ \sum a(s-b)(s-c)=\sum[s(s-b)(s-c)-(s-a)(s-b)(s-c)]=sr(4R+r)-3sr^2=$ $sr[(4R+r)-3r]=sr(4R-2r)=\boxed{\ 2sr(2R-r)\ }\ .$

$2.\blacktriangleright\ \sum a^2(s-a)=\sum x(y+z)^2=$ $\sum \left[x\left(y^2+z^2\right)+2xyz\right]=$ $\sum [yz(x+y+z)-xyz+2xyz]=$ $(x+y+z)(xy+yz+zx)+3xyz=$ $sr(4R+r)+3sr^2=\boxed{\ 4sr(R+r)\ }\ .$

Denoted $s-a=x\ ,$ $s-b=y$ and $s-c=z\ .$ Hence $x+y+z=(s-a)+(s-b)+(s-c)=s\ ,$ $xy+yz+zx=\sum (s-b)(s-c)=r(4R+r)$ and $xyz=\prod (s-a)=sr^2\ .$

Otherwise. $\sum a^2(s-a)=s\cdot \sum a^2-\sum a^3=$ $2s\left(s^2-r^2-4Rr\right)\left[(a+b+c)^3-3(a+b+c)(ab+bc+ca)+3abc\right]=$ $2s^3-2sr^2-8Rsr-8s^3+6s\left(s^2+r^2+4Rr\right)-$

$12Rsr=$ $4sr^2+4Rsr=\boxed{\ 4sr(R+r)\ }\ .$ I used the notations and the identities $\left\{\begin{array}{ccccc}
s_1\ & = & a+b+c & = & 2s\\\
s_2 & = & ab+bc+ca & = & s^2+r^2+4Rr\\\
s_3\ & = & abc & = & 4Rsr\end{array}\right\|$ and $\left\{\begin{array}{ccccc}
S_2 & = & \sum a^2 & = & 2\left(s^2-r^2-4Rr\right)\\\\
S_3  & = & \sum a^3 & = & s_1^3-3s_1s_2+3s_3\end{array}\right\|\ .$



P9 (Hung Nguyen Viet).Prove that $\ (\forall )\ \triangle ABC$ there is the followung inequality $:\ \boxed{\ (a+b+c)\left(ab+bc+ca+R^2\right)\ge a^3+b^3+c^3+7abc\ }\ (*)\ .$

Proof. I"ll use the notations and the identities $\left\{\begin{array}{ccccc}
s_1\ & = & a+b+c & = & 2s\\\
s_2 & = & ab+bc+ca & = & s^2+r^2+4Rr\\\
s_3\ & = & abc & = & 4Rsr\end{array}\right\|$ and $\left\{\begin{array}{ccccc}
S_2 & = & \sum a^2 & = & 2\left(s^2-r^2-4Rr\right)\\\\
S_3  & = & \sum a^3 & = & s_1^3-3s_1s_2+3s_3\end{array}\right\|\ ,$

where prove easily $\boxed{\ s_1^3-3s_1s_2+3s_3=2s\left(s^2-3r^2-6Rrs\right)\ }\ (1)\ .$ Therefore, the required inequality $(*)$ becomes $2s\cdot \left(s^2+r^2+4Rr\right)+2sR^2\ \stackrel{((1)}{\ge}$

${2s}\left(s^2-3r^2-6Rr\right)+28Rsr\iff$ $s^2+r^2+4Rr+R^2\ge s^2-3r^2-6Rr+14Rr\iff$ $R^2-4Rr+4r^2\ge 0\iff$ $(R-2r)^2\ge 0\ ,$ what is true.



P10 (Mehmet Sahin). Prove the identity $\boxed{\ \frac {h_a}{AI_a^2}+\frac {h_b}{AI_b^2}+\frac {h_c}{AI_c^2}=\frac 1{2R}\ }\ (*)$ (standard notations).

Proof 1. Prove easily that $\triangle ABI_a\sim \triangle AIC\ ,$ i.e. $\frac {AB}{AI}=\frac {AI_a}{AC}\iff \boxed{\ AI\cdot AI_a=bc\ }\ (1)\ .$ Therefore, $\sum \frac {h_a}{AI_a^2}=\frac 1{2R}\iff$

$\sum \frac {2Rh_a}{AI_a^2}=1\iff$ $\sum \frac {bc}{AI_a^2}= 1 \stackrel{(1)}{\iff}\ \sum \frac {AI\cdot AI_a}{AI_a^2}= 1\iff$ $\sum \frac {AI}{AI_a}= 1\iff$ $\sum \frac r{r_a}=1\iff$ $\sum \frac 1{r_a}=\frac 1r\ ,$ what is true.

Proof 2. I"ll apply the identities $\boxed{\ \frac{AI_a^2}{bc}=\frac s{s-a}=\frac{bc}{AI^2}\ }\ ,$ $\boxed{\ bc=2Rh_a\ }\ ,$ $\sum (s-b)(s-c)=r(4R+r)$ and $(s-a)(s-b)(s-c)=sr^2\ .$ Hence $\ :$

$\blacktriangleright\ \sum\frac {h_a}{AI^2}=$ $\sum \frac{2Rh_a}{2R\cdot AI^2}=$ $\frac 1{2R}\cdot\sum \frac{\cancel {bc}s}{\cancel {bc}(s-a)}=$ $\frac s{2R}\cdot\sum \frac 1{s-a}=$ $\frac s{2R}\cdot \frac{\sum (s-b)(s-c)}{(s-a)(s-b)(s-c)}=$ $\frac {\cancel s}{2R}\cdot \frac{\cancel r(4R+r)}{\cancel sr^{\cancel 2}}=$ $\frac{4R+r}{2Rr}\implies$ $\boxed{\sum\frac {h_a}{AI^2}=\frac{4R+r}{2Rr}\ }\ .$

$\blacktriangleright\ \sum\frac {h_a}{AI_a^2}=$ $\sum \frac{2Rh_a}{2R\cdot AI^2}=$ $\frac 1{2R}\cdot\sum \frac{\cancel{bc}(s-a)}{\cancel{bc}s}=$ $\frac1{2Rs}\cdot\sum(s-a)=\frac 1{2R\cancel s}\cdot \cancel s=$ $\frac 1{2R}\implies \boxed{\sum\frac {h_a}{AI_a^2}=\frac 1{2R}\ }\ .$ Remark. $\boxed{\ \left(r_a+r_b+r_c\right)\cdot\sum\frac{h_a}{AI_a^2}=r\cdot\sum\frac{h_a}{AI^2}\ }\ .$



P11 (Miguel Ochoa Sanchez). Let $\triangle ABC$ and the midpoints $(D,E,F)$ of its sides $([BC],[CA],[AB])$ respectively. Prove that $\boxed{\ BE\perp CF\implies \cos A\ge\frac 45\ }\ .$

Proof. $BE\perp CF\iff BFEC$ is orthodiagonal $\iff$ $BC^2+EF^2=BF^2+CE^2\iff$ $a^2+\frac{a^2}4=\frac{c^2}4+\frac {b^2}4\iff$

$\boxed{\ b^2+c^2=5a^2\ }\ (*)\ .$ Hence $\cos A=\frac{b^2+c^2-a^2}{2bc}\ \stackrel{(*)}{=}\ \frac{4a^2}{2bc}\ge \frac {4a^2}{b^2+c^2}=\frac {4a^2}{5a^2}=\frac 45\implies \cos A\ge \frac 45\ .$


Generalization (own). Let $\triangle ABC$ and the points $E\in (AC)\ ,$ $F\in (AB)$ so that $\frac {EA}{EC}=m$ and $\frac {FA}{FB}=n\ .$ Prove that

the chain of the relations $BE\perp CF\ \implies \cos A\ge \frac {2\sqrt{mn(m+1)(n+1)}}{mn+(m+1)(n+1)}\ \iff\ \sin A\le \frac {m+n+1}{2mn+m+n+1}\ .$

Proof. $\left\{\begin{array}{ccccc}
\frac{EA}m=\frac {EC}1=\frac b{m+1}\\\\
\frac {FA}n=\frac {FB}1=\frac c{n+1}\end{array}\right\|\implies$ $EF^2=AE^2+AF^2-2\cdot AE\cdot AF\cdot\cos A\implies$ $\boxed{\ EF^2=\frac{m^2b^2}{(m+1)^2}+\frac{n^2c^2}{(n+1)^2}-\frac{2mnbc\cdot\cos A}{(m+1)(n+1)}\ }\ (*)\ .$ Therefore, $BE\perp CF\iff $

$BFEC$ is orthodiagonal $\iff BF^2+CE^2=BC^2+EF^2\iff$ $\frac{c^2}{(n+1)^2}+\frac{b^2}{(m+1)^2}=a^2+\frac{m^2b^2}{(m+1)^2}+\frac{n^2c^2}{(n+1)^2}-\frac{2mnbc\cdot\cos A}{(m+1)(n+1)}\iff$ $\frac{c^2\left(n^2-1\right)}{(n+1)^2}+\frac{b^2\left(m^2-1\right)}{(m+1)^2}+$

$\left(b^2+c^2-2bc\cdot\cos A\right)=\frac{2mnbc\cdot\cos A}{(m+1)(n+1)}\iff$ $\frac{c^2\left(n-1\right)}{(n+1)}+\frac{b^2\left(m-1\right)}{(m+1)}+b^2+c^2=2bc\cdot\cos A\cdot\left[1+\frac{mn}{(m+1)(n+1)}\right]\implies$ $\cos A=\frac {n(m+1)\cdot \frac cb+m(m+1)\cdot\frac bc}{mn+(m+1)(n+1)}\ge$

$\frac {2\sqrt{mn(m+1)(n+1)}}{mn+(m+1)(n+1)}\ \iff\ \sin A\le \frac {m+n+1}{2mn+m+n+1}\ .$ In the particular case $m=n=1$ obtain that $\cos A\ge \frac 45\iff \sin A\le \frac 35\ ,$ i.e. the proposed problem P11.


P12 (Mehmet Sahin). Prove that $(\forall )\ \triangle ABC$ there is the following inequality $:\ \boxed{\ \left[I_aBC\right]+\left[I_bCA\right]+\left[I_cAB\right]\ge 3[ABC]\ }\ .$

Proof. I"ll use the identity $\boxed{\ ar_a=s\left(r_a-r\right)\
 }\ (*)\ .$ Therefore, $\sum\left[I_aBC\right]=\frac 12\cdot\sum ar_a\ \stackrel{(*)}{=}\ \frac 12\cdot \sum s\left(r_a-r\right)=$ $\frac s2\cdot\sum \left(r_a-r\right)=$ $\frac s2\cdot (4R+r-3r)=$$\frac s2\cdot (4R-2r)=$

$s(2R-r)\implies$ $\boxed{\ \sum\left[I_aBC\right]=s(2R-r)\ }\ (1)\ .$ Observe that $\sum\left[I_aBC\right]\ge 3S\ \stackrel{(1)}{\iff}\ \cancel s(2R-r)\ge 3\cancel sr\iff$ $2R-r\ge 3r\iff$ $2R\ge 4r\iff$ $R\ge 2r\ .$ what is true.



P13 (Marian Ursarescu). Prove that $(\forall )$ an acute $\ \triangle ABC$ the following relationship holds $:\ \boxed{\ (b+c)m_a+(c+a)m_b+(a+b)m_c\le 6sR\ }$ (standard notations).

Proof. Let the midpoint $M$ of $[BC]\ ,$ the circumcenter $O$ of $\triangle ABC$ and the midpoint $S$ of $I_aI\ .$ Observe that $m_a=AM\le OA+OM=$ $OA+(OS-MS)=$

$(OA+OS)-MS=$ $2R-\frac {r_a-r}2=\frac {4R+r-r_a}2=$ $\frac{r_b+r_c}2\implies$ $\boxed{\ m_a\le\frac{4R+r-r_a}2\ }\ (1)\ .$ Thus, $\sum (b+c)m_a\ \stackrel{(1)}{\le}\ (b+c)\cdot\frac {(4R+r)-r_a}2=$

$\sum\frac {4R+r}2\cdot (b+c)-\sum\frac {r_a(b+c)}2=$ $\frac{4R+r}2\cdot 4s-\sum \frac {r_a(2s-a)}2=$ $2s(4R+r)-s\sum r_a+\sum\frac{ar_a}2=$ $2s(4R+r)-s(4R+r)+$

$\sum\frac{s\left(r_a-r\right)}2=$ $s(4R+r)+\frac s2\cdot \sum (r_a-r)=$ $s(4R+r)+\frac s2\cdot (4R+r-3r)=$ $s(4R+r)+s(2R-r)=6sR\implies$ $\sum (b+c)m_a\le 6sR\ .$



P14 (Mehmet Sahin). Prove that $\boxed{\ \{a,b,c\}\subset\mathbb R^*_+\ \implies \ \sum\frac 1{a^3+b^3+abc}\le\frac 1{abc}\ }$

Proof. Prove easily that $a^2-ab+b^2\ge ab\iff$ $(a+b)\left(a^2-ab+b^2\right)\ge ab(a+b)\iff$ $\boxed{a^3+b^3\ge ab(a+b)\ }\ (*)\ .$ Hence $:$

$\sum\frac 1{a^3+b^3+abc}\le\sum\frac 1{ab(a+b)+abc}=\sum\frac 1{ab(a+b+c)}=\frac 1{a+b+c}\cdot\sum\frac 1{ab}=\frac 1{a+b+c}\cdot \frac {a+b+c}{abc}=\frac 1{abc}\ .$



P15 (Daniel Florescu). Sa se rezolve ecuatia irationala $\boxed{\ 2\sqrt[3]{2x-1}=x^3+1\ }\ (*)\ .$

Proof. Notam $:\ \left\{\begin{array}{ccc}
x^3+1=2y\\\\
y^3+1=2x\end{array}\right\|\ .$ Se observa ca prin diferenta celor doua relatii se obtine $x^3-y^3=2(y-x)\iff$ $(x-y)\left(x^2+xy+y^2\right)+2(x-y)=0\iff$
$(x-y)\left(x^2+y^2+xy+2\right)=0\iff$ $x=y\iff$ $x^3+1=2x\iff$ $x^3-2x+1=0\iff$ $(x-1)\left(x^2+x-1\right)=0\iff$ $x\in\left\{1,\frac {-1\pm\sqrt 5}2\right\}\ .$


P16 (Seyran Ibrahimov). Prove that $(\forall )\ \triangle ABC$ there is the inequality $\boxed{\ \sum\frac {\left(am_a\right)^2}{b+c}\ge 9sS\ }\ (*)$ (standard notations).

Proof. Prove easily that $\boxed{\ 6sr\le \sum am_a\le 2s(R+r) \ }\ (1)\ .$ Therefore, $\sum\frac {\left(am_a\right)^2}{b+c}\ \stackrel{C.B.S}{\ge}\ \frac {\left(\sum am_a\right)^2}{\sum (b+c)}\ge $ $\frac {36s^2r^2}{4s}=9sr^2\implies$ $\sum\frac {\left(am_a\right)^2}{b+c}\ge 9rS\ .$

Remark. I"ll prove the chain $(1)\ :\ h_a\le m_a\implies ah_a\le am_a\implies 2S\le am_a\implies \boxed{\ 6sr\le \sum am_a\ }\ ;\ $ Let $M$ be the midpoint of $[BC]$ and the circumcircle $w=\mathbb C(O,R)\ .$ Thus,

if $\triangle ABC$ is acute, then $AM\le OA+OM\iff \boxed{m_a\le R(1+\cos A)}\iff$ $am_a\le R(a+a\cdot \cos A)\implies$ $\sum am_a\le R\cdot\left(2s+\sum a\cos A\right)=$ $2sR+2R^2\sum\sin A\cos A=$

$2sR+R^2\sum \sin 2A=$ $2sR+4R^2\prod\sin A=$ $2sR+2S=2sR+2sr=2s(R+r)\implies$ $\boxed{\ am_a+bm_b+cm_c\le 2s(R+r)\ }\ (1)\ .$ Otherwise. $\boxed{m_a\le R(1+\cos A)}\iff$

$am_a\le 2aR\cdot\frac {s(s-a)}{bc}=$ $\cancel 2a\cancel R\cdot\frac {s(s-a)}{\cancel {2R}h_a}=$ $\frac {a^2\cancel s(s-a)}{2\cancel sr}\implies$ $\boxed{am_a\le \frac {a^2(s-a)}{2r}}\implies$ $\sum am_a\le \frac 1{2r}\cdot\sum a^2(s-a)=\frac 1{2r}\cdot 4sr(R+r)=2s(R+r)\implies$ $\boxed{\ \sum am_a\le 2s(R+r)\ }\ .$



P17 (Mehmet Sahin). Prove that $(\forall )\ \triangle ABC$ there is the inequality $\boxed{\ 1+\frac{r_a}{m_a}+\frac {r_b}{m_b}+\frac{r_c}{m_c}\le \frac {2R}r\ }\ (*)$ (standard notations).

Proof. I"ll apply the well known inequality $\boxed{\ 2sr\le am_a\ }$ and the identity $\boxed{\ ar_a=s\left(r_a-r\right)\ }\ .$ Hence $:\ \frac{r_a}{m_a}=\frac {ar_a}{am_a}\le\frac {s\left(r_a-r\right)}{2sr}=\frac {r_a-r}{2r}\implies$ $\frac{r_a}{m_a}\le \frac {r_a-r}{2r}\implies$

$\sum\frac{r_a}{m_a}\le \sum\frac {r_a-r}{2r}=\frac{4R+r-3r}{2r}=\frac {2R-r}r\implies 1+\sum \frac{r_a}{m_a}\le 1+\frac {2R-r}r=\frac {2R}r\ .$ In conclusion, $1+\frac{r_a}{m_a}+\frac {r_b}{m_b}+\frac{r_c}{m_c}\le \frac {2R}r\ .$



Proposed problem (test) P18.

$1.\blacktriangleright$ Find the solutions (zeroes) of the following equations $\ :\ \left[\frac {x+2}3\right]=\frac {x-1}4\ ;\ \left[\frac {x+1}3\right]=\frac {x-1}2\ ;\ \left[\frac {4x+1}{5x+3}\right]=\frac {x}{x+8}\ .$

$2.\blacktriangleright$ Let $\{a,b\}\subset\mathbb R$ so that $0<a\ne 1$ and $0<b\ne 2\ .$ Prove that $\log_a\frac a2=\log_{\frac b2}b\iff ab=2\ .$

$3.\blacktriangleright$ Find $S_{2015}=z_1^{2015}+z_2^{2015}\ ,$ where $\{z_1,z_2\}$ are the roots of the equation $z^2-z+1=0\ .$

(for my friend ema_manole2010).


Proofs.

$1.1\blacktriangleright=\frac {x-1}4=\left[\frac {x+2}3\right]=z\iff$ $\boxed{\ x=4z+1\ }$ and $z\le \frac {x+2}3<z+1\iff$ $3z\le (4z+1)+2<3(z+1)\iff$

$3z\le 4z+3<3z+3\iff$ $-3\le z<0\iff$ $z\in [-3,0)\cap\mathbb Z\iff$ $z\in\{-3,-2,-1\}\iff$ $\boxed{\ x\in\{-11,-7,-3\} }\ .$

$1.2\blacktriangleright\ \frac {x-1}2=\left[\frac {x+1}3\right]=z\in\mathbb Z\implies$ $\boxed{\ x=2z+1\ }$ and $z\le \frac {x+1}3<z+1\iff$ $3z\le (2z+1)+1<3(z+1)\iff$

$3z\le 2z+2<3z+3\iff$ $-1<z\le 2\iff$ $z\in (-1,2]\cap \mathbb Z\iff$ $z\in\{0,1,2\}\iff$ $\boxed{\ x\in \{1,3,5\}\ }\ .$

$1.3\blacktriangleright\ \frac x{x+8}=\left[\frac {4x+1}{5x+3}\right]=z\in \mathbb Z\iff$ $\boxed{\ x=\frac {8z}{1-z}\ }$ and $z\le\frac {4x+1}{5x+3}<z+1\iff$ $z\le\frac {4\cdot\frac {8z}{1-z}+1}{5\cdot \frac {8z}{1-z}+3}<z+1\iff$ $z\le\frac {31z+1}{37z+3}<z+1\iff$

$\left(z-\frac {31z+1}{37z+3}\right)\left[(z+1)-\frac {31z+1}{37z+3}\right]\le 0$ and $\frac {31z+1}{37z+3}\ne (z+1)\iff$ $\left(37z^2-28z-1\right)\left(37z^2+9z+2\right)\le 0\iff$ $f(z)=37z^2-28z-1\le 0$ and $z\in\mathbb Z\iff \boxed{\ z=0\ }\ .$

$2\blacktriangleright\ \log_a\frac a2=\log_{\frac b2}b\iff$ $\frac {\ln\frac a2}{\ln a}=\frac {\ln b}{\ln\frac b2}\iff$ $(\ln a-\ln 2)(\ln b-\ln 2)=\ln a\ln b\iff$ $\cancel{\ln 2}(\ln a+\ln b)=\ln^{\cancel 2}2\iff$ $\ln (ab)=\ln 2\iff$ $\boxed{\ ab=2\ }\ .$

$3\blacktriangleright\ \boxed{\ z_1+z_2=1\ }\ (*)$ and $(\forall )\ k\in\{1,2\}\ ,$ $z_k^2-z_k+1=0\implies$ $\boxed{\ z_k^2=z_k-1\ }\implies$ $z_k^3=z\cdot z_k^2=z_k(z_k-1)=z_k^2-z_k=(z_k-1)-z_k=-1\implies$ $\boxed{\ z_k^3=-1\ }\implies$ $z_k^{2015}=$

$z_k^{3\cdot 671+2}=$ $\left(z_k^3\right)^{671}\cdot z_k^2=$ $(-1)^{671}\cdot z_k^2=-z_k^2=-(z_k-1)=1-z_k\implies$ $\boxed{\ z_k^{2015}=1-z_k\ }\ , (\forall )\ k\in \{1,2\}\implies$ $S_{2015}=$ $z_1^{2015}+z_2^{2015}=$ $(1-z_1)+(1-z_2)\ \stackrel{(*)}{=}\ 1$ $\implies$ $ \boxed{\ S_{2015}=1\ }\ .$

Remark. $\boxed{\ (\forall )\ x>0\ ,\ \ln_a{\frac ax}=\ln_{\frac bx}b\iff\ \frac {\ln\frac ax}{\ln a}=\frac {\ln b}{\ln\frac bx}\iff x\in \{1,ab\}\ }$



P19. Prove that $(\forall )\ \{a,b,c\}\subset\mathbb R$ there is the following inequality $:\ \boxed{\ (a+b+c)\left(a^3+b^3+c^3+3abc\right)\ge 2(ab+bc+ca)\left(a^2+b^2+c^2\right)\ }$

Proof. Let $\left\{\begin{array}{ccccc}
a+b+c & = & s_1 & = & 2s\\\\
ab+bc+ca & = & s_2 & = & s^2+r^2+4Rr\\\\
abc & = & s_3 & = & 4Rrs\end{array}\right\|\ .$ Thus, $:\ S_2=\sum a^2=s_1^2-2s_2=4s^2-2\left(s^2+r^2+4Rr\right)=2s^2-2r^2-8Rr\implies$ $\boxed{\ \sum a^2=2\left[s^2-r^2(4R+r)^2\right]\ }\ ;$

$S_3=\sum a^3=s_1^3-3s_1s_2+3s_3=8s^3-6s\left(s^2+r^2+4Rr\right)+12Rrs=$ $2s^3-6sr^2-12Rrs=$ $2s\left(s^2-3r^2-6Rr\right)\implies$ $3abc+\sum a^3=\cancel {12Rrs}+2s\left(s^2-3r^2-\cancel {6Rr}\right)=$

$2s\left(s^2-3r^2\right)\implies$ $\boxed{\ 3abc+\sum a^3=2s\left(s^2-3r^2\right)\ }\ .$ Hence, $(a+b+c)\left(a^3+b^3+c^3+3abc\right)\ge 2(ab+bc+ca)\left(a^2+b^2+c^2\right)\iff$ $\cancel 4s^2\left(\cancel {s^2}-3r^2\right)\ge \cancel 4\left[\cancel {s^4}-r^2(4R+r)^2\right]\iff$

$r^2(4R+r)^2\ge 3s^4\iff$ $\boxed{\ r(4R+r)\ge s\sqrt 3\ }\ ,$ what is true. Indeed, $3\left(r_ar_b+r_br_c+r_cr_a\right)\le\left(r_a+r_b+r_c\right)^2\iff$ $3s^2\le (4R+r)^2\iff$ $s\sqrt 3\le 4R+r\ .$

Remark. $LHS-RHS=\frac{1}{2}((a-b)^2(a+b-c)^2+(b-c)^2(b+c-a)^2+(c-a)^2(c+a-b)^2)\ge 0\iff$ $\frac16\sum \left[(a-c)^2+b(a+c-2b)\right]\ge 0\iff$

$\sum a^4+abc(a+b+c)-\sum a^3(b+c)\ge 0\iff$ which is fourth degree Schur inequality and holds for all reals.



P20 (Thanos KALOGERAKIS, Greece). Let an acute $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R)$ and the midpoints $(M,N,P)$ of the

arcs $\left(\overarc{BC},\overarc {CA},\overarc {AB}\right)$ respectively. Prove that the area of the convex hexagon $APBMCN$ is equally to $sR\ ,$ where $2s=a+b+c\ .$



Proof. Let $(M,N,P)$ be the midpoints of $\left(\ [BC]\ ,\ [CA]\ ,\ [AB]\ \right)$ respectively. Prove easily that $\boxed{\ ar_a=s\left(r_a-r\right)\ }\ (*)$ a.s.o. and $\boxed{\ XM=\frac {r_a-r}2\ }\ (1)$

a.s.o. where $\left\{r_a,r_b,r_c\right\}$ are the exradii of $\triangle ABC\ .$ Thus, $[APBMCN]=S+\sum [BMC]=S+\frac 12\cdot \sum (BC\cdot XM)\ \stackrel{(1)}{=}\ sr+\sum \frac {a\left(r_a-r\right)}4\ \stackrel{(*)}{=}$

$sr+\frac 14\cdot\left[\sum s\left(r_a-r\right)-2sr\right]=$ $sr+\frac s4\cdot\left[\sum \left(r_a-r\right)-2r\right]=$ $sr+\frac s4\cdot \left(4R-4r\right)=$ $sr+sR-sr=sR\implies$ $\boxed{\ [APBMCN]=sR\ }\ .$



P21 (<= click). Proof. Denote $S\in DE\cap AC$ and apply the Menelaus' theorem for the transversal $BM$ to the triangles $\triangle ADS$ and $\triangle CES$ respectively: $\frac {BA}{BD}\cdot\frac {GD}{GS}\cdot\frac {MS}{MA}=$

$\frac {BC}{BE}\cdot\frac {GE}{GS}\cdot\frac {MS}{MC}=1\ (*)\ .$ From the relations $BD=BE\ ,$ $MA=MC$ and $(*)$ obtain $BA\cdot GD=BC\cdot GE\ .$ There is generally the identity $\frac{GD}{GE}\cdot\frac {BA}{BC}=\frac {MA}{MC}\cdot\frac {BD}{BE}\ .$



P22 (Valentin VORNICU). Let $ABC$ be an acute triangle with $AB \neq AC$. Let $D$ be the foot of the altitude from $A$ and $\omega$ the circumcircle

of the triangle. Let $\omega_1$ be the circle tangent to $AD$, $BD$ and $\omega$. Let $\omega_2$ be the circle tangent to $AD$, $CD$ and $\omega$. Let $\ell$ be the interior common

tangent to both $\omega_1$ and $\omega_2$, different from $AD$. Prove that $\ell$ passes through the midpoint of $BC$ if and only if $2BC = AB + AC$.

Lemma 1. let $w_1$ be a circle which is interior tangent in the point $A$ to the circle $w$. For a point $M\in w_1$, $M\ne A$ denote the intersections

$X,Y$ between the circle $w$ and the tangent-line in the point $M$ to the circle $w_1$. Then the ray $[AM$ is the bisector of the angle $\widehat {XAY}$.

Lemma 2. For the incenter $I$ and the centroid $G$ of the triangle $ABC$ we have

$\blacktriangleright IG\parallel BC\Longleftrightarrow b+c=2a\ .$

$\blacktriangleright IG\perp BC\Longleftrightarrow b=c\ \ \vee\ \ b+c=3a\ .$


Indication for proof the proposed problem. The circles $w_1,w_2$ are interior tangent to the circle $w$. Can

apply the above remarkable lemma for each of the circles $w_1,w_2$ and for each of the lines $BC,AD,l$.
This post has been edited 306 times. Last edited by Virgil Nicula, May 10, 2018, 7:53 AM

460. Working page VI.

by Virgil Nicula, Oct 27, 2017, 7:17 PM

P1 (Vasile MASGRAS). Let $ABCD$ be a square with the circumcircle $w$ and the point $M$ which belongs to the little arc $\overarc{AD}\ .$ Prove that $\frac {MA\cdot MD+MB\cdot MC}{MB\cdot MD+MA\cdot MC}=\sqrt 2\ .$ (See here).

Proof 1 (metric). Supppose w.l.o.g. $AB=1\ ,$ i.e. $AC=BD=\sqrt 2$ and apply Ptolemy's theorem to cyclic quadrilaterals $:\ \left\{\begin{array}{cc}
MBCD\ : & MD+MB=MC\sqrt 2\\\\
MACD\ : & MC-MA=MD\sqrt 2\end{array}\right|\begin{array}{ccc}
\odot & MA & \searrow\\\\
\odot & MB & \nearrow\end{array}\bigoplus\implies$

$MA\cdot MD+MB\cdot MC=(MA\cdot MC+MB\cdot MD)\cdot\sqrt 2\implies$ $\frac {MA\cdot MD+MB\cdot MC}{MB\cdot MD+MA\cdot MC}=\sqrt 2\ .$ Very nice problem !

Proof 2 (trigonometric). Denote $\left\{\begin{array}{ccc}
m\left(\widehat{MBD}\right) & = & \alpha\\\\
m\left(\widehat{MBA}\right) & = & \beta\end{array}\right\|\ ,$ where $\boxed{\ \alpha +\beta =90^{\circ}\ }\ .$ Thus, $\frac {MA\cdot MD+MB\cdot MC}{MB\cdot MD+MA\cdot MC}=$ $\frac {\frac {MA}{AC}\cdot \frac {MD}{BD}+\frac {MB}{BD}\cdot\frac {MC}{AC}}{\frac{MB}{BD}\cdot \frac {MD}{BD}+\frac {MA}{AC}\cdot\frac {MC}{AC}}=$

$\frac {\sin\beta \sin\alpha +\cos\alpha\cos\beta}{\cos\alpha \sin\alpha +\sin\beta \cos\beta}=$ $ \frac {2\cos (\alpha -\beta)}{\sin 2\alpha +\sin 2\beta}=$ $\frac {\cancel 2\cancel {\cos (\alpha -\beta )}}{\cancel 2\sin (\alpha +\beta )\cancel{\cos (\alpha -\beta)}}=\frac 1{\sin 45^{\circ}}=\sqrt 2\implies$ $\frac {MA\cdot MD+MB\cdot MC}{MB\cdot MD+MA\cdot MC}=\sqrt 2\ .$


Extension. Let $ABCD$ be a rectangle with the circumcircle $w=\mathbb C(O)$ and $ m\left(\widehat{AOB}\right)=\phi\ .$ Prove that $\frac {MA\cdot MD+MB\cdot MC}{MB\cdot MD+MA\cdot MC}=\frac 1{\cos\frac{\phi}2}\ ,$ where $M\in\overarc{AD}$ so that $(OM)\cap (AD)\ne\emptyset\ .$

Generalizare (Vasile MASGRAS). Prove that in any cyclic pentagon $ABCDE$ there is the identity $\boxed{\ AB\cdot AE\cdot CD+AC\cdot AD\cdot BE=AB\cdot AD\cdot CE+AC\cdot AE\cdot BD\ }$



P2 (British Mathematical Olympiad). Prove that $ (\forall )\ \triangle ABC$ there is the following equivalence $:\ a^2+b^2+c^2=8R^2\ \iff\ 90^{\circ}\in\{A,B,C\}$ (standard notations).

Proof 1 (trig). $\underline{\underline{\sum a^2=8R^2}}\iff$ $\sum\left(\cancel{2R}\sin A\right)^2=2\cdot \cancel{4R^2}\iff$ $\sum\sin^2A=2\stackrel{\odot 2}{\iff}\ \sum(1-\cos 2A)=4\iff$ $1+\sum\cos 2A=0\iff$ $2\cos^2A-2\cos (B-C)\cos A=0\iff$

$2\cos A[\cos A-\cos (B-C)]=0\iff$ $\cos A[\cos (B+C)+\cos (B-C)]=0\iff$ $2\cos A\cos B\cos C=0\iff$ $\cos A\cos B\cos C=0\iff$ $\underline{\underline{90^{\circ}\in\{A,B,C\}}}\ .$

Remark. Prove easily that $\boxed{\sum\cos 2A=-1-4\cdot\prod\cos A=3-\frac {a^2+b^2+c^2}{2R^2}}\ .$ Hence $\sum a^2=8R^2\iff$ $3-\frac {a^2+b^2+c^2}{2R^2}=-1\iff$ $1-4\prod\cos A=-1\iff$ $\prod\cos A=0\ .$

Proof 2 (metric). $\sin^2A+\cos^2A=1\iff$ $(2R\sin A)^2+(2R\cos A)^2 =4R^2\iff$ $\boxed{\ a^2+AH^2=4R^2\ }$ a.s.o. Thus, $\sum a^2=8R^2\iff$

$8R^2+\sum AH^2=$ $\sum \left(AH^2+a^2\right)=$ $\sum\left(4R^2\right)=12R^2\iff$ $\sum AH^2=4R^2\iff$ $HB^2+HC^2=$ $BC^2\iff$ $HB\perp HC\iff H\equiv A\ .$

Remark. Prove easily that $f(t)=st^3-(4R+r)t^2+st-r=0\begin{array}{ccc}
\nearrow & t_1=\tan\frac A2 & \searrow\\\\
\rightarrow & t_2=\tan \frac B2 & \rightarrow\\\\
\searrow & t_3=\tan\frac C2 & \nearrow\end{array}\odot$ Thus, $90^{\circ}\in\{A,B,C\}\iff f(1)=0\iff$ $s-(4R+r)+s-r=0\iff$ $\boxed{s=2R+r}\ (*)\ .$

In conclusion, $8R^2=\sum a^2\iff$ $8R^2=$ $(\sum a)^2-2\sum bc=4s^2-2\left(s^2+r^2+4Rr\right)=2\left(s^2-r^2-4Rr\right)\iff$ $s^2-r^2-4Rr=4R^2\iff 4R+r=s\ ,$ i.e. the equivalence $(*)\ .$



P3 (C. V. Durrel). Prove that $(\forall )\ \triangle\ ABC$ there is the equivalence $\boxed{\ a+b=2c\iff \cot\frac A2+\cot\frac B2=2\cot\frac C2\ }\ (*)$ (standard notations).

Proof 1 (metric). I"ll use the well-known identities $\boxed{\ (s-a)\tan\frac A2=(s-b)\tan\frac B2=(s-c)\tan\frac C2=r\ }\ (*)\ .$ Therefore, $\underline{\underline{a+b=2c}}\iff$ $c=2(s-c)\iff$

$(s-a)+(s-b)=2(s-c)\iff$ $\frac{s-a}r+\frac{s-b}r=2\cdot\frac{s-c}r\iff$ $\underline{\underline{\cot\frac A2+\cot\frac B2=2\cot\frac C2}}\ .$ Remark. Prove that $1\ \ge\ \boxed{\ \cos\frac {B-C}2\ge\sqrt{\frac {2r}R}\ }$ with equality $\iff b+c=2a\ .$

Proof 2 (trigonometric). I"ll use the well-known identity $\boxed{\ \sum\tan\frac B2\tan\frac C2=1\ }\ (*)\ .$ Thus, $a+b=2c\iff \sin A+\sin B=2\sin C\iff$ $\cancel 2\cancel{\sin\frac {A+B}2}\cos\frac {A-B}2=\cancel 2\cdot 2\sin\frac C2\cancel{\cos\frac C2}\iff$

$\cos\frac {A-B}2=2\cos\frac {A+B}2\ \stackrel{(:)\ \sin\frac A2\sin\frac B2}{\iff}\ \cot\frac A2\cot\frac B2+1=2\left(\cot\frac A2\cot\frac B2-1\right)\iff$ $\cot\frac A2\cot\frac B2=3\iff$ $3\tan\frac A2\tan\frac B2=1\ \stackrel{(*)}{\iff}\ 3\tan\frac A2\tan\frac B2=\sum\tan\frac B2\tan\frac C2\iff$

$2\tan\frac A2\tan\frac B2=\tan\frac C2\cdot\left(\tan\frac A2+\tan\frac B2\right)\iff$ $\frac 2{\tan\frac C2}=
\frac {\tan\frac A2+\tan\frac B2}{\tan\frac A2\tan\frac B2}\iff$ $\cot\frac A2+\cot\frac B2=2\cot\frac C2\ .$ Remark. Prove that $st^3-(4R+r)t^2+t-r=0\begin{array}{ccccc}
\nearrow & t_1=\tan\frac A2 & \searrow\\\\
\rightarrow & t_2=\tan\frac B2 & \rightarrow\\\\
\searrow & t_3=\tan\frac C2 & \nearrow\end{array}\odot$

Remark. Prove that $(\forall )\ \triangle ABC$ there are the following equivalencies: $\boxed{\ \begin{array}{cccccccc}
b+c & = & 2a & \iff & GI\parallel BC & \iff & \cos\frac {B-C}2=\sqrt{\frac {2r}R} & (1)\\\\
b+c & = & 3a & \iff & GI\perp BC & \iff & \cos A=1-\frac r{2R} & (2)\end{array}\ }$ , where $G$-centroid and $I$-incenter of $\triangle ABC\ .$



P4 (Vadym MITROFANOV). Prove that for any $\triangle ABC$ there is the inequality $\boxed{\ \frac {3S}{R}\le r_a\sin A+r_b\sin B+r_c\sin C\le \frac {3\sqrt 3}2\cdot (2R-r)\ }$ (standard notations).

Proof. I"ll use identity $\boxed{ar_a=s\left(r_a-r\right)}\ (*)\ ,$ theorem of Sines $\boxed{\ \frac a{\sin A}=\frac b{\sin B}=\frac c{\sin C}=2R\ }\ (1)$ and remarkable inequalities $\boxed{\ 3r\sqrt 3\le s\le \frac {3R\sqrt 3}2\ }\ (2)\ ,\ \boxed{\ s^2\ge 3r(4R+r)\ }\ (3)\ .$ Hence $:$

$\blacktriangleright\ \sum r_a\sin A\stackrel{(1)}{=}$ $\sum \frac {ar_a}{2R}\ \stackrel{(*)}{=}\ \sum \frac {s\left(r_a-r\right)}{2R}=$ $\frac s{2R}\cdot \left[(4R+r)-3r\right]=$ $\frac s{2R}\cdot (4R-2r)=\frac sR\cdot (2R-r)\ \stackrel{(2)}{\le}\ \frac {3\sqrt 3}2\cdot (2R-r)\ .$ Hence $\sum r_a\sin A\le \frac {3\sqrt 3}2\cdot (2R-r)\ .$

$\blacktriangleright\ \sum r_a\sin A=\sum\frac {\sin^2A}{\frac {\sin A}{r_a}}\ \stackrel{C.B.S}{\ge}\ \frac {\left(\sum\sin A\right)^2}{\sum\frac {\sin A}{r_a}}=$ $\frac {\left(\frac sR\right)^2}{\sum \frac a{2Rr_a}}=$ $\frac {2s^2}{R\sum\frac a{r_a}}=$ $\frac {2s^2}{R\sum\frac {a(s-a)}S}=$ $\frac {2s^2S}{R\sum a(s-a)}=$ $\frac {\cancel 2S\cdot s^2}{R\cdot \cancel 2r(4R+r)}=$ $\frac {3S}R\cdot\frac {s^2}{3r(4R+r)}\ \stackrel{(3)}{\ge}\ \frac {3S}R$ In conclusion, $\sum r_a\sin A\ge \frac {3S}R\ .$



P5 (Van Khea). Prove that for any $\triangle ABC$ there is the identity $OI^2+OI_a^2+OI_b^2+OI_c^2=12R^2$ (standard notations).

Proof. Are well-known or prove easily the identities $:\ \boxed{\ OI^2+2Rr=OI_a^2-2Rr_a=OI_b^2-2Rr_b=OI_c^2-2Rr_c=R^2\ }\ .$ Therefore, $OI^2+\sum OI_a^2=$

$\left(R^2-2Rr\right)+\sum\left(R^2+2Rr_a\right)=$ $4R^2+2R\left[\left(r_a+r_b+r_c\right)-r\right]=4R^2+2R\left[\left(4R+\cancel r\right)-\cancel r\right]=4R^2+8R^2=12R^2\ ,$ i.e. $OI^2+\sum OI_a^2=12R^2\ .$



P6 (Kadir ALTINTAS). Prove that $(\forall )\ \triangle\ ABC$ there are the equivalencies $:\ a^2+c^2=2b^2\iff 2\cot B=\cot A+\cot C\iff 2\cos 2B=\cos 2A+2\cos 2C\ .$

Proof.

$1.\blacktriangleright$ I"ll use well-known identities $\boxed{\ \frac {\cot A}{b^2+c^2-a^2}=\frac {\cot B}{c^2+a^2-b^2}=\frac {\cot C}{a^2+b^2-c^2}=\frac 1{4S}\ }\ (*)\ ,$ i.e. $\left(\cot A,\cot B,\cot C\right)$ are directly proportional to $\left(b^2+c^2-a^2,c^2+a^2-b^2,a^2+b^2-c^2\right)\ .$

Thus, $\underline{\underline{2\cot B=\cot A+\cot C}}\iff 2\left(c^2+a^2-b^2\right)=\left(b^2+\cancel{c^2}-\cancel{a^2}\right)+\left(\cancel{a^2}+b^2-\cancel{c^2}\right)=2b^2\iff$ $\underline{\underline{a^2+c^2=2b^2}}\ .$ Hence $\boxed{2\cot B=\cot A+\cot C\iff a^2+c^2=2b^2}\ .$

$2.\blacktriangleright$ I"ll use the identities $\boxed{\ \frac a{\sin A}=\frac b{\sin B}=\frac c{\sin C}=2R\ }\ (*)\ ,$ i.e. $(a,b,c)$ are directly proportional to $(\sin A,\sin B,\sin C)\ .$ Thus, $\underline{\underline{2b^2=a^2+c^2}}\iff 2\cdot 2\sin^2B=$ $2\sin^2A+2\sin^2C\iff$

$2(1-\cos 2B)=(1-\cos 2A)+(1-\cos 2C)\iff $ $\underline{\underline{2\cos 2B=\cos 2A+\cos 2C}}\ .$ Hence $\boxed{\ a^2+c^2=2b^2\iff 2\cos 2B=\cos 2A+\cos 2C\ }\ .$



P7 (Adil Abdullayev). Prove that $(\forall )\ \triangle\ ABC$ there is the identity $\frac {4R}r=\left(\frac {r_a}r-1\right)\left(\frac {r_b}r-1\right)\left(\frac {r_c}r-1\right)$ (standard notations).

Proof 1. I"ll use the well known identities $:\ \boxed{\ abc=4RS\ }\ (0)\ ,\ \boxed{\ s\left(r_a-r\right)=ar_a\ }\ (1)$ and $\boxed{\ rr_ar_br_c=S^2\ }\ (2)\ .$ Indeed, $\frac {r_a}r-1=\frac {r_a-r}r=\frac {s\left(r_a-r\right)}{sr}\ \stackrel{(1)}{=}\ \frac {ar_a}S\implies$

$ \boxed{\frac {r_a}r-1=\frac {ar_a}S}\ .$ Hence $\prod\left(\frac {r_a}r-1\right)=$ $\prod\frac {ar_a}S=$ $\frac {abc\cdot r_ar_br_c}{S^3}\ \stackrel{(0\wedge 2)}{=}\ \frac {4RS}{S^3}\cdot\frac {S^2}r=\frac {4R}r\ .$ In conclusion, $\prod\left(\frac {r_a}r-1\right)=\frac {4R}r\ .$ Remark. $1+\prod\left(\frac {r_a}r-1\right)=\sum\frac {r_a}r\ .$

Proof 2. I"ll use the well known identities $:\ \boxed{\ abc=4Rrs\ }\ (1)\ ,\ \boxed{\ \prod (s-a)=sr^2\ }\ (2)$ and $S=sr=r_a(s-a)\ ,$ i.e. $\boxed{\ \frac {r_a}r=\frac s{s-a}\ }\ (3)\ .$ Hence $\frac {r_a}r-1\ \stackrel{(3)}{=}\ \frac {s}{s-a}-1=$

$\frac {s-(s-a)}{s-a}=\frac a{s-a}\ ,$ i.e. $\boxed{\frac {r_a}r-1=\frac a{s-a}}\ .$ In conclusion, $\prod \left(\frac {r_a}r-1\right)=\prod \frac a{s-a}=\frac {abc}{(s-a)(s-b)(s-c)}\ \stackrel{(1\wedge 2)}{=}\ \frac {4Rsr}{sr^2}=\frac {4R}r\implies$ $\prod \left(\frac {r_a}r-1\right)=\frac {4R}r\ .$



P8 (Hung Nguyen Viet). Prove that $(\forall )$ an acute $\triangle\ ABC$ there is the inequality $\sqrt{\cos A}+\sqrt {\cos B}+\sqrt{\cos C}\le\frac 12\cdot\sqrt{\frac {a^2+b^2+c^2}{Rr}}\le \frac32\cdot \sqrt{\frac Rr}$ (standard notations).

Proof. I"ll use the well known identities $\boxed{\cos A+\cos B+\cos C=1+\frac rR\ }\ (1)\ ,\ \boxed{\ a^2+b^2+c^2=2\left[s^2-r(4R+r)\right]\ }\ (2)$ and the inequalities $\boxed{\ \left(\sum\sqrt{\cos A}\right)^2\le 3\sum\cos A\ }\ (3)\ ,$

$\boxed{\ a^2+b^2+c^2\le 9R^2\ }\ (4)$ and $\boxed{\ s^2\ge 16Rr-5r^2\ }\ (5)\ .$ Thus, $\left(\sum\sqrt{\cos A}\right)^2\ \stackrel{(3)}{\le}\ 3\sum\cos A\ \stackrel{(1)}{=}\ 3\left(1+\frac rR\right)$ and $\frac 1{\cancel 2}\cdot\sqrt{\frac {a^2+b^2+c^2}{Rr}}\le \frac3{\cancel 2}\cdot \sqrt{\frac Rr}\ \stackrel{(4)}{\iff}\ \sqrt{\frac {9R\cancel{^2}}{\cancel Rr}}\le $ $3\cdot \sqrt{\frac Rr}\ ,$

what is true. Remain to prove $3\left(1+\frac rR\right)\le \frac {a^2+b^2+c^2}{4Rr}\ \stackrel{(2)}{=}\ \frac {s^2-r^2-4Rr}{2Rr}$ i.e. $6r(R+r)\le s^2-r^2-4Rr\iff$ $s^2\ge 10Rr+7r^2\ .$ But $s^2\ \stackrel{(5)}{\ge}\ 16Rr-5r^2\ge 10Rr+7r^2$ because is true.



P9 (Dũng Nguyễn Tiến, Viet). Prove that $(\forall )\ \triangle\ ABC$ there is the equivalence $\boxed{\ DE=DF\iff \frac {m_a+m_b+m_c}{a+c+b}=\frac {\sqrt 3}2\ }\ (*)\ ,$

where $(D,E,F)$ are the projections of the centroid $G$ on $(BC,CA,AB)$ respectively (standard notations).


Proof. $[BG]\ ,$ $[CG]$ are the diameters of the cyclical quadrilaterals $BDGF\ ,$ $CDGE$ respectively $\implies\odot\begin{array}{ccccc}
\nearrow & DF=BG\cdot\sin B & \implies & DF=\frac {2m_c}3\cdot\frac b{2R} & \searrow\\\\
\searrow & DE=CG\cdot\sin C & \implies & DE=\frac {2m_b}3\cdot\frac c{2R} & \nearrow\end{array}\odot\implies$ $\frac {DE}{DF}=\frac {cm_c}{bm_b}\ .$ Therefore,

$DE=DF\iff $ $\boxed{\ bm_b=cm_c\ }\ (1)\ \iff$ $b^2\cdot 4m_b^2=c^2\cdot 4m_c^2\iff$ $2a^2\left(b^2-c^2\right)=$ $b^4-c^4\ \stackrel{(b\ne c)}{\iff}\ \boxed{\ b^2+c^2=2a^2\
 }\ (2)\ \iff$ $4m_a^2=2\cdot 2a^2-a^2\iff$ $4m_a^2=3a^2\iff$

$\boxed{\ 2m_a=a\sqrt 3\ }\ (3)\ ,\ \odot \begin{array}{cccccccc}
\nearrow & 4m_b^2=2\left(a^2+c^2\right)-b^2\ \stackrel{(2)}{=}\ \left(b^2+c^2\right)+\left(2c^2-b^2\right) & \implies & 4m_b^2=3c^2 & \implies & 2m_b=c\sqrt 3 & (4) & \searrow\\\\ \searrow & 4m_c^2=2\left(a^2+b^2\right)-c^2\ \stackrel{(2)}{=}\ \left(b^2+c^2\right)+\left(2b^2-c^2\right) & \implies & 4m_c^2=3b^2 & \implies & 2m_c=b\sqrt 3 & (5) & \nearrow\end{array}\odot$ The sum of the relations $(3)\
 ,$ $(4)$ and $(5)$ $\implies (*)\ .$



P10 (Boris COLAKOVIC, Serbia). Prove that $(\forall )\ \triangle\ ABC$ there is the relation $\frac r{h_a}\in\left[\sqrt 2-1\ ,\ \frac 12\right)$ (standard notations).

Proof. Observe that $\frac {h_a}r=\frac {ah_a}{ar}=\frac {2s\cancel r}{a\cancel r}=\frac {2s}a=\frac {a+b+c}a=1+\frac {b+c}a\implies$ $\boxed{\ \frac {h_a}r=1+\frac {b+c}a\ }\ (*)$ and $(b+c)^2\le 2\left(b^2+c^2\right)=2a^2\implies$

$b+c\le a\sqrt 2\implies $ $\boxed{\ \frac {b+c}a\le \sqrt 2\ }\ .$ Thus, $\frac {b+c}a\in \left(1,\sqrt 2\right]\iff$ $1+\frac {b+c}a\in \left(2,1+\sqrt 2\right]\ \stackrel{(*)}{\iff}\ \frac {h_a}r\in \left(2,1+\sqrt 2\right]\iff$ $\frac r{h_a}\in \left[\sqrt 2 -1,\frac 12\right)\ .$



P11. Prove that $(\forall )\ \triangle ABC$ there is the following relations identity $:\ \boxed{\ \sum b^2c^2\sin 2A=2S\left(a^2+b^2+c^2\right)}\ (*)\ ;$

the chain of the inequalities $\boxed{12r(2R-r)\le a^2+b^2+c^2\le 4\left(2R^2+r^2\right)\ }\ (1)$ (standard notations).


Proof. $\underline{\underline{b^2c^2\sin 2A}}=$ $abc\cdot\frac {\sin 
 A}a\cdot 2bc\cos A=$ $4RS\cdot \frac 1{2R}\cdot\left(b^2+c^2-a^2\right)= \underline{\underline{2S\cdot\left(b^2+c^2-a^2\right)}}\implies$ $\sum b^2c^2\sin 2A=2S\cdot\left(a^2+b^2+c^2\right)\ .$

I"ll use the well known identity $\boxed{\ a^2+b^2+c^2=2\left(s^2-r^2-4Rr\right)\ }$ and the remarkable bilateral inequality $\boxed{\ 16Rr-5r^2\le s^2\le 4R^2+4Rr+3r^2\ }\ .$



$\boxed{\ \mathrm{Lemma\ (Leo\ GIUGIUC).\ Prove\ that\ the\ identity}\ 2\cdot \sum a^4+16\cdot\prod (s-a)=8abcd+\left(\sum a^2\right)^2\ ,\ \mathrm{where}\ \{a,b,c,d\}\subset \ \mathbb C\ \mathrm{and}\ a+b+c+d=2s }$


P12 (own). Prove that $(\forall )\ \triangle ABC$ there is the inequality $\boxed{\ \left(4-\frac {2r}R\right)^2\le \left(\frac {a^2}{b^2}+\frac {b^2}{c^2}+\frac {c^2}{a^2}\right)\left(\frac {a^2}{c^2}+\frac {b^2}{a^2}+\frac {c^2}{b^2}\right)\ }$ (standard notations).

Proof. $\left(\frac {a^2}{bc}+\frac {b^2}{ca}+\frac {c^2}{ab}\right)^2=$ $\left(\frac ab\cdot\frac ac+\frac bc\cdot \frac ba+\frac ca\cdot\frac cb\right)^2\ \stackrel{C.B.S}{\le}\ \left(\frac {a^2}{b^2}+\frac {b^2}{c^2}+\frac {c^2}{a^2}\right)\left(\frac {a^2}{c^2}+\frac {b^2}{a^2}+\frac {c^2}{b^2}\right)\implies$ $\boxed{\ \left(\frac {a^2}{bc}+\frac {b^2}{ca}+\frac {c^2}{ab}\right)^2\le\left(\frac {a^2}{b^2}+\frac {b^2}{c^2}+\frac {c^2}{a^2}\right)\left(\frac {a^2}{c^2}+\frac {b^2}{a^2}+\frac {c^2}{b^2}\right)\ }\ (1)\ .$ Prove easily

the inequality $\boxed{\ a^2\ge 4(s-b)(s-c)\ }\ (2)$ a.s.o. and the identity $\boxed{\ \sum a(s-b)(s-c)=2S(2R-r)\ }\ (3)\ .$ Thus, $\frac {a^2}{bc}\ \stackrel{(2)}{\ge}\ \frac {4(s-b)(s-c)}{bc}=$ $\frac {4a(s-a)(s-b)(s-c)}{abc(s-a)}=$ $\frac {\cancel 4a\cancel Sr}{\cancel 4R\cancel S(s-a)}=$

$\frac {ar}{R(s-a)}$ $\implies$ $\boxed{\ \frac {a^2}{bc}\ge \frac {r}{R}\cdot\frac {a}{s-a}\ }\ (4)$ a.s.o. Therefore, $\sum \frac {a^2}{bc}\ \stackrel{(4)}{\ge}\ \frac r{R}\cdot \sum\frac a{s-a}=$ $\frac r{R}\cdot\frac{\sum a(s-b)(s-c)}{sr^2}\ \stackrel{(3)}{=}\ \frac {\cancel r}{R}\cdot \frac{2\cancel S(2R-r)}{\cancel S\cancel r}=$ $\frac {2(2R-r)}{R}=4-\frac {2r}R\implies$ $\boxed{\ \sum\frac {a^2}{bc}\ge 4-\frac {2r}R\ }\ .$

In conclusion, $\left(4-\frac {2r}R\right)^2\le$ $\left(\frac {a^2}{bc}+\frac {b^2}{ca}+\frac {c^2}{ab}\right)^2\ \stackrel{(1)}{\le}\ \left(\frac {a^2}{b^2}+\frac {b^2}{c^2}+\frac {c^2}{a^2}\right)\left(\frac {a^2}{c^2}+\frac {b^2}{a^2}+\frac {c^2}{b^2}\right)\implies$ $\left(4-\frac {2r}R\right)^2\le$ $\left(\frac {a^2}{b^2}+\frac {b^2}{c^2}+\frac {c^2}{a^2}\right)\left(\frac {a^2}{c^2}+\frac {b^2}{a^2}+\frac {c^2}{b^2}\right)\ .$



P13. Let $\triangle ABC$ with $\frac A3=\frac B2$ and $BC=2\cdot AB\ .$ Prove that $A=90^{\circ}$ (standard notations).

Proof 1. Remark that $\frac A3=\frac B2=x<60^{\circ}\ ,$ i.e. $\boxed{\ A=3x\ ,\  B=2x\ }$ and $\boxed{\ a=2c\ }\ .$ Apply the theorem of Sines $:\ \frac a{\sin 3x}=\frac c{\sin 5x}\iff$ $\frac {2\cancel c}{\sin 3x}=\frac {\cancel{c}}{\sin 5x}\iff$ $\boxed{\ 2\sin 5x=\sin 3x\ }\iff$

$2\sin x\cdot 2\sin 5x=2\sin x\cdot \sin 3x\iff$ $2(\cos 4x-\cos 6x)=\cos 2x-\cos 4x\iff$ $\boxed{\ 2\cos 6x-3\cos 4x+\cos 2x=0\ }\ (*)\ .$ Denote $\boxed{\cos 2x=t>-\frac 12\ }\ .$ The relation $(*)$ becomes

$2t\left(4t^2-3\right)-3\left(2t^2-1\right)+t=0\iff$ $8t^3-6t^2-5t+3=0\iff$ $(t-1)(2t-1)(4t+3)=0\ \stackrel{t\not\in\{-\frac 34,1\}}{\iff}\ t=\frac 12\iff$ $\cos 2x=\frac 12\iff$ $2x=60^{\circ}\iff x=30^{\circ}\iff$ $A=90^{\circ}\ .$



P14. Let $\triangle ABC$ with centroid $G ,$ midpoint $M$ of $[AC]$ and $\left\{\begin{array}{ccc}
E\in (AB) & F\in (AM) & EF\parallel BM\\\\
\ AF=a & FM=b & N\in EG\cap AC\end{array}\right\|\ .$ Prove that $\boxed{\ NC=\frac {a^2-b^2}{a-\frac b2}\ }\ .$

Proof. Denote $MN=y$ and $NC=x\ .$ Observe that $MC=MA\iff \boxed{\ x+y=a+b\ }\ (1)$ and $EF\parallel BM\iff\frac {EA}{EB}=\frac {FA}{FM}\ ,$ i.e. $\boxed{\ \frac {EA}{EB}=\frac ab\ }\ (*)\ .$ Apply the Menelaus' theorem to

the transversal $\overline{EGN}/\triangle ABM\ :\ \frac{NM}{NA}\cdot\frac {EA}{EB}\cdot\frac {GB}{GM}=1\ \stackrel{(*)}{\iff}\ \frac y{y+a+b}\cdot\frac ab\cdot \frac 21=1\iff$ $\boxed{\ y(2a-b)=b(a+b)\ }\ (2)\ .$ From the relations $(1)$ and $(2)$ obtain easily the required relation.



P15. In $\triangle ABC$ denote $:\ \left\{\begin{array}{ccc}
P\in w_a\cap AB\ ;\ Q\in w_a\cap AC & \wedge & L\in PQ\ ;\ CL\perp PQ\\\\\
M\in w_b\cap AB\ ;\ N\in w_b\cap BC & \wedge & K\in MN\ ;\ CK\perp MN\end{array}\right\|\ .$ Prove that $MKLP$ is cyclically (standard notations).

Proof. Denote $S\in KM\cap LP$ . Observe that $AM=BP=s-c$ , $MP=a+b$ and $\left\{\begin{array}{c}
m\left(\widehat{PMS}\right)=90^{\circ}-\frac B2\\\\
m\left(\widehat{MPS}\right)=90^{\circ}-\frac A2\\\\
m\left(\widehat{MSP}\right)=90^{\circ}-\frac C2\end{array}\right\|$ . Apply the theorem of Sines in $\triangle MPS\ :\ \frac {a+b}{\cos\frac C2}=$ $\frac {SM}{\cos \frac A2}=\frac {SP}{\cos \frac B2}\implies$

$SM^2-SP^2=\frac {(a+b)^2}{\cos^2\frac C2}\cdot\left(\cos ^2\frac A2-\cos^2\frac B2\right)=$ $\frac {ab(a+b)^2}{2s(s-c)}\cdot(\cos A-\cos B)=$ $\frac {ab(a+b)^2}{2s(s-c)}\cdot\frac {2(b-a)s(s-c)}{abc}\implies$ $\boxed{SM^2-SP^2=\frac {(a+b)(b^2-a^2)}{c}}$ . Apply the theorem of Cosines

in the triangles $CAM$ and $CBM\ :\ \left\{\begin{array}{c}
CM^2=(s-c)^2+b^2+2b(s-c)\cos A\\\\
CP^2=(s-c)^2+a^2+2a(s-c)\cos B\end{array}\right\|\implies$ $CM^2-CP^2=b^2-a^2+2(s-c)(b\cos A-a\cos B)$ . Observe that $b\cos A-a\cos B=$ $\frac {b^2-a^2}{c}$

and $CM^2-CP^2=$ $b^2-a^2+2(s-c)\cdot \frac {b^2-a^2}{c}=\left(b^2-a^2\right)\cdot\left(1+\frac {a+b-c}{c}\right)\implies$ $\boxed{CM^2-CP^2=\frac {(a+b)(b^2-a^2)}{c}}$ . In conclusion, $SM^2-SP^2=CM^2-CP^2=$

$\frac {(b-a)(a+b)^2}{c}$ $\implies$ $SC\perp AB$ . Let $R\in SC\cap AB$ . Since $RMKC$ and $RPLC$ are cyclically obtain that $\left\{\begin{array}{c}
SC\cdot SR=SK\cdot SM\\\\
SC\cdot SR=SL\cdot SP\end{array}\right\|\implies$ $SK\cdot SM=SL\cdot SP\implies$ $MKLP$ is cyclically.



P16 and its proof (Đỗ Hữu Đức Thịnh). We can try to use the well known Ptolemy's inequality in a convex quadrilateral $ABCD\ :\ \boxed{\ AC\cdot BD\le AB\cdot CD+AD\cdot BC\ }\ .$

For example, $a\cdot OI_a\le Rr_a\left(\sec\frac C2+\sec\frac B2\right)$ a.s.o. $\implies$ $\sum a\cdot OI_a\le  R\cdot\sum r_a\left(\sec\frac C2+\sec\frac B2\right)\ \le\ ......\ \le 6R^2\sqrt 3\ .$



P17 (Nguyen Viet Hung - Vietnam). $\boxed{\ \begin{array}{c}
\mathrm{Prove\ that}\ (\forall )\ \triangle ABC\ \mathrm{there\ is\ the\ chain\ of\ the\ inequalities\ :}\\\\
\frac {2s}{2R-r}\le 2\sqrt 3\le 2\sqrt{\frac {2(2R-r)}R}\le\ \boxed{\ \frac {2(4R+r)}{s}=\frac a{r_a}+\frac b{r_b}+\frac c{r_c}\ }\ \le \frac {2s}{3r}\ \mathrm{(standard\ notations)}.\end{array}\ }$

Proof.

$\blacktriangleright$ Prove easily that $4R^2+4Rr+3r^2\le 3\left(2R-r\right)^2\ (1)\ \iff$ $2r\le R$ (Euler's inequality), what is true. Hence and the inequality $(1)$ is also true. From the

inequality $(1)$ and the Gerretsen's inequality $s^2\le 4R^2+4Rr+3r^2\ (*)$ obtain that $s^2\le 3(2R-r)^2\ ,$ i.e. $s\le (2R-r)\sqrt 3\iff$ $\boxed{\ \frac {2s}{2R-r}\le 2\sqrt 3\ }\ .$

$\blacktriangleright$ Prove easily that $2\sqrt 3\le2\sqrt {\frac {2(2R-r)}R}\iff 3R\le 2(2R-r)\iff 2r\le R\ ,$ what is true. In conclusion, and inequality $\boxed{\ 2\sqrt 3\le2\sqrt {\frac {2(2R-r)}R}\ }$ is true.

$\blacktriangleright\ \cancel 2\sqrt{\frac {2(2R-r)}R}\le\frac {\cancel 2(4R+r)}{s}\iff$ $\boxed{\ s^2\le \frac {R(4R+r)^2}{2(2R-r)}\ }\ ,$ what is the Blundon's inequality. In conclusion, and the inequality $\boxed{\ 2\sqrt{\frac {2(2R-r)}R}\le\ \frac {2(4R+r)}{s}\ }$ is true.

$\blacktriangleright\ \sum\frac a{r_a}=\sum\frac {a(s-a)}S=$ $\frac 1S\cdot \sum \left(as-a^2\right)=$ $\frac 1S\cdot \left(s\sum a-\sum a^2\right)=$ $\frac 1{sr}\cdot \left[\cancel{2s^2}-2\left(\cancel{s^2}-r^2-4Rr\right)\right]=$ $\frac {2\cancel r(4R+r)}{s\cancel r}=\frac {2(4R+r)}{s}\implies $ $\boxed{\ \frac {2(4R+r)}{s}=\frac a{r_a}+\frac b{r_b}+\frac c{r_c}\ }\ .$

$\blacktriangleright\ \frac {\cancel 2(4R+r)}{s}=\frac a{r_a}+\frac b{r_b}+\frac c{r_c}\le\frac {\cancel 2s}{3r}\iff$ $s^2\ge 3r(4R+r)\ .$ Prove easily that $16Rr-5r^2\ge 3(4R+r)\iff$ $4Rr\ge 8r^2\iff R\ge 2r\ ,$ what is true.

Hence and the inequality $16Rr-5r^2\ge 3(4R+r)$ is true. From the well known inequality $s^2\ge 16Rr-5r^2$ obtain that $s^2\ge 3r(4R+r)\ ,$ i.e. $\boxed{\ \frac a{r_a}+\frac b{r_b}+\frac c{r_c}\le \frac {2s}{3r}\ }\ .$

Remarks.

$\blacktriangleright\ \sum \frac a{r_a}=$ $\sum\frac {a^2}{ar_a}\ \stackrel{C.B.S}{\ge}\ \frac {4s^2}{\sum ar_a}=$ $\frac {4s^{\cancel 2}}{\cancel s\sum\left(r_a-r\right)}=$ $\frac {4s}{(4R+r)-3r}=\frac {2s}{2R-r}\implies$ $\boxed{\ \sum \frac a{r_a}\ge \frac {2s}{2R-r}\ }\ .$

$\blacktriangleright$ Observe that $a\le b\le c\iff \frac 1{r_a}\ge \frac 1{r_b}\ge \frac 1{r_c} .$ Hence can apply the Chebyshev's inequality $\sum\frac a{r_a}=\sum \left(a\cdot \frac 1{r_a}\right)\le\frac 13\cdot \sum a\cdot\sum\frac 1{r_a}=\frac 13\cdot (2s)\cdot\frac 1r=\frac {2s}{3r}\implies\boxed{\ \sum\frac a{r_a}\le \frac {2s}{3r}\ }\ .$

$\blacktriangleright\ \frac 13\cdot\sum\frac a{r_a}\ge\sqrt [3]{\prod\frac a{r_a}}=\sqrt [3]{\frac {abc\cdot r}{r_ar_br_c\cdot r}}=\sqrt [3]{\frac {4R\cancel Sr}{S^{\cancel 2}}}=\sqrt [3]{\frac {4R}s}\ \stackrel{2s\le 3R\sqrt 3}{\ge}\ \sqrt [3]{\frac{4\cdot 2}{3\sqrt 3}}=\sqrt[3]{\left(\frac 2{\sqrt 3}\right)^3}=\frac 2{\sqrt 3}\implies\sum\frac {a}{r_a}\ge 2\sqrt{3}\ .$



P18 (own). Prove that $(\forall )\ \triangle ABC$ there is the relations $\sum\frac {bc}{s-a}=\frac {s^2+(4R+r)^2}s\ge 4\cdot \max\left\{\ s\ ,\ (R+r)\sqrt 3\ \right\}$ (standard notations).

Proof. I"ll use the identities $r_a+r_b+r_c=4R+r\ ,$ $r_ar_b+r_br_c+r_cr_a=s^2\ ,$ $s(s-a)+(s-b)(s-c)=bc\ ,$ $\sum (s-b)(s-c)=r(4R+r)$ and the inequalities

$3\sum \left(r_br_c\right)\le \left(\sum r_a\right)^2\iff$ $3s^2\le (4R+r)^2\iff \boxed{\ s\sqrt 3\le 4R+r\ }\ (1)$ and $\sum (s-b)(s-c)\le \left[\sum (s-a)\right]^2\iff\boxed{\ 3r(4R+r)\le s^2\ }\ (2)\ .$ Therefore $:$

$\blacktriangleright\ \sum\frac {bc}{s-a}=$ $\sum \frac {s(s-a)+(s-b)(s-c)}{s-a}=$ $\sum \left[s+\frac {(s-b)(s-c)}{s-a}\right]=$ $3s+\sum \frac {r(4R+r)-a(s-a)}{s-a}=$ $3s+r(4R+r)\cdot \sum\frac 1{s-a}-2s=$

$s+r(4R+r)\cdot \frac {\sum (s-b)(s-c)}{\prod (s-a)}=$ $s+\cancel r(4R+r)\cdot \frac {\cancel r(4R+r)}{s\cancel{r^2}}=$ $s+\frac {(4R+r)^2}s=\frac {s^2+(4R+r)^2}s\implies \boxed{\ \sum\frac {bc}{s-a}=\frac {s^2+(4R+r)^2}s\ }\ .$

$\blacktriangleright\ \sum\frac {bc}{s-a}=s+\frac {4R+r}s\cdot (4R+r)\ge s+\frac {4R+r}{\cancel s}\cdot \cancel s\sqrt 3=$ $s+(4R+r)\sqrt 3\ge$ $ 3r\sqrt 3+(4R+r)\sqrt 3=$ $[3r+(4R+r)]\sqrt 3=$ $4(R+r)\sqrt3\implies$

$ \boxed{\ \sum\frac {bc}{s-a}\ge 4(R+r)\sqrt 3\ }\ .$ On other hand $\sum\frac {bc}{s-a}=s+\frac {(4R+r)^2}s\ge s+\frac {\left(s\sqrt 3\right)^2}s=s+\frac {3s^2}s=s+3s=4s\implies \boxed{\ \sum\frac {bc}{s-a}\ge 4s\ }\ .$



P19 (own). Prove that $(\forall )\ \triangle ABC$ there is the inequality $(16R-5r)\left(4R^2+4Rr+3r^2\right)\le 9\left(r_a^3+r_b^3+r_c^3\right)$ (standard notations).

Proof. Prove easily that $(16R-5r)\left(4R^2+4Rr+3r^2\right)\le (4R+r)^3\iff r(R-2r)^2\ge 0\ .$ Hence $r_a+r_b+r_c=4R+r$ and $(4R+r)^3=\left(r_a+r_b+r_c\right)^3\le 9\left(r_a^3+r_b^3+r_c^3\right)\ .$


P20 (Nguyễn Đăng Khoa, Vietnam). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and the midpoint $M$ of the side $[AB]\ .$ Suppose that $b+c=3a\ .$ Prove that $IM\perp IB\ .$

Proof. $b+c=3a\iff a+b+c=4a\iff 2s=4a\iff \boxed{\ s=2a\ }\ (*)\ 
 .$ Therefore, $\frac {AI}{AI_a}=\frac {s-a}s\ \stackrel{(*)}{=}$

$\frac a{2a}=\frac 12=\frac {AM}{AB}\implies$ $\frac {AI}{AI_a}=\frac {AM}{AB}\implies$ $\boxed{\  I_aB\parallel IM\ }\ .$ Since $IB\perp BI_a$ and $IM\parallel  BI_a$ obtain that $IB\perp IM\ .$



P21 (Carlos Olivera Diaz). Let $A\mathrm{-right}\ \triangle ABC$ and two mobile points $M\in (AB)$ and $N\in (AC)$ so that $\boxed{\frac {BM}{BA}+\frac {CN}{CA}=1}\ .$ Ascertain the minimum value of the segment $[MN]\ .$

Proof. Denote $AM=x\in (0,c]\ ,$ i.e. $BM=c-x$ and $AN=y\in (0,b]\ ,$ i.e. $CN=b-y\ .$ Hence $\frac {c-x}c+\frac {b-y}b=1\iff\frac xc+\frac yb=1\iff \boxed{\ bx+cy=bc\ }\ .$ Apply the

C.B.S. inequality $:\ (bc)^2=\left(bx+cy\right)^2\le \left(b^2+c^2\right)\left(x^2+y^2\right)=a^2\cdot MN^2$ $\implies$ $\boxed{\ MN\ge \frac {bc}a\ }$ and $MN=\frac {bc}a\iff$ $\frac xb=\frac yc\iff$ $\frac {bx}{b^2}=\frac {cy}{c^2}=\frac {bx+cy}{b^2+c^2}=\frac {bc}{a^2}=\frac ha\ ,$ where $h=\frac {bc}a\ .$



P22 (Dung Nguyen Tien, Vietnam). Let $\triangle\ ABC$ with the excircles $w_b\
 ,$ $w_c$ and the incircle $I\ .$ Denote $E\in AI\cap BC\ ,$ $D\in AB\cap w_c$

and $F\in AC\cap w_b\ .$ Prove that the implication $:\ ADEF$ is cyclic $\implies b+c=\phi\cdot a\ ,$ where $\phi =\frac {1+\sqrt 5}2$ (golden ratio).


Proof. Observe that $\left\{\begin{array}{ccc}
DB=s-a & ; & DA=s-b\\\\
FC=s-a & ; & FA=s-c\end{array}\right\|$ and $\frac {EB}c=\frac {EC}b=\frac a{b+c}\ .$ Denote $\{E,K\}=BC\cap w\ ,$ where $w$ is the circumcircle of $ADEF\ .$ I"ll apply the power of the points $\{B,C\}$

w.r.t. $w\ :\ \left\{\begin{array}{ccc}
BA\cdot BD=BE\cdot BK & \implies & c(s-a)=\frac {ac}{b+c}\cdot BK\\\\
CA\cdot CF=CE\cdot CK & \implies & b(s-a)=\frac {ab}{b+c}\cdot CK\end{array}\right\|$ $\implies$ $KB=KC=\frac a2\ .$ Thus, $\cancel c(s-a)=\frac {a\cancel c}{b+c}\cdot\frac a2$ $\implies$ $2(s-a)(b+c)=a^2\implies (b+c)[(b+c)-a]=a^2$ $\implies$

$(b+c)^2-a(b+c)-a^2=0$ $\implies$ $\left(\phi a\right)^2-\phi a^2-a^2=0$ $\implies$ $a^2\left(\phi ^2-\phi-1\right)=0$ $\implies$ $\phi ^2-\phi-1=0$ $\implies$ $\boxed{\ \phi=\frac {1+\sqrt 5}2\ }\ .$ In conclusion, $b+c=\phi\cdot a\ ,$ where $\phi =\frac {1+\sqrt 5}2\ .$



P23 (Ercole SUPPA, Italy).

Proof. Suppose w.l.o.g. $AB=2\ ,$ i.e. $MB=MC=1\ .$ Let $:$ the midpoint $N$ of $[AD]\ ,$ i.e. $ON=R\ ,$ $OM=2-R\ ;$ the incircle $\Omega=\mathbb C(O,R)$ of $\triangle AMD$ and the incircle $w=\mathbb C(I,r)$ of $\triangle CDM.$

Apply the theorem of the $A$-bisector in $\triangle MAN\ :\ \frac {OM}{AM}=\frac {ON}{AN}\iff$ $\frac {2-R}{\sqrt 5}=\frac R1=$ $\frac 2{1+\sqrt 5}=$ $\frac {\sqrt 5-1}2\iff \boxed{\ R=\frac {\sqrt 5-1}2\ }\ .$ Apply the well known identity $2r=CM+CD-MD$

in the $C$-right $\triangle MCD\ ,$ i.e. $2r=1+2-\sqrt 5\iff \boxed{\ r=\frac {3-\sqrt 5}2\ }\ .$ In conclusion, $\frac Rr=\frac{\sqrt 5 -1}{3-\sqrt 5}=$ $\frac {\left(\sqrt 5-1\right)\left(3+\sqrt 5\right)}4=$ $\frac{2\left(\sqrt 5+1\right)}4=\frac{1+\sqrt 5}2\implies$ $\boxed{\ \frac Rr=\frac {1+\sqrt5}2\ }\ .$



P24 (Problem 733, SANGAKU).

Proof.


P25 (Ercole SUPPA, Italy).

Proof.


P26 (Valentin VORNICU). It is known that $ \angle BAC$ is the smallest angle in the triangle $ ABC$. The points $ B$ and $ C$ divide the circumcircle

of the triangle into two arcs. Let $ U$ be an interior point of the arc between $ B$ and $ C$ which does not contain $ A$. The perpendicular bisectors

of $ AB$ and $ AC$ meet the line $ AU$ at $ V$ and $ W$, respectively. The lines $ BV$ and $ CW$ meet at $ T$. Show that $ AU = TB + TC$.

Alternative formulation: Four different points $ A,B,C,D$ are chosen on a circle $ \Gamma$ such that the triangle $ BCD$ is not right-angled. Prove that:

(a) The perpendicular bisectors of $ AB$ and $ AC$ meet $ AD$ at certain $ W$ and $ V,$ respectively, and that $ CV$ and $ BW$ meet at a certain $ T.$

(b) The length of one of the line segments $ AD, BT,$ and $ CT$ is the sum of the lengths of the other two.


Proof. $x=m(\widehat {BAU})\ ,\ y=m(\widehat {CAU})\implies  m(\widehat {BTC})=2(x+y)=2A$ and $\frac{TB}{\sin (C-y)}=\frac{TC}{\sin (B-x)}=\frac{a}{\sin 2A}=\frac{R}{\cos A}.$

In conclusion, $TB+TC=\frac{R}{\cos A}\cdot [\sin (B-x)+\sin (C-y)]=$ $=2R\cdot \cos \frac{B-C-x+y}{2}=2R\sin (C+x)=AU.$
This post has been edited 495 times. Last edited by Virgil Nicula, May 23, 2018, 9:03 AM

459.Working page V.

by Virgil Nicula, Sep 27, 2017, 11:57 AM

Geometry test for $\mathrm{IX}^{th}$ class.

P0. $\ \boxed{\ \mathrm{Let\ an\ acute}\ \triangle\ ABC,\ \mathrm{its\ circumcircle}\ w=\mathbb C(O,R)\ \mathrm{and\   the\ intersections}\ \left\{\begin{array}{c}
D\in BC\cap AO\\\
E\in CA\cap BO\\\
F\in AB\cap CO\end{array}\right\|\ .\ \mathrm{Prove\ that}\ \frac {1}{AD}+\frac {1}{BE}+\frac{1}{CF}=\frac 2R\ .\ }$

Proof. Observe that $\frac {AD}{\sin B}=\frac c{\cos (B-C)}\iff$ $AD=\frac {c\sin B}{\cos (B-C)}\iff$ $AD=\frac {2R\sin B\sin C}{\cos (B-C)}\iff$ $\frac 1{AD}=\frac {\cos (B-C)}{2R\sin B\cdot \sin C}\implies$ $\underline{\underline{\sum\frac 1{AD}}}=\frac 1{2R}\cdot\sum\frac {\cos B\cos C+\sin B\sin C}{\sin B\sin C}=$

$\frac 1{2R}\cdot \sum\left(\cot B\cot C+1\right)=\frac 1{2R}\cdot (1+3)=\frac 4{2R}=\underline{\underline{\frac 2R}}\implies$ $\frac {1}{AD}+\frac {1}{BE}+\frac{1}{CF}=\frac 2R\ .$ Remark. $c\cdot\sin B=h_a=AD\cos (B-C)\implies$ $ \frac 1{AD}=$ $\frac {\cos (B-C)}{c\sin B}=$ $\frac 1{2R}\cdot \frac{\cos (B-C)}{\sin B\sin C}$ a.s.o.



P1 (Thanos Kalogerakis). Let an $A$-isosceles $\triangle\ ABC\ ,$ where denote the midpoint $M$ of $[AB]\ ,$ the midpoint $N$ of $[CM]$ and $D\in BN\cap AC\ ,$ where $DN=DC\ .$ Find the ratio $\frac {AB}{BC}\ .$

Proof.

P2 (Matu BARCENA). Let an $B$-isosceles $\triangle\ ABC$ and $D\in BC\ .$ Construct an $B$-isosceles $\triangle\ BDE$ so that $BC$ separates $\{A,E\}$ and $\widehat{BAC}\equiv\widehat{BDE}\ .$ Prove that $AD=CE\ .$

Proof 1 (synthetic). Observe that $\widehat{ABD}\equiv \widehat {CBE}$ and $\left\{\begin{array}{ccc}
BA & = & BC\\\
BD & = & BE\end{array}\right\|\implies$ $\triangle ABD\equiv\triangle CBE\implies AD=CE\ .$

Proof 2 (metric). Denote $BA=BC=a\ ,$ $BD=BE=b$ and $m\left(\widehat{ABC}\right)=m\left(\widehat{CBE}\right)=\phi\ .$ Observe that $DC=a-b$ and $AC^2=2a^2-2a^2\cos\phi =4a^2\sin^2\frac {\phi}2\ .$ Apply the Stewart's

theorem
to the cevian $AD/\triangle ABC\ :\ a\cdot AD^2+ab(a-b)=$ $a^2(a-b)+b\cdot AC^2\iff$ $\cancel a\cdot AD^2+\cancel ab(a-b)=$ $a\cancel{^2}(a-b)+4a\cancel{^2}b\sin^2\frac {\phi}2\iff$ $\boxed{\ AD^2=(a-b)^2+4ab\sin\frac{\phi}2\ }\ (1)\ .$

Apply the generalized Pythagoras' theorem to the side $[CE]/\triangle ABC\ :\  CE^2=$ $a^2+b^2-2ab\cos\phi =$ $a^2+b^2-2ab\left(1-2\sin^2\frac {\phi}2\right)=$ $(a-b)^2+4ab\sin^2\frac {\phi}2\implies$

$\boxed{\ CE^2=(a-b)^2+4ab\sin^2\frac {\phi}2\ }\ (2)\ .$ From the relations $(1\wedge 2)$ obtain that $AD=CE=\sqrt{(a-b)^2+4ab\sin^2\frac {\phi}2}\ .$ Remark. $\phi =60^{\circ}\implies$ $AD=CE=\sqrt {a^2-ab+b^2}\ .$


P3 (Matu BARCENA). Let $\triangle\ ABC$ and $D\in (AC)$ so that $m\left(\widehat{ADB}\right)=3x\ ,$ $m\left(\widehat{ABD}\right)=6x$ and $m\left(\widehat{DBC}\right)=x\ .$ Prove that $C=30^{\circ}\ .$


Proof 1. Observe that $C=3x-x\ ,$ i.e. $\boxed{\ C=2x\ }\ (*)\ .$ $\frac {\sin 3x}{\sin 2x}=\frac {BC}{BD}=\frac {AD}{BD}=\frac {\sin 6x}{\sin 9x}\implies$ $\frac {\sin 3x}{\sin 2x}=\frac {\sin 6x}{\sin 9x}\implies$ $\frac 1{\sin 2x}=\frac {2\cos 3x}{\sin 9x}\iff$

$\sin 9x=\sin 5x-\sin x\iff$ $\sin 9x+\sin x=\sin 5x\iff$ $2\sin 5x\cos 4x=\sin 5x\iff$ $\cos 4x=\frac 12\iff$ $4x=\frac {\pi}3\iff$ $x=\frac {\pi}{12}\ \stackrel{(*)}{=}\ \boxed{\ C=30^{\circ}\ }\ .$

Proof 2.



P4 (Iulian Cristi). $(\forall )\ \{a,b,c,d\}\subset \mathbb R^*_+$ there is the inequality $\frac a{b+c+d}+\frac b{a+c+d}+\frac c{a+b+d}+\frac d{a+b+c}\ge \frac 43\ .$

Proof 1. $\sum\frac a{b+c+d}=$ $\sum\left(\frac {a+b+c+d}{b+c+d}-1\right)=$ $\sum a\cdot\sum\frac 1{b+c+d}-4\ge $ $\sum a\cdot\frac {4^2}{\sum (b+c+d)}-4=$ $\cancel{\sum a}\cdot\frac {16}{3\cancel{\sum a}}-4=$ $\frac {16}3-4=\frac 43\implies$ $\boxed{\ \sum\frac a{b+c+d}\ge \frac 43\ }\ .$

Proof 2. Let $\boxed{\ a+b+c+d=s\ }\ .$ Apply the Chebyshev's inequality $(a+b+c+d)^2\le 4\cdot\left(a^2+b^2+c^2+d^2\right)\ ,$ i.e. $\boxed{\ \left(\sum a\right)^2\le 4\cdot\sum a^2\ }\ (*)$

and the C.B.S - inequality $:\ \sum\frac a{b+c+d}=$ $\sum\frac {a^2}{a(s-a)}\ \stackrel{(C.B.S)}{\ge}\ \frac {\left(\sum a\right)^2}{\sum a(s-a)}=$ $\frac {s^2}{s^2-\sum a^2}\ \stackrel{(*)}{\ge}\ \frac {s^2}{s^2-\frac{s^2}4}=\frac 43\implies$ $\boxed{\ \sum\frac a{b+c+d}\ge \frac 43\ }\ .$



P5 (2003 China Girls Mathematics Olympiad) (<= click). Let $\triangle ABC\ ,\ b\ne c$ and its incircle $w=\mathbb C(I,r)\ .$ Denote $D\in AI\cap (BC)\ ,$ $E\in BI\cap (CA)$ and

$F\in CI\cap (AB)\ .$ Prove that $:\ DE=DF\iff$ $\frac a{b+c}=\frac b{c+a}+\frac c{a+b}\ ;\ m\left(\widehat{BAC}\right)>90^{\circ}\ ;$ find the value of the angle $\widehat{ACB}$ if we know that $B=2C\ .$


Proof. $\left\{\begin{array}{ccccc}
D\in (BC) & \implies & \frac {DB}c=\frac {DC}b=\frac a{b+c}\\\\
E\in (CA) & \implies & \frac {EC}a=\frac {EA}c=\frac b{c+a}\\\\
F\in (AB) & \implies & \frac {FA}b=\frac {FB}a=\frac c{a+b}\end{array}\right\|\ (*).$ Applly Stewart's relation to the cevians $:\ \left\{\begin{array}{ccccc}
F/\triangle BFC\ : & a\cdot FD^2+a\cdot DB\cdot DC & = & DC\cdot FB^2+DB\cdot FC^2\\\\
E/\triangle BEC\ : & a\cdot ED^2+a\cdot DB\cdot DC & = & DB\cdot EC^2+DC\cdot EB^2\end{array}\right\|\ominus\implies$

$a\cdot\left(FD^2-ED^2\right)=\left(DC\cdot FB^2+DB\cdot FC^2\right)-\left(DB\cdot EC^2+DC\cdot EB^2\right)\ .$ Therefore, $DF=DE\iff$ $DC\cdot FB^2+DB\cdot FC^2=DB\cdot EC^2+DC\cdot EB^2\iff$

$\cancel b\cdot \frac {a\cancel{^2}c\cancel{^2}}{(a+b)^2}+\cancel c\cdot\frac {4\cancel{ab}s(s-c)}{(a+b)^2}=\cancel c\cdot\frac {a\cancel{^2}b\cancel{^2}}{(a+c)^2}+\cancel b\cdot\frac {4\cancel{ac}s(s-b)}{(a+c)^2}\iff$ $\frac {ac+4s(s-c)}{(a+b)^2}=\frac {ab+4s(s-b)}{(a+c)^2}\iff$ $\frac {ac+(a+b)^2-c^2}{(a+b)^2}=\frac {ab+(a+c)^2-b^2}{(a+c)^2}\iff$

$\cancel 1+\frac {ac-c^2}{(a+b)^2}=\cancel 1+\frac {ab-b^2}{(a+c)^2}\iff$ $\frac {c(a-c)}{(a+b)^2}=\frac {b(a-b)}{(a+c)^2}\iff$ $c(a+c)\left(a^2-c^2\right)=b(a+b)\left(a^2-b^2\right)\iff$ $c\left(a^3+ca^2-c^2a-c^3\right)=b\left(a^3+ba^2-b^2a-b^3\right)\iff$

$a^3(b-c)+a^2\left(b^2-c^2\right)=$ $a\left(b^3-c^3\right)+\left(b^4-c^4\right)\iff$ $a^3+a^2(b+c)=a\left(b^2+bc+c^2\right)+(b+c)\left(b^2+c^2\right)\iff$ $a^2(a+b+c)=\left(b^2+c^2\right)(a+b+c)+(b+c)+abc\iff$

$(a+b+c)\left(a^2-b^2-c^2\right)=abc\ .$ In conclusion, $\boxed{\ DF=DE\iff (a+b+c)\left(a^2-b^2-c^2\right)=abc\ }$ and $a^2-b^2-c^2\ge 0\implies$ $m\left(\widehat{BAC}\right)>90^{\circ}\ .$ Prove easily that

$\boxed{\ \frac a{b+c}=\frac b{c+a}+\frac c{a+b}\iff (a+b+c)\left(a^2-b^2-c^2\right)=abc\ }\ (1)\ .$ Remark. $\left\{\begin{array}{cccc}
\triangle AFD\ : & \frac {DF}{\sin \frac A2} & = & \frac {AD}{\sin\widehat{AFD}}\\\\
\triangle AED\ : & \frac {DE}{\sin\frac A2} & = & \frac {AD}{\sin\widehat{AED}}\end{array}\right\|\ \stackrel{DF=DE}{\iff}\ \sin\widehat{AFD}\equiv \sin\widehat{AED}\iff$

$\widehat{AFD}=\widehat{AED}\ \vee\ \widehat{AFD}+\widehat{AED}=180\ ,$ i.e. $AEDF$ is cyclic a.s.o. Is well-known that $B=2C\iff b^2=c(c+a)\ ,$ i.e. $\frac a{\sin 3C}=\frac b{\sin 2C}=\frac c{\sin C}.$ Can use $(1)$ a.s.o. Very nice problem!



P6 (Ashok Kumar Govsa). Find the product $abc\ ,$ if $\frac {\log a}{b-c}=\frac {\log b}{c-a}=\frac {\log c}{a-b}\ .$

Proof. Exists $k\in\mathbb R^*$ so that $\frac {\log a}{b-c}=\frac {\log b}{c-a}=\frac {\log c}{a-b}=k\ ,$ i.e. $\log (abc)=\log a+\log b+\log c=k[(b-c)+(c-a)+(a-b)]=0$ $\implies$ $\log (abc)=0\implies$ $abc=10^0\implies$ $\boxed{\ abc=1\ }\ .$


P7 (Van Khea, Cambodia). Let an acute $\triangle ABC$ with circumcircle $w=\mathbb C(O,R)$ and $\{D,E,F\}\subset w$ so that $O\in AD\cap BE\cap CF\ .$ Prove $\boxed{\frac {DB\cdot DC}{AB\cdot AC}+\frac {EC\cdot EA}{BC\cdot BA}+\frac {FA\cdot FB}{CA\cdot CB}=1}\ (*)\ .$

Proof. Is well-known that the quadrilaterals $HBDC\ ,$ $HCEA$ and $HAFB$ are parallelograms, where $H$ is the orthocenter of $\triangle ABC\ .$ Therefore, $\frac {DB\cdot DC}{AB\cdot AC}=$ $\frac {DB\cdot DC\cdot\sin\widehat{BDC}}{AB\cdot AC\cdot\sin\widehat{BAC}}=$

$\frac {[BDC]}{[BAC]}=$ $\frac {[BHC]}{[BAC]}=$ $\frac {[BHC]}S=$ $\frac 1S\cdot [BHC]\implies$ $\frac {DB\cdot DC}{AB\cdot AC}=$ $\frac 1S\cdot [BHC]\implies$ $\sum \frac {DB\cdot DC}{AB\cdot AC}=$ $\frac 1S\cdot\sum [BHC]=$ $\frac 1S\cdot S=1\ .$ Remark. Can apply the well-known property from
here.


P8 (Emil Stoyanov). Let $P$ be the interior point of $\triangle ABC$ for which $\widehat{AFE}\equiv\widehat{BFD}$ and $\widehat{AEF}\equiv\widehat{CED}\ .$ Prove that $P\equiv H$ what is the orthocenter of $\triangle ABC\ .$

Proof 1. Construct the points $:\ \left|\begin{array}{ccc}
X\in EF\ ,\ Y\in ED & ; & B\in (XY)\ ,\ XY\parallel AC\\\\
U\in FE\ ,\ V\in FD & ; & C\in (UV)\ ,\ UV\parallel AB\end{array}\right|\ .$ Observe that $\left\{\begin{array}{ccc}
\widehat{AFE}\equiv\widehat{BFD}\implies\widehat{FUV}\equiv\widehat{FVU} & \implies & \triangle\ UFV\ \mathrm{is}\ F-\mathrm{isosceles}\\\\
\widehat{AEF}\equiv\widehat{CED}\implies\widehat{EXY}\equiv\widehat{EYX} & \implies & \triangle\ XEY\ \mathrm{is}\ E-\mathrm{isosceles}\end{array}\right\|\ .$

Therefore, $P\in AD\cap BE\cap CF\iff$ $\frac {DB}{DC}\cdot \frac {EC}{EA}\cdot\frac {FA}{FB}=1\implies$ $\left\{\begin{array}{ccccc}
\frac {BY}{\cancel{CE}}\cdot \frac {\cancel{EC}}{\cancel{EA}}\cdot \frac {\cancel{AE}}{BX}=1 \implies & BY=BX \implies EB\perp XY  & \implies & BE\perp AC \implies P\in BH\\\\
\frac {\cancel{FB}}{CV}\cdot \frac {CU}{\cancel{FA}}\cdot \frac {\cancel{FA}}{\cancel{FB}}=1 \implies & CU=CV\implies FC\perp UV & \implies & CF\perp AB \implies P\in CH\end{array}\right\|\implies P\equiv H\ .$

Proof 2. Denote $\left\{\begin{array}{ccccc}
m\left(\widehat{CED}\right) & = & m\left(\widehat{AEF}\right) & = & y\\\\
m\left(\widehat{AFE}\right) & = & m\left(\widehat{BFD}\right) & = & z\end{array}\right\|$ and apply the theorem of SINES in the triangles $:\ \left\{\begin{array}{cccc}
\triangle BDF\ : & \frac {BD}{BF} & = & \frac {\sin z}{\sin (B+z)}\\\\
\triangle CED\ : & \frac {CE}{CD} & = & \frac {\sin (C+y)}{\sin y}\\\\
\triangle AFE\ : & \frac {AF}{AE} & = & \frac {\sin y}{\sin z}\end{array}\right\|\bigodot\implies$ $\frac {BD}{BF}\cdot\frac {CE}{CD}\cdot\frac {AF}{AE}=$ $\frac {\sin (C+y)}{\sin (B+z)}\ .$

Observe that $P\in AD\cap BE\cap CF\iff$ $1=\frac {DB}{DC}\cdot \frac {EC}{EA}\cdot \frac {FA}{FB}=$ $\frac {BD}{BF}\cdot\frac {CE}{CD}\cdot\frac {AF}{AE}=$ $\frac {\sin (C+y)}{\sin (B+z)}\iff$ $\frac {\sin (C+y)}{\sin (B+z)}=1\iff$ $\sin (C+y)=\sin (B+z)\iff$ $\boxed{C+y=B+z=x}\ (*)\ .$

Let $U\in DF$ and $V\in DE$ so that $A\in UV$ and $UV\parallel BC\ .$ Prove easily $\triangle UDV$ is $D$-isosceles and $1=\frac {DB}{DC}\cdot \frac {EC}{EA}\cdot \frac {FA}{FB}=$ $\frac {\cancel{DB}}{\cancel{DC}}\cdot \frac {\cancel{DC}}{AV}\cdot\frac {AU}{\cancel{DB}}=$ $\frac {AU}{AV}\iff$ $AU=AV$ $\iff$ $A$ is the midpoint

of $[UV]$ in $D$-isosceles $\triangle UDV\iff$ $AD\perp UV\parallel BC\implies AD\perp BC\ .$ In conclusion, $A+y+z=B+z+x=C+x+y=x+y+z=180^{\circ}\iff$ $x=A\ ,\ y=B\ ,\ z=C$ a.s.o.



P9. Prove that $(\forall )\ \triangle ABC$ there is the following inequality $:\ \frac {a(b+c)}{s-a}+\frac {b(c+a)}{s-b}+\frac {c(a+b)}{s-c}\ge 12R\sqrt 3$ (standard notations).

Proof. $\sum\frac {a(b+c)}{s-a}=$ $\sum\frac {s^2-(s-a)^2}{s-a}=$ $s^2\cdot \sum\frac 1{s-a}-\sum (s-a)=$ $s^2\cdot\sum\frac {r_a}{r_a(s-a)}-s=$ $s^2\cdot\sum\frac {r_a}{sr}-s=$

$\frac sr\cdot \sum r_a-s=$ $\frac sr\cdot (4R+r)-s=$ $\frac {4R}r\cdot s\ge$ $ \frac {4R}r\cdot 3r\sqrt 3=12R\sqrt 3$ $\implies$ $\sum\frac {a(b+c)}{s-a}\ge 12R\sqrt 3\ .$



P10. Let $ABCD$ be a tangential quadrilateral with the incircle $w=\mathbb C(I,r)$ what touches $w$ at $X\in (AB)\ ,$ $Y\in (BC)\ ,$ $Z\in (CD)$ and $T\in (DA)\ .$ Denote $\left\{\begin{array}{ccccc}
AX & = & AT & = & a\\\
BY & = & BX & = & b\\\
CZ & = & CY & = & c\\\
DT & = & DZ & = & d\end{array}\right\|\ .$

Prove that $\boxed{\ r^2=\frac {ab(c+d)+cd(a+b)}{(a+b)+(c+d)}\ }\ (*)$ and the equivalence $(IA+ID)^2+(IB+IC)^2=(AB+CD)^2\iff ABCD\ \mathrm{is\ an\ isosceles\ trapezoid}\ .$


Proof. Observe that $\left\{\begin{array}{ccc}
AB=a+b & ; & BC=b+c\\\\
CD=c+d & ; & DA=d+a\end{array}\right\|$ and $\left\{\begin{array}{ccc}
\tan\frac A2=\frac ra & ; & \tan\frac B2=\frac rb\\\\
\tan\frac C2=\frac rc & ; & \tan \frac D2=\frac rd\end{array}\right\|\ .$ Hence $A+B+C+D=360^{\circ}\iff$ $\frac {A+B}2+\frac {C+D}2=180^{\circ}\iff$

$\tan\frac {A+B}2+\tan\frac {C+D}2=0\iff$ $\frac {\frac {\cancel r}a+\frac {\cancel r}b}{1-\frac {r^2}{ab}}+\frac {\frac {\cancel r}c+\frac {\cancel r}d}{1-\frac {r^2}{cd}}=0\iff$ $\frac {a+b}{ab-r^2}+\frac {c+d}{cd-r^2}=0\iff$ $(a+b)\left(cd-r^2\right)+(c+d)\left(ab-r^2\right)=0\iff$ $r^2=\frac {ab(c+d)+cd(a+b)}{(a+b)+(c+d)}\ .$



P11. Prove that $(\forall )\ \triangle ABC$ there is the following identity: $\boxed{\ \frac {a^2}{r_a}+\frac {b^2}{r_b}+\frac {c^2}{r_c}=4(R+r)\ }$ (standard notation). Remark. $12r\le \frac {a^2}{r_a}+\frac {b^2}{r_b}+\frac {c^2}{r_c}\le 6R\ .$

Proof 1. $\left\{\begin{array}{ccccc}
\sum a^2=2\left(s^2-r^2-4Rr\right) & (1)\\\\
\sum a^3=2s\left(s^2-3r^2-6Rr\right) & (2)\end{array}\right\|$ $\implies$ $\sum \frac {a^2}{r_a}=$ $\sum\frac{a^2(s-a)}{sr}=$ $\frac 1{sr}\cdot \left(s\cdot\sum a^2-\sum a^3\right)\ \stackrel{1\wedge 2}{=}$ $\frac 1{sr}\cdot \left[2s\left(s^2-r^2-4Rr\right)-2s\left(s^2-3r^2-6Rr\right)\right]=$

$\frac 2r\cdot\left[\left(\cancel{s^2}-r^2-4Rr\right)-\left(\cancel{s^2}-3r^2-6Rr\right)\right]=$ $\frac 2r\cdot \left(2r^2+2Rr\right)=4(R+r)\implies$ $\boxed{\sum\frac {a^2}{r_a}=4(R+r)}\ .$ Remark. Observe that $\sum\frac {a^2}{6r_a}=\frac{2(R+r)}3\in [2r,R]\ .$

Proof 2. $\left\{\begin{array}{ccccc}
x=s-a & \implies & a=y+z & \implies & x+y+z=s\\\\
y=s-b & \implies & b=z+x & \implies & xy+yz+zx=r(4R+r)\\\\
z=s-c & \implies & c=x+y & \implies & xyz=sr^2\end{array}\right\|\ (*)\ \implies$ $S\cdot \sum \frac {a^2}{r_a}=$ $\sum a^2(s-a)\ \stackrel{(*)}{=}\ \sum x(y+z)^2=$ $\sum \left[x\left(y^2+z^2\right)+2xyz\right]=$

$6xyz+\sum yz[(y+z)=$ $6xyz+\sum yz[(x+y+z)-x]=$ $\sum x\cdot\sum yz+3xyz\ \stackrel{(*)}{=}\ s\cdot r(4R+r)+3sr^2=$ $4sr(R+r)$ $\implies$ $\cancel S\cdot \sum\frac{a^2}{r_a}=$ $4\cancel{sr}(R+r)$ $\implies$ $\sum\frac {a^2}{r_a}=4(R+r)\ .$



P12. Let $ABC$ be an $A$-rightangled triangle with the inradius $r,$ $B$-exradius $r_b$ and $C$-exradius $r_c.$ Prove that $\left(cr+br_b\right)\cdot\left(br+cr_c\right)=a^2\cdot S\ ,$ where $S$ is the area of $\triangle ABC\ .$

Proof. $\left(cr+br_b\right)\left(br+cr_c\right)=$ $bc\left(r^2+r_br_c\right)+r\left(b^2r_b+c^2r_c\right)=$ $bc\left(r^2+rr_a\right)+r\left[b^2(s-c)+c^2(s-b)\right]=$ $r\left[bc\left(r+r_a\right)+b^2(\underline s-c)+c^2(\underline s-b)\right]=$

$r\left[\cancel{bc\left(b+c\right)}+sa^2-\cancel{bc(b+c)}\right]=$$a^2sr=a^2S.$ I used the following identities in any $A$-right $\triangle ABC\ :\ \left\{\begin{array}{ccc}
r=s-a & ; & r_a=s\\\
r_b=s-c & ; & r_c=s-b\end{array}\right\|\ .$



P13. Let an acute $\triangle ABC,$ its circumcircle $w=\mathbb C(O,R)$ and the intersections $\left\{\begin{array}{c}
D\in BC\cap AO\\\
E\in CA\cap BO\\\
F\in AB\cap CO\end{array}\right\|.$ Prove that $\frac {1}{AD}+\frac {1}{BE}+\frac{1}{CF}=\frac 2R$

Proof 1. Observe that $h_a=b\sin C=2R\sin B\sin C$ and $m\left(\widehat{PAD}\right)=|B-C|.$ Thus, $h_a=AD\cdot \cos (B-C)\implies$ $2R\sin B\sin C=$

$AD\cdot \cos (B-C)\implies$ $\frac {2R}{AD}=\frac {\cos (B-C)}{\sin B\sin C}=$ $1+\cot B\cot C\implies$ $2R\cdot\sum \frac 1{AD}=\sum (1+\cot B\cot C)=4$ $\implies$ $\boxed{\frac 1{AD}+\frac 1{BE}+\frac 1{CF}=\frac 2R}\ (*)\ .$

Proof 2. Apply the theorem of Sines in $\triangle ADC\ :\ \frac {AD}{\sin C}=\frac {AC}{\sin \widehat{ADC}}\iff$ $\frac {AD}{\sin C}=$ $\frac b{\cos(B-C)}\iff$ $\frac {2R}{AD}=\frac {\cos(B-C)}{\sin B\sin C}$ a.s.o. In conclusion, $2R\cdot \sum \frac 1{AD}=$

$\sum \frac {\cos(B-C)}{\sin B\sin C}=$ $\sum\frac {\cos B\cos C+\sin B\sin C}{\sin B\sin C}=$ $\sum\left(\cot B\cot C+1\right)=4\implies$ $2R\cdot \sum \frac 1{AD}=4\implies$ $\sum\frac 1{AD}=\frac 2R\ ,$ i.e. $\boxed{\frac 1{AD}+\frac 1{BE}+\frac 1{CF}=\frac 2R}\ (*)\ .$

Proof 3. Let circumcircle $w=\mathbb C(O,R)$ and $\left\{\begin{array}{ccc}
\{A,X\}=\{A,O\}\cap w\\\\
\{B,Y\}=\{B,O\}\cap w\\\\
\{C,Z\}=\{C,O\}\cap w\end{array}\right\|\ .$ Thus, $\frac {2R}{AD}=\frac {AX}{AD}=$ $\frac{AD+DX}{AD}=$ $1+\frac {DX}{DA}=1+\frac {XB\cdot XC}{AB\cdot AC}=$

$1+\cot C\cot B\implies$ $\sum\frac {2R}{AD}=\sum\left(1+\cot C\cot B\right)=3+\sum \cot C\cot B=4\implies$ $\boxed{\frac 1{AD}+\frac 1{BE}+\frac 1{CF}=\frac 2R}\ (*)\ .$

Remark. I used two well-known identities $:\ \boxed{\sum\cot B\cot C=1}\ (1)$ and the remarkable property PP1 from
here.

Proof 4. $2S=BC\cdot AD\cdot\sin \widehat{ADB}=$ $a\cdot AD\cdot \cos (B-C)=$ $AD\cdot 2R\sin A\cos (B-C)=$ $AD\cdot 2R\sin (B+C)\cos (B-C)=$ $R\cdot AD\cdot (\sin 2B+\sin 2C)\implies$

$2S=R\cdot AD\cdot (\sin 2B+\sin 2C)\implies$ $\frac 1{AD}=\frac {R(\sin 2B+\sin 2C)}{2S}\implies$ $\sum\frac 1{AD}=\frac {\cancel 2R\cdot\sum\sin 2A}{\cancel 2S}=$ $\frac {4\cancel R\prod\sin A}{2R\cancel{^2}\prod\sin A}=\frac 2R\implies$ $\boxed{\frac 1{AD}+\frac 1{BE}+\frac 1{CF}=\frac 2R}\ (*)\ .$

Proof 5. Denote the orthocenter $H$ of $\triangle\ ABC\ ,$ $P\in AH\cap BC\ ,$ $\{A,S\}=w\cap AO$ and $\{A,Q\}=w\cap AH\ .$ Thus, $\frac {2R}{AD}=\frac {AS}{AD}=\frac {AQ}{AP}=$ $\frac {h_a+HP}{h_a}=$

$1+\frac {HP}{h_a}\implies$ $2R\cdot\sum\frac 1{AD}=3+\sum\frac {a\cdot HP}{a\cdot h_a}=$ $3+\sum\frac {[BHC]}{[BAC]}=4\implies$ $2R\cdot\sum\frac 1{AD}=4\implies$ $\sum\frac 1{AD}=\frac 4{2R}\implies$ $\sum \frac 1{AD}=\frac 2R\ .$



P14 (George APOSTOLOPOULOS, Greece). Prove that $(\forall )\ \triangle\ ABC$ there is the following inequality $\frac 1{r^3}\ge \frac 1{r_a^3}+\frac 1{r_b^3}+\frac 1{r_c^3}+\frac {64}{9R^3}$ (standard notations).

Proof. $\left\{\begin{array}{ccc}
3R\sqrt 3 & \ge & 2s\\\\
R & \ge & 2r\end{array}\right\|\bigodot\implies $ $3R^2\sqrt 3\ge 4S\implies$ $27R^4\ge 16S^2\implies $ $\frac {3R}{S^2}\ge \frac {16}{9R^3}\implies$ $\boxed{\ \frac {12R}{S^2}\ge \frac {64}{9R^3}}\ (*)\ .$ I"ll use an well-known identities $:\ \left\{\begin{array}{ccc}
r_a+r_b+r_c & = & 4R+r\\\\
r_ar_b+r_br_c+r_cr_a & = & s^2\\\\
rr_ar_br_c & = & S^2\end{array}\right|\ ;$

$\left\{\begin{array}{ccc}
\frac 1{r_a}+\frac 1{r_b}+\frac 1{r_c} & = & \frac 1r\\\\
\frac 1{r_ar_b}+\frac 1{r_br_c}+\frac 1{r_cr_a} & = & \frac{r(4R+r)}{S^2}\end{array}\right|\ ;\ \boxed{\ (x+y+z)^3-\left(x^3+y^3+z^3\right)=3(x+y+z)(xy+yz+zx)-3xyz\ }\ ,$ where $\{x,y,z\}=\left\{\frac 1{r_a},\frac 1{r_b},\frac 1{r_c}\right\}\ .$ Therefore,

$\left(\frac 1{r_a}+\frac 1{r_b}+\frac 1{r_c}\right)^3-\sum\frac 1{r_a^3}=$ $3\cdot\sum\frac 1{r_a}\cdot\sum\frac 1{r_br_c}-3\cdot\prod\frac 1{r_a}\implies$ $\frac 1{r^3}-\sum\frac 1{r_a^3}=3\cdot\frac 1{\cancel{r}}\cdot\frac{\cancel r(4R+r)}{S^2}-\frac{3r}{S^2}=\frac {12R}{S^2}\ \stackrel{(*)}{\ge}\ \frac {64}{9R^3}\implies$ $\frac 1{r^3}-\sum\frac 1{r_a^3}\ge \frac {64}{9R^3}\ ,$ i.e. $\frac 1{r^3}\ge \sum\frac 1{r_a^3}+\frac {64}{9R^3}\ .$



P15 (Adil Abdullayev, Azerbaijan) (<= click =>) here.

Proof 1. Denote $\{A,S\}=AI\cap\Omega\ ,$ where $\Omega$ is the circumcircle of $\triangle\  ABC\ .$ Thus, $\frac a{R_a}=\frac a{SI}=\frac {a\cdot IA}{2Rr}\implies$ $\frac {a^2}{R_a^2}=$ $\frac {a^{\cancel 2}}{\cancel 4R^{\cancel 2}r^{\cancel 2}}\cdot \frac {\cancel{bc}(s-a)}{\cancel s}=$ $\frac {a(s-a)}{Rr}$ $\implies$

$\sum\frac {a^2}{R_a^2}=$ $\frac 1{Rr}\cdot \sum a(s-a)=$ $\frac 1{Rr}\cdot\left(s\sum a-\sum a^2\right)=$ $\frac 1{Rr}\cdot\left[\cancel{2s^2}-2\left(\cancel{s^2}-r^2-4Rr\right)\right]=$ $\frac {2r(4R+r)}{Rr}=8+\frac {2r}R=8+\frac {2r}R\implies$ $\sum\frac {a^2}{R_a^2}=8+\frac {2r}R\ .$

Proof 2. $\frac {a^2}{R_a^2}=\left(\frac {a}{SB}\right)^2\ \stackrel{\triangle BSC}{=}\ \left(\frac {\sin A}{\sin\frac A2}\right)^2=\left(2\cos\frac A2\right)^2=$ $2\cdot 2\cos^2\frac A2=$ $2(1+\cos A)\implies$ $\sum\frac {a^2}{R_a^2}=\sum2(1+\cos A)=6+2\left(1+\frac rR\right)=8+\frac {2r}R\implies$ $\sum\frac {a^2}{R_a^2}=8+\frac {2r}R\ .$



P16 (Adil Abdullayev, Azerbaijan) $\boxed{\ \mathrm{Prove\ that\ for}\ (\forall\ )\ \triangle\ ABC\ \mathrm{there\ is\ the\ inequality}\ a^4+b^4+c^4\ge 16S^2\ .}$

Proof. $\ 3\cdot\sum a^4 \ge \left(\sum a^2\right)^2\ \stackrel{Weitzenbock}{\ge}\ \left(4S\sqrt 3\right)^2=48S^2\implies 3\left(a^4+b^4+c^4\right)\ge 48S^2\implies a^4+b^4+c^4\ge 16S\ .$


P17 (Adil Abdullayev, Azerbaijan) $\boxed{\ \mathrm{Let}\ \triangle ABC\ \mathrm{with\ the\ orthocenter}\ H\ \mathrm{and\ the\ incircle}\ w=\mathbb C(I,r).\ \mathrm{Prove\ that\ the\ equivalence\ :}\ H\in w\iff\tan A+\tan B+\tan C=\frac {2s}r\ }$

Proof. I'll apply the well known identities $\odot\begin{array}{cccccc}
\nearrow & 2R^2\cdot \prod \sin A & = & S & (1) & \searrow\\\\
\rightarrow & 1+\prod\cos A & = & \frac {a^2+b^2+c^2}{8R^2} & (2) & \rightarrow\\\\
\searrow & 4R^2+4Rr+3r^2-s^2 & = & HI^2 & (3) & \nearrow\end{array}\odot$ Indeed, $\underline{\underline{H\in w}}\iff$ $HI=r\iff$ $HI^2=r^2\ \stackrel{(3)}{\iff}\ 4R^2+$ $4Rr+3r^2-s^2=r^2\iff$

$\underline{\underline{s^2=2\left(2R^2+2Rr+r^2\right)}}\ (4)\ .$ On other hand $\sum\tan A=\prod\tan A=\frac {\prod\sin A}{\prod\cos A}\ \stackrel{(1\wedge 2)}{=}\ \frac {\frac S{2R^2}}{\frac {a^2+b^2+c^2}{8R^2}-1}=$ $\frac {4S}{a^2+b^2+c^2-8R^2}=$ $\frac {4sr}{2\left(s^2-r^2-4Rr\right)-8R^2}\ \stackrel{(4)}{=}\ \frac {2sr}{s^2-r^2-4Rr-4R^2}=$

$\frac {2sr}{\cancel{4R^2}+\cancel{4Rr}+2r^2-r^2-\cancel{4Rr}-\cancel{4R^2}}=$ $\frac {2sr}{r^2}=\frac {2s}r\ .$ In conclusion, $\underline{\underline{\tan A+\tan B+\tan C=\frac {2s}r}}\iff$ $\underline{\underline{s^2=2\left(2R^2+2Rr+r^2\right)}}\ .$ Hence $\boxed{H\in w\iff \tan A+\tan B+\tan C=\frac {2s}r}\ .$

Remarks..

$\boxed{(1)}\blacktriangleright\ 4RS=abc=\prod (2R\sin A)=8R^3\prod \sin A\implies$ $4RS=8R^3\prod\sin A\iff$ $S=\frac {8R^3\prod\sin A}{4R}\iff$ $\boxed{\ 2R^2\cdot\prod\sin A=S\ }\ (1)\ .$

$\boxed{(2)}\blacktriangleright\ 4\cdot\prod\cos A=2\cos A\cdot 2\cos B\cos C=$ $2\cos A\left[\cos (B+C)+\cos (B-C)\right]=$ $2\cos A[\cos (B-C)-\cos A]=$ $-2\cos^2A-2\cos (B+C)\cos (B-C)]=$

$-2\cos^2A-\cos 2B-\cos 2C=$ $-2\left(1-\sin^2A\right)-\left(1-2\sin^2B\right)-\left(1-2\sin^2C\right)=$ $-4+2\left(\sin^2A+\sin^2B+\sin^2C\right)=$ $-4+2\cdot \sum\left(\frac a{2R}\right)^2=$ $-4+\frac {\sum a^2}{2R^2}\implies$

$4\cdot\prod\cos A=-4+\frac {\sum a^2}{2R^2}\iff$ $4\cdot \left(1+\prod\cos A\right)=\frac 1{2R^2}\cdot\sum a^2\iff$ $\boxed{\ 1+\prod\cos A=\frac {a^2+b^2+c^2}{8R^2}\ }\ (2)\ ,$ where $\boxed{\ a^2+b^2+c^2=2\left(s^2-r^2-4Rr\right)\ }\ .$

$\boxed{(3)}\blacktriangleright$ I"ll apply the distancies between two remarkable points from here:
[1] $\wedge$ [2] $\wedge$ [3] and Stewart's relation to $IG/\triangle HIO\ :\ IH^2\cdot GO+IO^2\cdot GH=IG^2\cdot HO+HO\cdot GO\cdot GH\iff$

$3\cdot IH^2+6\cdot IO^2=9\cdot IG^2+2\cdot HO^2\iff$ $3\cdot IH^2+6\left(R^2-2Rr\right)=$ $\left(s^2+5r^2-16Rr\right)+$ $2\cdot 9\cdot\left[R^2-\frac {2\left(s^2-r^2-4Rr\right)}9\right]\iff$ $3\cdot IH^2+6R^2-12Rr=$ $s^2+5r^2-\cancel{16Rr}+$

$18R^2-$ $4\left(s^2-r^2-\cancel{4Rr}\right)\iff$ $3IH^2+6R^2-12Rr=$ $ -3s^2+9r^2+18R^2\iff$ $3\cdot IH^2=12R^2+12Rr+9r^2-3s^2\iff$ $\boxed{\ IH^2=4R^2+4Rr+3r^2-s^2\
 }\ (3)\ .$



P18 (Mehmet SAHIN, Turkey) (<= click).

Proof. $[BI_aC]=\frac 12\cdot BC\cdot I_aE=\frac {ar_a}2\iff$ $\boxed{\ [BI_aC]=\frac {ar_a}2\ }\ (1)\ .$ Find analogously $[CI_bA]=\frac {br_b}2$ and $[AI_cB]=\frac {cr_c}2\ .$ On other hand $[DEF]=[DI_aE]+[FI_aE]-[DI_aF]=$

$\frac 12\cdot \left(r^2\sin B+r_a^2\sin C-r_a^2\sin A\right)=$ $\frac {r_a^2}2\cdot\frac {b+c-a}{2R}=$ $\frac {2r_a^2(s-a)}{4R}\implies$ $\boxed{\ [DEF]=\frac {r_a^2(s-a)}{2R}\ }\ (2)\ .$ Find analogously $[LKM]=\frac {r_b^2(s-b)}{2R}$ and $[PNR]=\frac {r_c^2(s-c)}{2R}\ .$ Therefore,

$\frac {[BI_aC]}{[DEF]}\ \stackrel{(1\wedge 2)}{=}\ \frac {a\cancel{r_a}}{\cancel 2}\cdot\frac {\cancel 2R}{r_a^{\cancel 2}(s-a)}=\frac {aR}{r_a(s-a)}=\frac {aR}S\implies$ $\boxed{\ \frac {[BI_aC]}{[DEF]}=\frac {aR}S\ }\ (3)\ .$ In conclusion, $\sum\frac {[BI_aC]}{[DEF]}\ \stackrel{(3)}{=}\ \sum\frac {aR}S=\frac RS\cdot \sum a=\frac R{sr}\cdot 2s=\frac {2R}r\implies$ $\sum\frac {[BI_aC]}{[DEF]}=\frac {2R}r\ .$



P19 (sqing). $\boxed{\ \mathrm{Prove\ that }\ (\forall )\ \{x,a,b,c\}\subset\mathbb R^*_+\ \mathrm{there\ is\ the\ inequality}\ (x+a+b)(x+b+c)(x+c+a)\ge (x+2a)(x+2b)(x+2c)\ }$

Proof. Denote $P(x) =(x+a+b)(x+b+c)(x+c+a)- (x+2a)(x+2b)(x+2c)\ .$ Observe that $P(x)=x\cdot\sum\left(a^2-bc\right)+\prod (b+c)-8abc\ge 0$ for any $x\ge 0\ .$


P20 (M.O. Sanchez) - Olimpiada de Centre America y el Caribe. Let a line $d ,$ the points $\{A,B,C,D\}\subset d$ in this order and the equilateral triangles $APB\ ,$ $BQC$ and $CRD$ so that the line

$d$ doesn't separate the points $P\ ,$ $Q$ and $R\ .$ Denote $AB=a\ ,$ $BC=b$ and $CD=c\ .$ Prove that $\frac 1a+\frac 1c=\frac 1b$ and the quadrilateral $PBCR$ is circumscriptible, i.e. $PB+RC=PR+BC\ .$


Proof. Let $\left\{\begin{array}{ccc}
m\left(\widehat{PQB}\right) & = & x\\\
m\left(\widehat{RQC}\right) & = & y\end{array}\right\|$ where $\boxed{\ x+y =180^{\circ}\ }\ (*)$ and apply theorem of Sines in $:\ \left\{\begin{array}{cc}
\triangle PQB\ : & \frac ba=\frac {\sin (60+x)}{\sin x}\\\\
\triangle RQC\ : & \frac bc=\frac {\sin (60+y)}{\sin y}\end{array}\right\|$ $\implies$ $\frac ba+\frac bc=$$\frac {\sin (60+x)}{\sin x}+\frac {\sin (60+y)}{\sin y}=$

$\frac {\sin 60\cos x+\sin x\cos 60}{\sin x}+\frac {\sin 60\cos y+\cos 60\sin y}{\sin y}=$ $\left(\frac {\sqrt 3}{2}\cdot\cot x+\frac 12\right)+\left(\frac {\sqrt 3}{2}\cdot\cot y+\frac 12\right)=$ $\frac {\sqrt 3}{2}\cdot \left(\cot x+\cot y\right)+1=1\implies$ $\frac ba+\frac bc=1\implies\ ,$ i.e. $\boxed{\ b(a+c)=ac\ }\ (1)\ .$

Let $S$ so that $\triangle BSC$ is equilateral and the line $d$ separates $Q$ and $S\ .$ Observe that $B\in (PS)$ and $C\in (RS)\ .$ Thus, $PR^2=PS^2+RS^2-PS\cdot RS=(a+b)^2+(c+b)^2-(a+b)(c+b)=$

$\left(b^2+a^2+2ba\right)+\left(\cancel{b^2}+c^2+2bc\right)-\left[\cancel{b^2}+b(a+c)+ac\right]=$ $a^2+b^2+c^2+b(a+c)-ac\ \stackrel{(*)}{=}\ a^2+b^2+c^2\implies$ $\boxed{\ PR^2=a^2+b^2+c^2\ }\ (2)\ .$ Thus, $PBCR$ is circumscriptible $\iff$

$PR+b=a+c\iff$ $PR=a+c-b\iff$ $PR^2=(a+c-b)^2\ \stackrel{(2)}{\iff}\ a^2+b^2+c^2=a^2+b^2+c^2-2b(a+c)+2ac\iff b(a+c)\ \stackrel{(1)}{=}\ ac\ ,$ what is true. Very nice problem!



P21 (M.O. Sanchez). $A$-isosceles $\triangle ABC$ with $D\in (BC)$ and $E\in (AC)$ so that $m\left(\widehat{ACB}\right)=20^{\circ}$ and $m\left(\widehat{ABE}\right)=m\left(\widehat{CBE}\right)= m\left(\widehat{BAD}\right)=10^{\circ}.$ Prove that $BE^2+CD^2=(b+c)^2\ .$

Proof. The theorem of Sines in $\triangle\ BEC\ :\ \frac {BE}{BC}=\frac {\sin 20^{\circ}}{\sin 150^{\circ}}=$ $\frac {\sin 20^{\circ}}{\sin 30^{\circ}}\implies$ $ \boxed{\ BE=2a\cdot\sin 20^{\circ}\ }\ .$ The theorem of Sines in $ADC$ and $ABC\ :\ \frac {DC}{BC}=$ $\frac {DC}{AC}\cdot\frac {AC}{BC}=$ $\frac {\sin 130^{\circ}}{\sin 30^{\circ}}\cdot \frac {\sin 20^{\circ}}{\sin 140^{\circ}}=$

$2\sin 50^{\circ}\cdot \frac {\sin 20^{\circ}}{\sin 40^{\circ}}=$ $\frac {\cos 40^{\circ}}{\cos 20^{\circ}}\implies$ $\boxed{\ DC=\frac {a\cos 40}{\cos 20}\ }\ .$ Hence $BE^2+DC^2=a^2\cdot\left(4\sin ^2 20+\frac {\cos ^240}{\cos ^2 20}\right)=$ $a^2\cdot\left(\frac {\sin ^240+\cos^240}{\cos ^2 20}\right)=$ $\frac {a^2}{\cos^220}=$ $\left(\frac a{\cos 20}\right)^2=(2b)^2=(b+c)^2\ .$



P22 (Tran Quang Hung, Vietnam).

Proof. Observe that $\frac 1c=\frac 1a+\frac 1b\iff $ $\boxed{\ bc=ab-ac\ }\ (*)\ .$ Define $\ :\ \left\{\begin{array}{ccccc}
K\in EF\cap AB & \mathrm{and} & m\left(\widehat{BEK}\right)=x & \implies & \tan x=\frac {KB}{KE}=\frac {a-c}a\\\\
L\in EF\cap IJ & \mathrm{and} & m\left(\widehat{IEL}\right)=y & \implies & \tan y=\frac {LI}{LE}=\frac {b-c}{b+c}\end{array}\right\|\implies$ $\tan (x+y)=$ $\frac {\tan x+\tan y}{1-\tan x\tan y}=$

$\frac {\frac {a-c}a+\frac {b-c}{b+c}}{1-\frac {a-c}a\cdot \frac {b-c}{b+c}}=\frac {(a-c)(b+c)+a(b-c)}{a(b+c)-(a-c)(b-c)}=$ $\frac {2ab-bc-c^2}{2ac+bc-c^2}\ \stackrel{(*)}{=}\ \frac {2ab-(ab-ac)-c^2}{2ac+(ab-ac)-c^2}=$ $\frac {ab+ac-c^2}{ac+ab-c^2}=1\implies$ $x+y=45^{\circ}\implies$ $m\left(\widehat{BEI}\right)= 135^{\circ}$ (Dũng Nguyễn Tiến's proof).



P23 (Mehmet Şahin). The ncircle $w=\mathbb C(I,r)$ of $\triangle ABC$ touches $[BC]\ ,$ $[CA]\ ,$ $[AB]$ at $D\ ,$ $E\ ,$ $F\ .$ Prove that $\boxed{\
 DE+EF+FD\le 3r\sqrt 3\le s\sqrt{\frac {2r}R}\le s\le\frac {3R\sqrt 3}2\ }$ (standard notations).

Proof. $EF=IA\cdot \sin A\iff EF^2=\frac {bc(s-a)}s\cdot \left(\frac {a}{2R}\right)^2=$ $\frac{abc}{4sR^2}\cdot a(s-a)=$ $\frac rR\cdot a(s-a)\implies$ $\sum EF^2=\frac {r}R\cdot \sum a(s-a)=\frac rR\cdot 2r(4R+r)\implies$ $\boxed{\ \sum EF^2=\frac {2r^2}R\cdot (4R+r)\ }\ .$

In conclusion, $\left(\sum EF\right)^2\le 3\cdot \sum EF^2=$ $\frac {2r}R\cdot 3r(4R+r)\ \stackrel{(*)}{\le}\  \frac {2r}R\cdot s^2\implies$ $DE+EF+FD\le s\cdot\sqrt {\frac {2r}R}\le s\le\frac {3R\sqrt 3}2\ .$ I used the well known inequality $\boxed{\ s^2\ge 3r(4R+r)\ }\ (*)\ .$ Thus,

$EF=2r\cos\frac A2$ a.s.o. $\implies$ $\sum EF=2r\cdot\sum\cos\frac A2\le 2r\cdot 3\cos 30^{\circ}=3r\sqrt 3\implies$ $\boxed{\sum EF\le 3r\sqrt 3}\ .$ Prove easily $\boxed{3r\sqrt 3\le s\sqrt{\frac {2r}R}}$ using only the well known inequality $s^2\ge 16Rr-5r^2\ .$



P24 <= click => Proof (Daniel DAN)


P25 (Miquel Ochoa SANCHEZ) <= click.

Proof. Denote the midpoint $M$ of $[DE]\ .$ Observe that $\widehat{BAH}\equiv\widehat{ACH}\iff \triangle HBA\sim\triangle HAC\iff$ $\frac {HB}{HA}=\frac cb=\frac {HA}{HC}\implies$ $HA^2=HB\cdot HC\iff$ $b^2-HC^2=HB\cdot HC\iff$

$b^2=HC(HB+HC)\iff$ $\boxed{\ b^2=HC\cdot (a+2\cdot HB)\ }\ (*)\ .$ Apply generalized Phytagoras' theorem in $\triangle ABC$ to$:\ \left\{\begin{array}{c}
AC=b\ :\ b^2=a^2+c^2+2a\cdot HB\iff HB=\frac {b^2-a^2-c^2}{2a}\\\\
AB=c\ :\ c^2=a^2+b^2-2a\cdot HC\iff HC=\frac {a^2+b^2-c^2}{2a}\end{array}\right\|\ \stackrel{(*)}{\implies}$

$\ b^2=\frac {a^2+b^2-c^2}{2a}\cdot \left(a+\frac {b^2-a^2-c^2}a\right)\iff$ $2a^2b^2=\left(a^2+b^2-c^2\right)\left(b^2-c^2\right)\iff \cancel 2a^2b^2=a^2\left(\cancel{b^2}-c^2\right)+\left(b^2-c^2\right)^2\iff$ $\boxed{\ a^2\left(b^2+c^2\right)=\left(b^2-c^2\right)^2\ }\ .$



P26 (Adil Abdullayev, BAKU) <= click.

Proof. I"ll apply the identity $\boxed{\ bc=2Rh_a\ }$ a.s.o. and the well known inequality $\boxed{\ m_a^2\ge s(s-a)\ }\ (*)$ a.s.o. Thus, $\frac {m_a}{h_a}\ \stackrel{(*)}{\ge}\ 2R\cdot \frac {\sqrt{s(s-a)}}{bc}$ and $\prod\frac {m_a}{h_a}\ge 8R^3\cdot \frac {\sqrt{s^3(s-a)(s-b)(s-c)}}{(abc)^2}=$

$\frac {8sR\cancel{^3}\cancel S}{16\cancel{R^2}S\cancel{^2}}=\frac {sR}{2S}=\frac R{2r}\implies$ $\prod\frac {m_a}{h_a}\ge \frac R{2r}\implies$ $\boxed{\ 4\left(\prod\frac {m_a}{h_a}-1\right)\ge 4\left(\frac R{2r}-1\right)\ }\ (1)\ .$ Remain to prove $\boxed{\ 4\left(\frac R{2r}-1\right)\ge \frac sr-3\sqrt 3\ }\ (2)\ .$ Indeed, $\underline{\underline{4\left(\frac R{2r}-1\right)\ge\frac sr-3\sqrt 3}}\iff$

$\frac {2R}r\ge \frac sr+4-3\sqrt 3\iff$ $s\le 2R+\left(3\sqrt 3-4\right)r\iff$ $\underline{\underline{s^2\le \left[2R+\left(3\sqrt 3-4\right)r\right]^2}}\ .$ I"ll apply now the well known inequality $\boxed{ s^2\le 4R^2+4Rr+3r^2\ }\ (3)\ .$ Remain to prove only

$4R^2+4Rr+3r^2\le \left[2R+\left(3\sqrt 3-4\right)r\right]^2\ ,$ i.e. $\cancel{4R^2}+4Rr+3r^2\le \cancel{4R^2}+4Rr\left(3\sqrt 3-4\right)+\left(3\sqrt 3-4\right)^2r^2\iff$ $4R+3r\le 4R\left(3\sqrt 3-4\right)+\left(43-24\sqrt 3\right)r\iff$

$4R\le 4R\left(3\sqrt 3-4\right)+\left(40-24\sqrt 3\right)r\iff$ $R\le R\left(3\sqrt 3-4\right)+\left(10-6\sqrt 3\right)r\iff$ $0\le R\cancel{\left(3\sqrt 3-5\right)}-2\cancel{\left(3\sqrt 3-5\right)}r\iff$ $R\ge 0\ ,$ what is true (Gabi Cuc Cucoanes' proof).



P27 (own). $\boxed{\ \mathrm{Prove\ that}\ \forall\ \mathrm{a\ nonobtuse\ \triangle\ ABC\ there\ is\ the\ inequality}\ \sum am_a\le (R+r)^2\cdot\sum \frac a{m_a}\ \mathrm{(standard\ notations).}\ }$

Proof. Let $M$ be the midpoint of $[BC]$ and the circumcircle $w=\mathbb C(O,R)\ .$ Thus, $AM\le OA+OM\iff m_a\le R(1+\cos A)\iff$ $am_a\le R(a+a\cdot \cos A)\implies$

$\sum am_a\le R\cdot\left(2s+\sum a\cos A\right)=$ $2sR+2R^2\sum\sin A\cos A=$ $2sR+R^2\sum \sin 2A=$ $2sR+4R^2\prod\sin A=$ $2sR+2S=2sR+2sr=2s(R+r)\implies$

$\boxed{\ am_a+bm_b+cm_c\le 2s(R+r)\ }\ (1)\ .$ On other hand $\sum\frac a{m_a}=\sum\frac {a^2}{am_a}\ge \frac {(a+b+c)^2}{am_a+bm_b+cm_c}\ \stackrel{(1)}{\ge}\ \frac {4s^2}{2s(R+r)}=\frac {2s}{R+r}\implies$ $\boxed{\ (R+r)\sum\frac a{m_a}\ge a+b+c\ }\ (2)\ .$

In conclusion, $\left\{\begin{array}{cccc}
(1) & am_a+bm_b+cm_c & \le & (R+r)(a+b+c)\\\\
(2) & a+b+c & \le & (R+r)\left(\frac a{m_a}+\frac b{m_b}+\frac c{m_c}\right)\end{array}\right\|\ \bigodot\ \implies$ $\boxed{\ am_a+bm_b+cm_c\le (R+r)^2\cdot \left(\frac a{m_a}+\frac b{m_b}+\frac c{m_c}\right)\ }\ (3)\ .$



P28 (Cristian TELLO) <= click.

Proof. Observe that $BH=2R\ ,\ BE=BF=EF=R\sqrt 3\ ,\ PH^2=4R^2-PB^2$ and the required relation $PB^2+3PH^2=2\left(PE^2+PF^2\right)$ is equivalent with the relation

$PB^2+3\cdot\left(4R^2-PB^2\right)=2\left(PE^2+PF^2\right)\iff$ $\boxed{\ PB^2+PE^2+PF^2=6R^2\ }\ (*)\ .$ The generalized Phytagoras' theorem in $\triangle PBF\ :\ 3R^2=BF^2=PB^2+PF^2+PB\cdot PF$

implies $\boxed{\ PB^2+PF^2+PB\cdot PF=3R^2\ }\ (1)\ .$ Using the Ptolemy's theorem to the quadrilateral $PBEF$ obtain that $\boxed{\ PE=PB+PF\ }\ (1)\ .$ Hence the relation $(*)$ becomes

$PB^2+\left(PB+PF\right)^2+PF^2=6R^2\ ,$ i.e. $PB^2+PF^2+PB\cdot PF=3R^2\ ,$ what is the true relation $(1)\ .$.
This post has been edited 453 times. Last edited by Virgil Nicula, Jan 20, 2018, 11:29 AM

458. Working page IV.

by Virgil Nicula, Aug 27, 2017, 10:47 AM

$1.\blacktriangleright\ \boxed{f(x)=\frac {1-\cos^3x}{\sin^2x}}=$ $\frac{\cancel{(1-\cos x)}\left(1+\cos x+\cos^2x\right)}{\cancel{(1-\cos x)}(1+\cos x)}=$ $\frac {1+\cos x+\cos^2x}{1+\cos x}\implies$ $\lim_{x\to 0}f(x)=$ $\lim_{x\to  0}\frac {1+\cos x+\cos^2x}{1+\cos x}=\frac 32\implies \boxed{\lim_{x\to 0}f(x)=\frac 32}\ .$

$2.\blacktriangleright\ \boxed{f(x)=\frac {\sin (x-1)}{x^{\alpha}-1}\ ,\ \alpha \ne 0}=$ $\frac {\sin (x-1)}{x-1}\cdot\frac {x-1}{x^{\alpha}-1}$ $\implies$ $\lim_{x\to 1}f(x)=$ $\lim_{x\to 1}\frac {\sin (x-1)}{x-1}\cdot\lim_{x\to 1}\frac {x-1} {x^{\alpha}-1}\ \stackrel{t:=x-1}{=}$ $\lim_{t\to 0}\frac {\sin t}t\cdot \frac 1{\alpha}=$ $1\cdot\frac 1{\alpha}=$ $\frac 1{\alpha}$ $\implies $ $\boxed{\lim_{x\to 1}f(x)=\frac 1{\alpha}}\ .$

You can use the following remarkable limits $:\ \lim_{x\to  0}\frac {\sin x}x=1\ ;\ \lim_{x\to  0}\frac {1-\cos x}{x^2}=\frac 12\ ;\ \lim_{x\to  0}\frac {x^{\alpha}-1}{x-1}=\alpha\ ,\ \alpha\ne 0$ a.s.o. Here is some interesting limits (<= click).

P1. Denote $\left\{\begin{array}{ccc}
a+b+c & = & s_1\\\\
ab+bc+ca & = & s_2\\\\
abc & = & s_3\end{array}\right\|$ and $(\forall )\ k\in\mathbb N^*\ ,\ S_k=a^k+b^k+c^k\ ,$ where $S_1=s_1\ .$ Prove that $(\forall )\ k\in\mathbb N^*\ ,\ S_{k+3}=s_1S_{k+2}-s_2S_{k+1}+s_3S_{k}\ .$

Calculate $\left\{\begin{array}{cccc}
S_2 & = & s_1^2-2s_2\\\\
S_3 & = & s_1^3-3s_1s_2+3s_3\end{array}\right\|\ \mathrm{and}\ \left\{\begin{array}{cccc}
S_4 & = & s_1^4-4s_1^2s_2+4s_1s_3+2s_2^2\\\\
S_5 & = & s_1^5-5s_1^3s_2+5s_1s_2^2+5s_1^2s_3-5s_2s_3\end{array}\right\|\ .$ Prove that $(\forall )\ \{a,b,c\}\subset\mathbb C$ exist the following

$\boxed{\ \underline{\underline{\mathrm{Identities}}}\ :\ \left\{\begin{array}{cccccccccc}
\sum\limits_{\mathrm{cyc}}a^2(b+c) & = & \sum\limits_{\mathrm{cyc}}bc(b+c) & = & \sum\limits_{\mathrm{cyc}}a\left(b^2+c^2\right) & \implies & s_1S_2-S_3=s_1s_2-3s_3 & \implies & \boxed{\ s_1\left(S_2-s_2\right)=S_3-3s_3\ } & (1)\\\\
\sum\limits_{\mathrm{cyc}}a^3(b+c) & = & \sum\limits_{\mathrm{cyc}}a\left(b^3+c^3\right) & = & \sum\limits_{\mathrm{cyc}}bc\left(b^2+c^2\right) & \implies & s_1S_3-S_4=s_2S_2-s_1s_3 & \implies & \boxed{\ s_1\left(S_3+s_3\right)=S_4+s_2S_2\ } & (2)\end{array}\right\|\ }$

Proof. The equation $x^3-s_1x^2+s_2x-s_3=0\begin{array}{ccc}
\nearrow & x_1=a & \searrow\\\\
\rightarrow & x_2=b &\rightarrow\\\\
\searrow & x_3=c & \nearrow\end{array}\odot\implies$ $(\forall )\ k\in\mathbb N^*$ and $(\forall )\ i\in\{1,2,3\}\ ,\ \left\|x_i^{k+3}=s_1x_i^{k+2}-s_2x_i^{k+1}+s_3x_i^{k}\right\|\ \sum\limits_{i=1}^3$ $\implies$

$(\forall )\ k\in\mathbb N^*\ ,\ \sum\limits_{i=1}^3x_i^{k+3}=s_1\sum\limits_{i=1}^3x_i^{k+2}-s_2\sum\limits_{i=1}^3x_i^{k+1}+s_3\sum\limits_{i=1}^3x_i^{k}$ $\implies$ $(\forall )\ k\in\mathbb N^*\ ,\ S_{k+3}=s_1S_{k+2}-s_2S_{k+1}+s_3S_{k}$ a.s.o.

$\blacktriangleright\ \left\{\begin{array}{ccccc}
\sum\limits_{\mathrm{cyc}}a^2(b+c) & = & \sum\limits_{\mathrm{cyc}}a^2[(a+b+c)-a] & = & s_1S_2-S_3\\\\
\sum\limits_{\mathrm{cyc}}bc(b+c) & = & \sum\limits_{\mathrm{cyc}}bc[(a+b+c)-a] & = & s_1s_2-3s_3\\\\
\sum\limits_{\mathrm{cyc}}a\left(b^2+c^2\right) & = & \sum\limits_{\mathrm{cyc}}a\left[\left(b^2+c^2+a^2\right)-a^2\right] & = & s_1S_2-S_3\end{array}\right\|\
 \mathrm{\underline{{and}}}\ \left\{\begin{array}{ccccc}
\sum\limits_{\mathrm{cyc}}a^3(b+c) & = & \sum\limits_{\mathrm{cyc}}a^3[(a+b+c)-a] & = & s_1S_3-S_4\\\\
\sum\limits_{\mathrm{cyc}}a\left(b^3+c^3\right) & = & \sum\limits_{\mathrm{cyc}}a[(a^3+b^3+c^3)-a^3] & = & s_1S_3-S_4\\\\
\sum\limits_{\mathrm{cyc}}bc\left(b^2+c^2\right) & = & \sum\limits_{\mathrm{cyc}}bc\left[\left(b^2+c^2+a^2\right)-a^2\right] & = & s_2S_2-s_1s_3\end{array}\right\|\ .$

Examples.

$\sum\limits_{\mathrm{cyc}}a^3(b+c)=$ $\sum\limits_{\mathrm{cyc}}a^2[(ab+ac+bc)-bc]=$ $s_2S_2-s_1s_3\ ;\ \sum\limits_{\mathrm{cyc}}a^2(b+c)=$ $\sum\limits_{\mathrm{cyc}}a[(ab+ac+bc)-bc]=$ $s_1s_2-3s_3\ ;\ \boxed{\sum\limits_{\mathrm{cyc}}a^3\left(b^2+c^2\right)=\sum\limits_{\mathrm{cyc}}a^2\left(b^3+c^3\right)=S_2S_3-S_5}\ .$

$\sum\limits_{\mathrm{cyc}}a^4(b+c)= $ $\sum\limits_{\mathrm{cyc}}a\left(b^4+c^4\right)=s_1S_4-S_5\
 ;\ \sum\limits_{\mathrm{cyc}}a^4(b+c)=\sum\limits_{\mathrm{cyc}}a^3[(ab+ac+bc)-bc]=$ $s_2S_3-s_3S_2\implies$ $s_1S_4-S_5=s_2S_3-s_3S_2\implies$ $\boxed{s_1S_4+s_3S_2=S_5+s_2S_3\ }\ .$



Problema propusa 7 (<= click).

Proof. Notam $L$-nr. ladite si $K$-nr. kg. fructe $\implies L=\frac {K-4}3=\frac {K+9\cdot 4}4=\frac {(K+36)-(K-4)}{4-3}=40\ \odot\begin{array}{ccccc}
\nearrow & L & = & 40\ & \searrow\\\\
\searrow & K & = & 124 & \nearrow\end{array}\odot$ Altfel: $3L+4=K=4L-4\cdot 9$ etc.


Cartile lui Ken ROBINSON ar trebui sa fie lecturi obligatorii pentru profesori. Vedeti aici (<= click). Ce inseamna a fi creator?! Sa-l intrebam ("citim") pe Ken ROBINSON, autorul cartii "O lume iesita din minti". Un raspuns imediat se cuvine a veni de la sine: "a reproduce integralul din partial" - prima lege a creatiei. Vom ilustra prima lege a creatiei prin cateva exemple intalnite in matematica $:$

1. Intr-o problema de geometrie: o constructie auxiliara care sa "intregeasca" o figura cunoscuta ale carei proprietati le stim si le putem folosi bine, poate reduce substantial demonstratia problemei. Uneori elevii chiar intreaba "cum v-a venit ideea, dle profesor?!".

2. Sa presupunem ca cerem cu anticipatie elevilor de clasa a VII - a (care nu au invatat inca ecuatia de gradul doi) sa gaseasca doua numere reale x & y pentru care stim suma 10 si produsul 18. Un "act creator" ar fi acela cand elevul ar "intregi" sistemul dat la unul de gradul intai cu doua necunoscute. De exemplu sa afle, daca se poate, diferenta intre x & y. Deoarece stim suma lor si cateva identitati algebrice, atunci incercam sa aflam (x-y)^2=(x+y)^2-4xy, adica (x-y)^2=100-72=28. Asadar |x-y|=2sqrt7. Putem presupune fara a restrange generalitatea ca x este cel putin egal lui y. Asadar sistemul x+y=10 & x-y=2sqrt7 este agreabil si are solutia {x,y}={5±sqrt7}.

3. In analiza matematica de clasa a XI - a: la limite de siruri/functii se foloseste foarte frecvent aceasta "lege". De exemplu vrem sa aflam limita cand x tinde la 0 pentru functia f(x)=sinxsin2x/(1-cos x). Stim ca sinx/x->1 & (1-cosx)/(x^2)->1/2. Vom "intregi" cele doua limite cunoscute in functia f astfel: f(x)=[(sinx)/x]•[(sin2x)/(2x)]•[(2x^2)/(1-cosx)] si prin trecere la limita se obtine 1•1•2•2=4.

4. In analiza matematica de clasa a XII - a: la capitolul "primitive" se foloseste "metoda integrarii prin parti" care nu este altceva decat "intregirea" derivatei unui produs: (fg)'=f'g+fg' etc. Voi continua sa ilustrez "actul de creatie" si in alte domenii de cercetare/proiectare care sa atenueze unele situatii cu dificultate ridicata.



P2 (Leo GIUGIUC). Three parallel lines are drawn through the vertices of an equilateral $\triangle ABC$. The line perpendicular to the three through $B$

intersects the remaining two at $E$ and $F$ so that $B\in (EF)\ .$ If $BE=m\ ,\ BF=n\ ,$ prove that $m^2+mn+n^2$ is constant for a given triangle.


Proof 1. Denote $AC=a$ and the projection $P$ of $B$ on $AC$ $\implies$ $APBE$ and $CPBF$ are cyclic with the diameters $[AB]$ and $[BC]\ .$ Hence $m\left(\widehat{PEB}\right)= m\left(\widehat{PAB}\right)=60^{\circ}\ ,$ $m\left(\widehat{PCB}\right)=$

$m\left(\widehat{PFB}\right)=60^{\circ}\implies$ $m\left(\widehat{PEB}\right)=$ $m\left(\widehat{PFB}\right)=$ $60^{\circ}\ ,$ i.e. $\triangle PEF$ is equilateral $:\ PE=PF=EF=m+n\ .$ Apply generalized Pythagoras' theorem in $\triangle BPF$ with $m\left(\widehat{BFP}\right)=$

$60^{\circ}\ :\  BP^2=FB^2+FP^2-FB\cdot FP=$ $n^2+(m+n)^2-n(m+n)=$ $ n^2+m^2+ n^2+2mn-mn-n^2=$ $m^2+n^2+mn\implies$ $m^2+n^2+mn= BP^2=\frac{ 3a^2}4$ (constant).


Proof 2. Suppose w.l.o.g. $AC=1$ and denote $m\left(\widehat{ABE}\right)=x\
 ,$ $m\left(\widehat{CBF}\right)=y\ ,$ where $x+y=120^{\circ}\ .$ Thus, $m=\cos x\ ,$ $n=\cos y$ and

$2\left(m^2+mn+n^2\right)=$ $2\left(\cos^2x+\cos x\cos y+\cos^2y\right)=$ $1+\cos 2x+\cos (x+y)+\cos (x-y)+1+\cos 2y=$ $2+\cos 2x+\cos 2y-$

$-\frac 12+\cos (x-y)=$ $\frac 32+2\cos (x+y)\cos (x-y)+\cos (x-y)=$ $\frac 32-\cos (x-y)+\cos (x-y)=\frac 32\implies$ $\boxed{\ m^2+n^2+mn=\frac 34\ }\ .$



P3 (Miguel Ochoa Sanchez). Let $\triangle ABC$ with the incircle $\mathbb C(I,r)$ what touches given triangle at $D\in BC\ ,$ $E\in CA$ and $F\in AB\ .$ Denote $P\in EF\ ,$ $DP\perp EF\
 .$ Prove that $\boxed{\ PD=h_a\sin\frac A2\ }\ .$

Proof. Suppose w.l.o.g. $b>c$ and denote $L\in AI\cap BC$ and $T\in EF\cap BC\ .$ Apply the Menelaus' theorem to the collinear points $\overline{EFT}/\triangle ABC\ :\ \frac {TB}{TC}\cdot \frac {EC}{EA}\cdot\frac {FA}{FB}=1\iff$

$\frac {TD}{TC}\cdot \frac {s-c}{\cancel{s-a}}\cdot\frac {\cancel{s-a}}{s-b}=1\iff$ $\frac {TB}{TC}=\frac {s-b}{s-c}\iff$ $\frac {TB}{s-b}=\frac {TC}{s-c}=\frac a{b-c}$ $\implies$ $TB=\frac {a(s-b)}{b-c}\implies\ TD=TB+BD=$ $\frac {a(s-b)}{b-c}+(s-b)=$ $\frac {2(s-b)(s-c)}{b-c}=$

$\frac {2bc\sin^2\frac A2}{b-c}\implies$ $\boxed{TD=\frac {2bc\sin^2\frac A2}{b-c}}\ (1)\ .$ Observe that $PD\parallel AL\implies$ $\widehat{TDP}\equiv\widehat{TLA}\equiv\widehat{BLA}\implies$ $m\left(\widehat{TDP}\right)=m\left(\widehat{BLA}\right)=\frac A2+C=90^{\circ}-\left(\frac B2-\frac C2\right)\implies$

$\boxed{\ \cos \widehat{TDP}=\sin\frac {B-C}2\ }\ (2)\ .$ Prove easily that $\boxed{\ bc=2Rh_a\ }\ (3)\ .$ Therefore, $DP\perp TE\implies DP\parallel AL\implies$ $PD=TD\cdot\cos\widehat{TDP}\ \stackrel{(1\wedge 2)}{=}\
 \frac {2bc\sin^2\frac A2\sin\frac {B-C}2}{b-c}=$

$\frac {2bc\sin \frac A2\cos\frac {B+C}2\sin\frac {B-C}2}{b-c}=\frac {bc\sin\frac A2(\sin B-\sin C)}{b-c}=\frac {bc\sin\frac A2}{2R}\ \stackrel{(3)}{=}\ h_a\sin\frac A2\ .$ In conclusion, $PD=h_a\sin\frac A2\ .$

Remark. Denote $K\in BC\ ,$ $AK\perp BC$ and the diameter $[AS]$ of the circumcircle $\Omega=\mathbb C(O,R)\ .$ Observe that $\triangle ABK\sim\triangle ASC\iff$ $\frac {AB}{AS}=\frac {AK}{AC}\iff$ $\frac c{2R}=\frac {h_a}b\implies bc=2Rh_a\ .$



P4 (Miguel Ochoa Sanchez). Let an $A$-isosceles $\triangle AFE$ and $\left\|\begin{array}{c}
B\in (AF)\\\
C\in (AE)\end{array}\right\|$ so that $FB+EC=BC\ .$ Let $D\in (BC)$ so that $\left\{\begin{array}{c}
DB=BF\\\
DC=CE\end{array}\right\|\ .$ Prove that $\frac 1{[FBE]}+\frac 1{[FCE]}=\frac 2{[FDE]}\ .$

Proof. Let the projections $(U,P,V,W)$ of $(B,A,D,C)$ on $EF$ and denote $AF=AE=l\ ,$ $FB=BD=m\ ,$ $EC=CD=n\ ,$ $BU=x\ ,$ $AP=h\ ,$ $DV=z$ and $CW=y\ .$

Thus, $\frac xm=\frac hl=\frac yn\ .$ The relation $\boxed{\ z(m+n)=nx+my\ }\ (*)$ is well known in the trapezoid $BCWU\ .$ Since $(m,n)$ are proportional with $(x,y)$ then the relation $(*)$

becomes $z(x+y)=yx+xy\ ,$ i.e. $\frac 1x+\frac 1y=\frac 2z\ (2)\ .$ But $(x,y,z)$ are proportional with $\left([FBE],[FCE],[FDE]\right)$ $\implies$ $\frac 1{[FBE]}+\frac 1{[FCE]}=\frac 2{[FDE]}\ .$

Remark Suppose w.l.o.g. that $x>z>y$ and let $M\in BU\ ,$ $N\in DV$ so that $\overline{MNC}\perp BU\ .$ Thus, $\frac {BM}{CB}=\frac {DN}{CD}\iff$ $\frac {x-y}{m+n}=\frac {z-y}n=\frac {x-z}m\iff$ $m(z-y)=n(x-z)\iff$ $(*)\ .$



P5 (Miguel Ochoa Sanchez). Let $ABCD$ be a convex quadrilateral where $AB=a\
 ,$ $BC=b\ ,$ $BD=x$ and $m\left(\widehat{CAD}\right)=\alpha\ ,$

$m\left(\widehat{ACD}\right)=\beta\ ,$ $m\left(\widehat{ABC}\right)=\phi$ so that $\alpha +\beta \in \left\{\phi\pm90^{\circ}\right\}\ .$ Prove that $\boxed{\ a^2\sin^2\alpha +b^2\sin^2\beta =x^2\cos^2\phi\ }\ .$


Proof. Let $\left\{\begin{array}{c}
DA=y\\\
DC=z\end{array}\right\|\implies\boxed{\ \frac y{\sin\beta}=\frac z{\sin\alpha}\ }\ (*)\ .$ Observe that $B+D=\phi +\left[180^{\circ}-\left(\alpha +\beta\right)\right]=$ $\phi +180^{\circ}-\left(\phi \pm 90^{\circ}\right)\in \left\{90^{\circ},270^{\circ}\right\}$ and $AC=y\cos\alpha +z\cos\beta .$ Apply the

generalized Ptolemy's theorem $:\
 (AB\cdot CD)^2+(BC\cdot AD)^2=(AC\cdot BD)^2\ ,$ i.e. $\boxed{(az)^2+(by)^2=x^2(y\cos \alpha +z\cos\beta  
)^2}\ (1)\ .$ Thus, $(y,z)$ are proportional with $(\sin\beta ,\sin\alpha )\implies$

the relation $(1)$ becomes $(a\sin\alpha )^2+(b\sin\beta )^2=x^2(\sin \beta\cos\alpha +\sin\alpha\cos\beta )^2\iff$ $a^2\sin^2\alpha +b^2\sin^2\beta=x^2\sin^2(\alpha +\beta )\iff$ $b^2\sin^2\beta +c^2\sin^2\alpha =x^2\cos^2\phi\ .$ Nice problem!



P6 (Soji NAKAJIMA). Prove that $(\forall )\ \triangle ABC$ there is the inequality $\boxed{\ a^2+b^2+c^2\le 8R^2+\frac {4S}{3\sqrt 3}\ }\ (*)\ .$

Proof 1. The relations $\boxed{\sum a^2=2\left(s^2-r^2-4Rr\right)}$ and $\boxed{s^2\le 4R^2+4Rr+3r^2}$ are well-known. Hence $\sum a^2\le 2\left[\left(4R^2+\cancel{4Rr}+3r^2\right)-r^2-\cancel{4Rr}\right]=$ $4\left(2R^2+r^2\right)\ .$

Observe that $4\left(\cancel{2R^2}+r^2\right)\le \cancel{8R^2}+\frac {4S}{3\sqrt 3}\iff$ $\cancel 4r^2\le \frac {\cancel 4S}{3\sqrt 3}\iff$ $3r\cancel{^2}\sqrt 3\le s\cancel r\iff$ $3r\sqrt 3\le s\ ,$ what is true. In conclusion and the required inequality $(*)$ is true.

Proof 2 (trigonometric). $\underline{\underline{a^2+b^2+c^2\le 8R^2+\frac {4}{3\sqrt 3}\cdot  S}}\iff$ $2\cancel{R^2}\cdot\sum 2\sin^2A\le 8\cancel{R^2}+\frac 4{3\sqrt 3}\cdot 2\cancel{R^2}\prod\sin A\iff$ $2\cdot\sum \left(1-\cos 2A\right)\le 8+\frac {8}{3\sqrt 3}\cdot \prod\sin A\iff$

$3-\sum\cos 2A\le 4+\frac 4{3\sqrt 3}\cdot\prod\sin A\iff$ $\left(1+\sum\cos 2A\right)+\frac 4{3\sqrt 3}\cdot \prod\sin A\ge 0\iff$ $-\cancel 4\prod\cos A+\frac {\cancel 4}{3\sqrt 3}\cdot\prod\sin A\ge 0\iff$ $3\sqrt 3\cdot \prod\cos A\le \prod\sin A\ \stackrel{\mathrm{acute}\ \triangle\ ABC}{\iff}$

$\prod\tan A\ge 3\sqrt 3\iff$ $\underline{\underline{\sum\tan A\ge 3\sqrt 3}}\ ,$ what is true only on the first quadrant because the function $\tan$ is convex: $\tan\left(\frac {A+B+C}3\right)\le\frac {\tan A+\tan B+\tan C}3\ .$



P7 (Miguel Ochoa Sanchez). Let a rhombus $ABCD$ with $AB=r\ ,$ $A\le 120^{\circ}$ and the circle $\mathrm w(C,r)\ .$ Prove that $(\forall )\ P\in w$ there is the relation $\boxed{\ PB^2+PD^2=PA^2+PC^2(1-2\cos A)\ }\ (*)\ .$

Proof. Denote $M\in AC\cap BD$ and $PA=x\ ,$ $PB=y$ and $PD=z\ .$ Observe that $AM=r\cos\frac A2$ and $BM=r\sin\frac A2\ .$ Apply the theorem of median in the triangles $:$

$\left\{\begin{array}{cccc}
PM/\triangle APC\ : & 4\cdot PM^2=2\left(PA^2+PC^2\right)-AC^2 & \iff & 4\cdot PM^2=2\left(x^2+r^2\right)-4r^2\cos^2\frac A2\\\\
PM/\triangle BPD\ : & 4\cdot PM^2=2\left(PB^2+PD^2\right)-BD^2 & \iff & 4\cdot PM^2=2\left(y^2+z^2\right)-4r^2\sin^2\frac A2\end{array}\right\|$ $\implies$ $x^2+r^2-r^2(\cancel 1+\cos A)=y^2+z^2-r^2(\cancel 1-\cos A)\iff$

$y^2+z^2=x^2+r^2(1-2\cos A)\ ,$ i.e. the required relation $PB^2+PD^2=PA^2+PC^2(1-2\cos A)\ .$ Particular cases $:\ \left\{\begin{array}{ccc}
\underline{\underline{A=60}}^{\circ} & \implies & \underline{\underline{PB^2+PD^2=PA^2}}\\\\
\underline{\underline{A=90}}^{\circ} & \implies & \underline{\underline{PB^2+PD^2=PA^2+PC^2}}\\\\
\underline{\underline{A=120}}^{\circ} & \implies & \underline{\underline{PB^2+PD^2=PA^2+2\cdot PC^2}}\end{array}\right\| .$



P8 (Miguel Ochoa Sanchez). (<= click).

Proof. I"ll use only the theorem of Sines. Denote $\left\{\begin{array}{c}
m\left(\widehat{ADP}\right)=x\implies m\left(\widehat{PAB}\right)=60^{\circ}-x\\\\
m\left(\widehat{ADQ}\right)=y\implies m\left(\widehat{QAC}\right)=60^{\circ}-y\end{array}\right\|\ .$ Hence $\underline{\underline{\frac {AP}{MD}+\frac {AQ}{ND}}}=$ $\frac {AP}{AM}\cdot\frac {AM}{MD}+\frac {AQ}{AN}\cdot\frac {AN}{ND}=$

$\cos\widehat{PAM}\cdot\frac {\sin\widehat{MDA}}{\sin\widehat{MAD}}+\cos \widehat{QAN}\cdot\frac {\sin\widehat{NDA}}{\sin\widehat{NAD}}=$ $\cos \left(60^{\circ}-x\right)\cdot \frac {\sin x}{\sin 30^{\circ}}+$ $\cos \left(60^{\circ}-y\right)\cdot \frac {\sin y}{\sin 30^{\circ}}=$ $2\cos\left(60^{\circ}-x\right)\sin x+$ $2\cos \left(60^{\circ}-y\right)\sin y=$

$\sin 60^{\circ}-\sin\left(60^{\circ}-2x\right)+\sin 60^{\circ}-\sin \left(60^{\circ}-2y\right)=$ $\sqrt 3-\left[\sin(60^{\circ}-2x)+\sin (60^{\circ}-2y)\right]=$ $\sqrt 3-2\sin\left[60^{\circ}-(x+y)\right]\cos(x-y)\ \stackrel{x+y=60^{\circ}}{=}\ \underline{\underline{\sqrt 3}}\ .$



P9 (Old Greek Mathematical Journal). Prove that $(\forall )\ \triangle\ ABC$ there is the following identity $:\ \left(1+\tan\frac A4\right)\cdot\left(1+\tan\frac B4\right)\cdot \left(1+\tan\frac C4\right)=2\cdot\left(1+\tan\frac A4\tan\frac B4\tan\frac C4\right)\ .$

Proof. Let $f(t)=t^3-s_1t^2+s_2t-s_3=0$ $\begin{array}{ccccc}
\nearrow & x & = & \tan \frac A4 & \searrow\\\\
\rightarrow & y & = & \tan \frac B4 & \rightarrow\\\\
\searrow & z & = & \tan \frac C4 & \nearrow\end{array}\odot$ where $\odot\begin{array}{ccccc}
\nearrow & s_1 & = & x+y+z & \searrow\\\\
\rightarrow & s_2 & = & xy+yz+zx & \rightarrow\\\\
\searrow & s_3 & = & xyz & \nearrow\end{array}\odot$ Thus, $\sum\frac {\pi+A}4=\frac {\sum\pi +\sum A}4=\frac {3\pi +\pi}4=\pi\implies$

$\boxed{\sum\left(\frac {\pi}4+\frac A4\right)=\pi}\ (*)\ .$ Hence in this case $\sum\tan\left(\frac {\pi}4+\frac A4\right)=\prod\tan\left(\frac {\pi}4+\frac A4\right)\iff$ $\sum\frac {1+x}{1-x}=\prod\frac {1+x}{1-x}\iff$ $\sum [(1+x)(1-y)(1-z)]=\prod (1+x)\iff$

$\sum[1-y-\cancel z+\cancel {yz}+x(\cancel 1-\cancel y-z+yz)]=\prod (1+x)\iff$ $\sum[1-y+x(-z+yz)]=\prod (1+x)\iff$ $3-s_1-s_2+3s_3=1+s_1+s_2+s_3\iff$ $\boxed{\ s_1+s_2=1+s_3\ }\ (1)\ .$

Otherwise. $\frac A4+\frac B4=\frac {\pi}4-\frac C4\implies$ $\tan\left(\frac A4+\frac B4\right)=\tan\left(\frac {\pi}4-\frac C4\right)\implies$ $\frac {x+y}{1-xy}=\frac {1-z}{1+z}\iff$ $(x+y)(1+z)=(1-xy)(1-z)\iff$ $\sum x+\sum yz=1+xyz$ $\iff$

$s_1+s_2=1+s_3\ .$ Hence $\prod\left(1+\tan\frac A4\right)=$ $2\left(1+\prod\tan\frac A4\right)\iff$ $\boxed{\prod (1+x)=2(1+xyz)}$ $\iff$ $1+s_1+s_2+s_3=2+2s_3\iff$ $s_1+s_2=1+s_3\ ,$ what is the true relation $(1)\ .$



P10 (Fleetwood). Sa se determine toate numerele naturale in baza $10$ de forma $N=\overline{xyz}$ stiind ca $\overline{xy}+\overline{yz}+\overline{zx}=66\ .$ Frumoasa problema pentru clasa a IV - a !

Proof. $\overline{xy}+\overline{yz}+\overline{zx}=66\iff$ $(10\underline{x}+\underline{\underline {y}})+(10\underline{\underline{y}}+\underline{\underline{\underline{z}}})+(10 \underline{\underline{\underline{z}}}+\underline x)=66\iff$ $11(x+y+z)=66\iff \boxed{x+y+z=6}\ .$ Cifra $x\ge 1\ ,$ ca prima cifra de la stanga a lui $N\ .$ Apar cazurile $:$

$$\blacktriangleright\ x=1\ \implies\ y+z=5\ \implies\ \left\{\begin{array}{cccccccc}
x & : & 1 & 1 & 1 & 1 & 1 & 1\\\
y & : & 0 & 1 & 2 & 3 & 4 & 5\\\
z & : & 5 & 4 & 3 & 2 & 1 & 0 \end{array}\right\|\ (6-2=4)\ ;$$
$$\blacktriangleright\ x=2\ \implies\ y+z=4\ \implies\ \left\{\begin{array}{cccccccc}
x & : & 2 & 2 & 2 & 2 & 2\\\
y & : & 0 & 1 & 2 & 3 & 4\\\
z & : & 4 & 3 & 2 & 1 & 0\end{array}\right\|\ (5-2=3)\ ;$$
$$\blacktriangleright\ x=3\ \implies\ y+z=3\ \implies\ \left\{\begin{array}{cccccccc}
x & : & 3 & 3 & 3 & 3\\\
y & : & 0 & 1 & 2 & 3\\\
z & : & 3 & 2 & 1 & 0\end{array}\right\|\ (4-2=2)\ ;$$
$$\blacktriangleright\ x=4\ \implies\ y+z=2\ \implies\ \left\{\begin{array}{cccccccc}
x & : & 4 & 4 & 4\\\
y & : & 0 & 1 & 2\\\
z & : & 2 & 1 & 0\end{array}\right\|\ (3-2=1)\ ;$$
$$\blacktriangleright\ x=5\ \implies\ y+z=1\ \implies\ \left\{\begin{array}{cccccccc}
x & : & 5 & 5\\\
y & : & 0 & 1\\\
z & : & 1 & 0\end{array}\right\|\ (2-2=0)\ ;$$
$$\blacktriangleright\ x=6\ \implies\ y+z=0\ \implies\ \left\{\begin{array}{cccccccc}
x & : & 6\\\
y & : & 0\\\
z & : & 0\end{array}\right\|\ (1-1=0)\ .$$
Numerele naturale $xy\ ,$ $yz$ si $zx$ fiind de doua cifre trebuie ca $0\not\in \{x,y,z\}\ .$ Asadar, solutia $S$ are cel mult $\sum_{k=1}^6k=\frac {6\cdot 7}2=21$ de numere naturale $($scrise de sus

in jos $\downarrow )\ ,$ mai putin cele $5\cdot 2+1=11$ numere care au cel putin o cifra egala cu zero. In concluzie, $S=\{411,321,312,231,222,213,141,132,123,114\}\ .$



P11 (Old Greek Mathematical Journal). Prove that $(\forall )\ w\not\in\left\{\frac{k\pi}6\ ,\ k\in \mathbb Z\right\}\ ,$ $\frac {\cot 3w}{\cot w}\not\in \left(\frac 13,3\right)\ .$

Proof. $\tan 2w=\frac {2\tan w}{1-\tan^2w}\implies$ $\tan 3w=\tan (w+2w)=\frac {\tan w+\tan 2w}{1-\tan w\tan 2w}=\frac {\tan w+\frac {2\tan w}{1-\tan^2w}}{1-\tan w\cdot\frac {2\tan w}{1-\tan^2w}}=$ $\frac {\tan w\left(3-\tan^2w\right)}{1-3\tan^2w}\implies$ $\boxed{\frac {\cot 3w}{\cot w}=\frac {\tan w}{\tan 3w}=\frac {1-3\tan^2w}{3-\tan^2w}}\ (*)\ .$

Let $\boxed{\ \tan w=t\in \mathbb R\ }\ (1)\ .$ Suppose against all reason $\frac {\cot 3w}{\cot w}\in \left(\frac 13,3\right)\ ,$ i.e. $\frac {1-3t^2}{3-t^2}\in \left(\frac 13,3\right)\iff$ $ \left(\frac {1-3t^2}{3-t^2}-\frac 13\right)\left(\frac {1-3t^2}{3-t^2}-3\right)<0\iff$ $\left(-8t^2\right)\cdot (-8)<0\ ,$ what is false.



P12. Let $ax^2+bx+c=0\begin{array}{cc}
\nearrow & x_1\\\\
\searrow & x_2\end{array}$ be the quadratic equation for what $x_1=2x_2 \ \vee\ x_2=2x_1\ .$ Find the value of $\frac {b^2}{ac}\ .$

Proof. Are well-known the notations $:\ \left\{\begin{array}{ccccc}
S & = & x_1+x^2 & = & -\frac ba\\\\
P & = & x_1x_2 & = & \frac ca\end{array}\right\|\ .$ Therefore, $x_1=2x_2\ \stackrel{\mathrm {or}}{\vee}\ x_2=2x_1\ \iff\ \left(x_1-2x_2\right)\left(x_2-2x_1\right)=0\iff$

$2\left(x_1^2+x_2^2\right)=5x_1x_2\iff$ $2\left(S^2-2P\right)=5P\iff$ $2S^2=9P\iff$ $2\left(-\frac ba\right)^2=9\cdot\frac ca\iff$ $\frac {2b^2}{a\cancel{^2}}=\frac {9c}{\cancel a}\iff$ $2b^2=9ac\iff$ $\boxed{\frac {b^2}{ac}=\frac 92}\ .$



P13 (Israel DIAZ). Let $f:D\rightarrow\mathbb R\ ,$ where $D=(4,5)$ and $f(x)=\frac {5x-11}{x-3}\ .$ Find the image $f(D)\ ,$ i.e. $\mathrm{Im}(f)\ .$

Proof. Denote the image $y=\frac {5x-11}{x-3}$ of $x\in (4,5)\ .$ Observe that $xy-3y=5x-11\iff$ $\boxed{x=\frac {3y-11}{y-5}}\ ,\ \underline{y\ne 5}\ .$ Therefore, $x\in (4,5)\iff$ $\frac {3y-11}{y-5}\in (4,5)\iff$

$\left(\frac {3y-11}{y-5}-4\right)\left(\frac {3y-11}{y-5}-5\right)<0\iff$ $\frac {(-y+9)(-2y+14)}{(y-5)^2}<0\iff$ $(y-9)(y-7)<0\iff$ $\underline{y\in (7,9)}\ .$ In conclusion, $\boxed{\ \mathrm{Im}(f)=(7,9)\ }\ .$

Remark. $\lim_{x\searrow 3}f(x)=\infty\ ,\ \lim_{x\nearrow 3}f(x)=-\infty$ and $\lim_{x\rightarrow\pm \infty}f(x)=5\ ,\ \lim_{x\searrow 4}f(x)=9$ and $\lim_{x\nearrow 5}f(x)=7\ .$


P14 (Leo GIUGIUC). Let $A$-right $\triangle ABC$ with $H\in (BC)$ so that $AH\perp BC\ ,\ F\in (AB)$ so that $CF$ is the $C$-bisector of $\widehat{ACB}\ ,\ E\in AH\cap CF\ ,\ D\in BE\cap FH\ .$ Prove $[AEDF]=[BDH]$

Proof. Denote $S=[ABC]$ and apply the Menelaus' theorem to the transversal $\overline {AEH}/\triangle BCF\ :\ \frac {AF}{AB}\cdot\frac {HB}{HC}\cdot\frac {EC}{EF}=1\iff$ $\frac {\cancel b}{a+b}\cdot\frac {c^2}{b\cancel{^2}}\cdot\frac {EC}{EF}=1\iff$ $\frac {EC}{b(a+b)}=\frac {EF}{c^2}=\frac {CF}{a(a+b)}\implies$

$\frac {[AEB]}{[ACB]}=\frac {FE}{FC}=\frac {c^2}{a(a+b)}=\frac {a-b}a\implies$ $\boxed{\ [AEB]=\frac {a-b}a\cdot S\ }\ (1)\ .$ Observe that $\frac {[BFH]}{[ABC]}=\frac {BF}{BA}\cdot \frac {BH}{BC}=\frac {\cancel a}{a+b}\cdot \frac {c^2}{a\cancel{^2}}=\frac {c^2}{a(a+b)}=\frac {a-b}a\implies$ $\boxed{\ [BFH]=\frac {a-b}a\cdot S\ }\ (2)\ .$

In conclusion, from the relations $(1\wedge 2)$ obtain that $[AEB]=[BFH]\iff$ $[AEB]-[BDF]=[BFH]-[BDF]\iff$ $[AEDF]=[BDH]\ .$



P15 (Khoa Linh, Vietnam). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)\ ,$ the circumcenter $O$ and the midpoint $M$ of the side $[BC]\ .$ Prove that $OI\perp AM\iff \boxed{\ \frac 1b+\frac 1c=\frac 2a\ }\ .$


Proof. $IA^2=r^2+(s-a)^2\ ,$ $IM^2=r^2+\frac{(b-c)^2}4$ and $OM^2=R^2-\frac {a^2}4\ .$ Hence $IO\perp AM\iff$ $IA^2-IM^2=$ $OA^2-OM^2\iff$ $\left[r^2+(s-a)^2\right]-\left[r^2+\frac {(b-c)^2}4\right]=$

$R^2-\left(R^2-\frac {a^2}4\right)\iff$ $(b+c-a)^2=(b-c)^2+a^2\iff$ $(b+c)^2-2a(b+c)=(b-c)^2\iff$ $4bc=2a(b+c)\iff$ $2bc=a(b+c)\iff$ $\frac 1b+\frac 1c=\frac 2a\ .$ Very nice problem !



P16 (Kadir, ALTINTAS, Turkey). Let $\triangle BC$ with the incircle $I\ ,$ the Nagel's point $N$ and $E\in BI\cap AC\ ,$ $F\in CI\cap AB\ .$

Prove that $\boxed{\ N\in EF\implies\frac {s-b}b+\frac {s-c}c=\frac {s-a}a\iff \frac 1b+\frac 1c=\frac 1a+\frac 1s\iff s^2+r^2=4Rh_a\ }$ (standard notations).


Proof. Denote $D\in AN\cap BC$ and apply the Van Aubel's relation for the point $N\ :\ \frac {NA}{ND}=\frac {FA}{FB}+\frac {EA}{EC}=$ $\frac {s-b}{s-a}+\frac {s-c}{s-a}=\frac {(s-b)+(s-c)}{s-a}=\frac a{s-a}\implies$ $\boxed{\ \frac {NA}{ND}=\frac a{s-a}\ }\ (1)\ .$ Apply the

Cristea's relation $:\ \frac {FB}{FA}\cdot DC+\frac {FC}{FA}\cdot DB=$ $\frac {ND}{NA}\cdot BC\ ,$ i.e. $\frac {\cancel a}b\cdot (s-b)+\frac {\cancel a}c\cdot (s-c)=$ $\frac {s-a}a\cdot \cancel a\iff\boxed{\ \frac {s-b}b+\frac {s-c}c=\frac {s-a}a\ }\ .$ Prove easily that $\frac {s-b}b+\frac {s-c}c=\frac {s-a}a\iff$

$\frac 1b+\frac 1c=$ $\frac 1a+\frac 1s\iff s^2+r^2=4Rh_a\ .$ Indeed $:\ \frac {s-b}b+\frac {s-c}c=$ $\frac {s-a}a\iff $ $\frac sb-1+\frac sc-1=$ $\frac sa-1\iff$ $\frac sb+\frac sc=\frac sa+1\iff$ $\boxed{\frac 1b+\frac 1c=\frac 1a+\frac 1s\ }\ ;$ $\frac {s-b}b+\frac {s-c}c=$ $\frac {s-a}a\iff$

$ac(s-b)+ab(s-c)=bc(s-a)\iff$ $\cancel s(ac+ab-bc)=4R\cancel sr\iff$ $(ab+bc+ca)=2bc+4Rr\iff$ $s^2+r^2+\cancel{4Rr}=4Rh_a+\cancel{4Rr}\iff$ $\boxed{\ s^2+r^2=4Rh_a\ }\ .$


Generalization 1. Let $ABC$ be a triangle with the incircle $I\ ,$ where denote $E\in BI\cap AC\ ,\ F\in CI\cap AB$ and a point $P\left(\alpha ,\beta ,\gamma\right)\in (EF)\ ,$

where $\left(\alpha ,\beta ,\gamma\right)$ are the barycentrical coordinates of $P$ w.r.t. $\triangle ABC\ .$ Prove that there is the following identity $:\ \boxed{\ \frac {\beta}b+\frac {\gamma}c=\frac {\alpha}a\ }\ .$

Particular cases $:\ G(1,1,1)\implies \frac 1b+\frac 1c=\frac 1a\ ;\ N(s-a,s-b,s-c)\implies \frac {s-b}b+\frac {s-c}c=\frac {s-a}a\ ;\ \Gamma\left(r_a,r_b,r_c\right)\implies$ $\frac {r_b}b+\frac {r_c}c=\frac {r_a}a\ ;$

$H\left (\tan A,\tan B,\tan C\right)\implies$ $\frac 1{\cos B}+\frac 1{\cos C}=\frac 1{\cos A}\ ;\ O(\sin 2A,\sin 2B,\sin 2C)\implies \cos B+\cos C=\cos A\ ;\ L\left(a^2,b^2,c^2\right)\implies L\not\in EF\ .$


Proof. Prove easily that $E(a,0,c)\ \wedge F(a,b,0)\ .$ Hence $P\left(\alpha ,\beta ,\gamma\right)\in (EF)\iff$ $\left|\begin{array}{ccc}
\alpha & \beta & \gamma\\\\
a & 0 & c\\\\
a & b & 0\end{array}\right|=0\iff$ $ab\gamma+ac\beta=bc\alpha\iff \frac {\beta}b+\frac {\gamma}c=\frac {\alpha}a\ .$

Generalization 2. Let $ABC$ be a triangle and two interior points $M_1\left(x_1,y_1,z_1\right)\ ,$ $M_2\left(x_2,y_2,z_2\right)$ with the barycentrical coordinates w.r.t.

$\triangle ABC$ such that $M_2\in EF\ ,$ where $E\in BM_1\cap AC\ ,$ $F\in CM_1\cap AB\ .$ Prove that there is the following identity $:\ \boxed{\ \frac {y_2}{y_1}+\frac {z_2}{z_1} =\frac {x_2}{x_1}\ }\ .$


Example: $M_1\equiv H\left(\cos A,\cos B,\cos C\right)\ \wedge\ M_2\equiv G(1,1,1)\implies$ $\tan A\tan C+\tan A\tan B=\tan B\tan C\implies$ $\cot B+\cot C=\cot A\implies$

$\frac {\cos b}b+\frac {\cos C}c=\frac {\cos A}a\iff$ $a(c\cdot \cos B+b\cdot \cos C)=bc\cdot\cos A\iff$ $a^2=bc\cdot \cos A\iff$ $2a^2=b^2+c^2-a^2\implies$ $\boxed{\ b^2+c^2=3a^2\ }\ .$



P17 (Ercole SUPPA). Let $ABC$ be a triangle with the midpoint $M$ of $[BC]\ ,$ the incircle $w=\mathbb C(I,r)\ ,$ the circumcenter $O$ and $D\in BC\cap w\ .$ Prove that $\boxed{\ IO\perp AD\implies\frac 1b+\frac 1c\ge\frac 2a\ }\ .$

Proof. Prove easily that $OD^2=OM^2+MD^2=$ $\left(OC^2-MC^2\right)+MD^2=$ $R^2-\left(MC^2-MD^2\right)=$ $R^2-\left[\frac {a^2}4-\frac {(b-c)^2}4\right]=$ $R^2-(s-b)(s-c)\implies$ $\boxed{\ OD^2=R^2-(s-b)(s-c)\ }\ .$

Therefore, $IO\perp AD\iff$ $IA^2-ID^2=OA^2-OD^2\iff$ $(bc-4Rr)-r^2=\cancel{R^2}-\left[\cancel{R^2}-(s-b)(s-c)\right]\iff$ $bc=(s-b)(s-c)+r^2+4Rr\iff$ $s(s-a)+\cancel{(s-b)(s-c)}=$

$\cancel{(s-b)(s-c)}+r^2+4Rr\iff$ $\boxed{\ s(s-a)=r^2+4Rr\ }\iff$ $s^2+s(s-a)=s^2+r^2+4Rr\iff$ $s(b+c)=ab+bc+ca\iff$ $(a+b+c)(b+c)=2a(b+c)+2bc\iff$

$(b+c)^2=a(b+c)+2bc\iff$ $\boxed{\ b^2+c^2=a(b+c)\
 }\ .$ In conclusion, $a(b+c)=b^2+c^2\ge 2bc\iff$ $a(b+c)\ge 2bc\iff$ $\boxed{ \frac 1b+\frac 1c\ge \frac 2a\ }\ .$



P18 (Kadir Altintas, Turkey). Let $\triangle ABC$ with $b\ne c$ and its interior point $P$ with the barycentrical coordinates $(\alpha ,\beta ,\gamma )$ w.r.t. $\triangle ABC\ ,$ where $D\in AP\cap BC\ .$

Denote the midpoints $E,F$ of the sides $[AC],[AB]$ respectively. Prove that $:\ \boxed{\ DE=DF\iff 2a^2(\beta -\gamma )=(\beta +\gamma )\left(b^2-c^2\right)\ }$ (standard notations).


Proof.


P19 (Mehmet Sahin, Turkey). $\boxed{\ \mathrm{Prove\ that}\ \forall\ \triangle ABC\ \mathrm{there\ is\ the\ identity}\ :\ ar_a+br_b+cr_c=2\left(\left[I_aI_bI_c\right]-\left[ABC\right]\right)\ \mathrm{(standard\ notations)}\ .}$

Proof. $[ABC]=sr=(s-a)r_a\implies$ $ar_a=s\left(r_a-r\right)\implies$ $\sum ar_a=s\sum\left(r_a-r\right)=s(4R+r)-3sr=s(4R-2r)=2s(2R-r)\implies$

$\boxed{\sum ar_a=2s(2R-r)}\ (*)\ .$ Hence $\left[I_aI_bI_c\right]=\sum\left([BIC]+\left[BI_aC\right]\right)=[ABC]+\frac 12\cdot \sum ar_a\implies$ $2\left(\left[I_aI_bI_c\right]-[ABC]\right)\ \stackrel{(*)}{=}\ \sum ar_a\ .$



P20 (Mehmet Sahin, Turkey). $\boxed{\ \mathrm{Prove\ that}\ \forall\ \triangle ABC\ \mathrm{there\ is\ the\ identity}\ :\ \frac a{r_b+r_c}+\frac b{r_c+r_a}+\frac c{r_a+r_b}=\frac {2\left(r_a+r_b+r_c\right)}{a+b+c}\ \mathrm{(standard\ notations)}\ .}$

Proof. $\frac a{r_b+r_c}=\frac {a(s-b)(s-c)}{r_b(s-b)\cdot (s-c)+r_c(s-c)\cdot(s-b)}=$ $\frac {a(s-b)(s-c)}{S[(s-c)+(s-b)]}=$ $\frac {\cancel a(s-b)(s-c)}{\cancel aS}=$ $\frac S{s(s-a)}=$ $\frac {r_a}s$ $\implies$ $\sum\frac a{r_b+r_c}=\sum\frac {r_a}s\implies$ $\sum\frac a{r_b+r_c}=\frac {2\left(r_a+r_b+r_c\right)}{a+b+c}\ .$


P21 (USAMO 2001). Let $\triangle ABC$ and let $w=\mathbb C(I,r)$ be its incircle. Denote by $D_{1}$ and $E_{1}$ where $w$ is tangent to $BC$ , $AC$ respectively. Denote by $D_{2}$ , $E_{2}$ the points on $BC$ and $AC$ respectively,

such that $CD_{2}=BD_{1}$ , $CE_{2}=AE_{1}$ and denote by $P\in AD_{2}\cap BE_{2}\ .$ Circle $w$ intersects $AD_{2}$ at two points, the closer of which to the vertex $A$ is denoted by $Q$ . Prove that $AQ=PD_{2}\ .$


Proof. Is well-known property $Q\in ID_1\ \ (*)$ . Therefore, $\frac {AQ}{AD_2}=\frac {h_a-2r}{h_a}=\frac {ah_a-2ar}{ah_a}=\frac {2pr-2ar}{2pr}=\frac {p-a}{a}\ \ (1)$ . Apply Menelaus' theorem to $\overline {BPE_2}/AD_2C\ \ :$

$\frac {BD_2}{BC}\cdot\frac {E_2C}{E_2A}\cdot\frac {PA}{PD_2}=1$ $\implies$ $\frac {p-b}{a}\cdot\frac {p-a}{p-c}\cdot\frac {PA}{PD_2}=1$ $\implies$ $\frac {PA}{p}=\frac {PD_2}{p-a}=\frac {AD_2}{a}$ $\implies$ $\frac {PD_2}{AD_2}=\frac {p-a}{a}\ \ (2)$ . From the relations $(1)$ , $(2)$ obtain $AQ=PD_2$ .

==================================

$(*)\ \blacktriangleright$ Let $\{D_1,Q_1\}=w\cap D_1I$ .Prove easily that $\frac {AD}{Q_1D_1}=\frac {h_a}{2r}=\frac {ah_a}{2ar}=\frac {2pr}{2ar}=\frac pa$ and $\frac {DD_2}{D_1D_2}=\frac {p|b-c|}{a}\cdot \frac {1}{|b-c|}=\frac pa$ . Hence $\frac {AD}{Q_1D_1}=\frac {DD_2}{D_1D_2}$ , i.e. $Q_1\in w\cap AD_2$ $\implies$ $Q_1\equiv Q$ .
This post has been edited 509 times. Last edited by Virgil Nicula, Jun 24, 2018, 9:27 AM

457. Relatii metrice si inegalitati geometrice.

by Virgil Nicula, Aug 19, 2017, 11:10 AM

P5 (Miguel Ochoa Sanchez). Prove that for any $\triangle ABC$ there is the chain of the inequalities $:\ \boxed{4\left(R^2-r^2\right)\le HA^2+HB^2+HC^2\le 12(R-r)^2}$ (standard notations).

Proof 1 (metric). Denote the midpoint $M$ of the side $[BC]$ and the diameter $[AS]$ of the circumcircle $w=\mathbb C(O,R).$ Apply the theorem of median in the triangles

$\left\{\begin{array}{cccc}
\triangle BHC\ : & 2\left(HB^2+HC^2\right) & = & HS^2+BC^2\\\\
\triangle HAC\ : & 4AM^2+HS^2 & = & 2\left(HA^2+AS^2\right)\end{array}\right\|\bigoplus\implies$ $2\left(HB^2+HC^2-HA^2\right)+4m_a^2-a^2=$ $8R^2\iff$ $HB^2+HC^2-HA^2+$ $b^2+c^2-a^2=$ $4R^2$

$\iff$ $\sum HA^2+\sum a^2=12R^2\iff$ $\boxed{\sum HA^2=12R^2-2\left(s^2-r^2-4Rr\right)}\ (1).$ I"ll prove that the required bilateral inequality is equivalently with the Gerretsen's inequality:

$\boxed{16Rr-5r^2\le s^2\le 4R^2+4Rr+3r^2}\ (*).$ Indeed: $4\left(R^2-r^2\right)\le \sum HA^2\le 12(R-r)^2\ \stackrel{1}{\iff}\ 4\left(R^2-r^2\right)\le 12R^2-2\left(s^2-r^2-4Rr\right)\le 12(R-r)^2\iff$

$2\left(R^2-r^2\right)\le 6R^2-s^2+r^2+4Rr\le 6(R-r)^2\iff$ $6R^2+r^2+4Rr-6(R-r)^2\le s^2\le 6R^2+r^2+4Rr-2\left(R^2-r^2\right)\iff$ the bilateral inequality $(*)\ .$

Proof 2 (trigonometric). I"ll use the wellknown identity $HA=2R|\cos A|$ a.s.o. Thus $\sum HA^2=4R^2\cdot \sum\cos ^2A=$ $4R^2\cdot\sum\left(1-\sin^2A\right)=$ $12R^2-\sum a^2=$

$12R^2-2\left(s^2-r^2-4Rr\right)\implies$ $\sum HA^2=12R^2-2\left(s^2-r^2-4Rr\right)$ i.e. the relation $(1)$ a.s.o.

Proof 3 (metric). Denote the diameter $[AN]$ of the circumcircle $w=\mathbb C(O,R).$ Prove easily that $AHCN$ is a parallelogram, i.e. $HA=NC$ and $NC^2+BC^2=BN^2\implies$

$\boxed{HA^2+a^2=4R^2}$ a.s.o. In conclusion, $\boxed{\sum HA^2+\sum a^2=12R^2}\ (2)\implies \sum HA^2=12R^2-2\left(s^2-r^2-4Rr\right)$ i.e. the relation $(1)$ a.s.o.

Proof 4 (metric). Apply the remarkable identity $\sum XA^2=3\cdot XG^2-3\mathrm p_{w}(G)$ for the centroid $H\ :\ \sum HA^2=3\cdot HG^2+\frac 13\cdot\sum a^2=$ $3\cdot \left(2\cdot OG\right)^2+\frac 13\cdot \sum a^2=$

$12\cdot OG^2+\frac 13\cdot\sum a^2=$ $12\cdot \left(R^2-\frac 19\cdot\sum a^2\right)+\frac 13\cdot \sum a^2=$ $12R^2-\sum a^2\implies$ $\sum HA^2+\sum a^2=12R^2,$ i.e. the relation $(2)$ a.s.o.



P6. Prove that for any $\triangle ABC$ there is the Petrovic's inequality $:\ \boxed{\frac{\sqrt 3}R\le \frac 1a+\frac 1b+\frac 1c\le \frac {\sqrt 3}{2r}}$ , i.e. $\boxed{\frac 1{h_a}+\frac 1{h_b}+\frac 1{h_c}\ge \frac 2{\sqrt 3}\cdot \left(\frac 1a+\frac 1b+\frac 1c\right)}\ (*)$ (standard notations).

Proof. Observe that $\sum\frac 1{h_a}=\sum\frac {a}{ah_a}=\frac sS=\frac 1r$ . Thus, the relation $(*)$ is true $\iff$ the Petrovic's relation is true $\iff$ $\sum\frac {h_a}{2S}\le \frac {\sqrt 3}{2r}\iff$ $\boxed{h_a+h_b+h_c\le s\sqrt 3}\ (1)$ $\iff$

$\boxed{\frac {ab+bc+ca}{a+b+c}\le R\sqrt 3}\ (2)$ . I used the well-known identity $bc=2Rh_a$ . Since $\frac {ab+bc+ca}{a+b+c}\le$ $ \frac {a+b+c}3\le $ $\frac {2s}3\le R\sqrt 3$ get easily the relation $(2)$ , i.e. the required inequality $(*)$ .

Here is a proof of the (left) inequality $\frac {\sqrt 3}{R}\le\frac 1a+\frac 1b+\frac 1c$ . Indeed, with remarkable relations $\left\{\begin{array}{ccc}
\frac sr & \ge & 3\sqrt 3\\\\
\frac {4R+r}s & \ge & \sqrt 3\end{array}\right\|$ get $\sum\frac 1a=\frac {ab+bc+ca}{abc}=\frac {s^2+r^2+4Rr}{4Rsr}=$

$\frac 1s+\frac 1{4R}\cdot\left(\frac sr+\frac rs\right)\ge$ $\frac 1s+\frac 1{4R}\left(3\sqrt 3+\frac rs\right)=$ $\frac {3\sqrt 3}{4R}+\frac 1s\left(1+\frac r{4R}\right)=$ $\frac {3\sqrt 3}{4R}+\frac {4R+r}s\cdot \frac 1{4R}\ge$ $\frac {3\sqrt 3}{4R}+\frac {\sqrt 3}{4R}=\frac {\sqrt 3}R$ . In conclusion, $\boxed{\frac {\sqrt 3}{R}\le\frac 1a+\frac 1b+\frac 1c\le\frac {\sqrt 3}{2r}}\ .$



P7. Prove that in any triangle $ABC$ there is the inequality $\boxed{\frac {a+b+c}{2R-r}\le \frac {a}{r_a}+\frac {b}{r_b}+\frac {c}{r_c}\le \frac {a+b+c}{3r}}$ .

Proof.

Proof. Is well-known that $ar_a+br_b+cr_c=2s(2R-r)$ , where $a+b+c=2s$ . Apply the CBS inequality $\sum\frac{a}{r_a}=\sum \frac {a^2}{ar_a}\ge$

$\frac{(a+b+c)^2}{ar_a+br_b+cr_c}=\frac{4s^2}{2s(2R-r)}=\frac {2s}{2R-r}\implies$ $\frac {a+b+c}{2R-r}\le \frac {a}{r_a}+\frac {b}{r_b}+\frac {c}{r_c}$ . Observe that $a\le b\le c\iff$ $\frac 1{r_a}\ge\frac 1{r_b}\ge\frac 1{r_c}$ .

Hence can apply the Chebyshev's inequality $:\ \sum\frac a{r_a}=\sum\left( a\cdot\frac 1{r_a}\right)\le \frac 13\cdot\sum a\cdot\sum\frac 1{r_a}=\frac {2s}{3r}\implies$ $\frac {a}{r_a}+\frac {b}{r_b}+\frac {c}{r_c}\le \frac {a+b+c}{3r}$ .

Remark. $\left(r_a+r_b+r_c\right)^2\ge 3\left(r_ar_b+r_br_c+r_cr_a\right)\iff$ $(4R+r)^2\ge 3s^2\iff$ $\boxed{s\sqrt 3\le 4R+r}\ (*)$ . Thus, $\boxed{9r\le s\sqrt 3\le 4R+r\le \frac {9R}2}$ .



P8. Prove that in any triangle $ABC$ there is the inequality $\boxed{\frac {a}{b+c-a}+\frac {b}{a-b+c}+\frac {c}{a+b-c}\ge 3}$ .

Proof 1. Denote $\left\{\begin{array}{c}
s-a=x>0\\\\
s-b=y>0\\\\
s-c=z>0\end{array}\right\|$ , where $2s=a+b+c$ . Thus, our inequality becomes $\sum\frac {y+z}{x}\ge 6\iff$ $\left(\frac xy+\frac yx\right)+\left(\frac yz+\frac zy\right)+\left(\frac zx+\frac xz\right)\ge 6$ , what is truly.

Proof 2. $\sum\frac a{b+c-a}=$ $\sum\frac {a^2}{a(b+c-a)}\ \stackrel{(CBS)}{\ge}\ \frac {(a+b+c)^2}{\sum [a(b+c-a)]}=$ $\frac {(a+b+c)^2}{ab+bc+ca}\ge 3$ because $(a+b+c)^2\ge 3(ab+bc+ca)$ is well-known.

Remark. $\sum\frac a{b+c-a}=$ $\sum\frac {a^2}{a(b+c-a)}\ \stackrel{(CBS)}{\ge}\ \frac {(a+b+c)^2}{\sum [a(b+c-a)]}=$ $\frac {(a+b+c)^2}{ab+bc+ca}=$ $\frac {4s^2}{s^2+r(4R+r)}=$ $4-\frac {4r(4R+r)}{s^2+r(4R+r)}\ge$

$4-\frac {4r(4R+r)}{(16Rr-5r^2)+r(4R+r)}=$ $4-\frac {4r(4R+r)}{20Rr-4r^2}=$ $4-\frac {4R+r}{5R-r}=$ $\frac {16R-5r}{5R-r}=$ $3+\frac {R-2r}{5R-r}\ge 3$ because $R\ge 2r$ .

I used the well-known inequality $s^2+5r^2\ge 16Rr$ . In conclusion, we obtained the stronger inequality $\boxed{\sum\frac a{b+c-a}\ge \frac {16R-5r}{5R-r}}\ge 3$ .



P9. Prove that in any triangle $ABC$ there is the inequality $\boxed{4(a+b+c)\le\frac {(b+c)^2}{-a+b+c}+\frac {(c+a)^2}{a-b+c}+\frac {(a+b)^2}{a+b-c}\le \frac {4abc(a+b+c)}{(-a+b+c)(a-b+c)(a+b-c)}}$ .

Proof. $\sum\frac {(b+c)^2}{-a+b+c}\ \stackrel{(CBS)}{\ge}\  \frac {\left[\sum (b+c)\right]^2}{\sum (-a+b+c)}=$ $\frac {4(a+b+c)^2}{a+b+c}\implies$ $\boxed{\sum\frac {(b+c)^2}{-a+b+c}\ge 4(a+b+c)}\ (1)$ . Denote $\left\{\begin{array}{c}
s-a=x>0\\\\
s-b=y>0\\\\
s-c=z>0\end{array}\right\|\implies$ $\left\{\begin{array}{c}
a=y+z\\\\
b=z+x\\\\
c=x+y\end{array}\right\|$ .

Thus, $\sum\frac {(b+c)^2}{-a+b+c}=\sum\frac {(y+z+2x)^2}{2x}=$ $\sum\left[2x+2(y+z)+\frac {(y+z)^2}{2x}\right]\implies$ $\sum\frac {(b+c)^2}{-a+b+c}=6(x+y+z)+\frac w2$ , where $\boxed{w=\sum\frac {(y+z)^2}x}$ a.s.o.

Otherwise. $\sum {\frac{(a+b)^2}{a+b-c}}=$ $\sum {\frac{16R^2\cos^2\frac{C}{2}\cos^2\frac{A-B}{2}}{8R\cos\frac{C}{2}\sin\frac{A}{2}\sin\frac{B}{2}}}\le$ $\sum \frac{2R\cos\frac{C}{2}}{\sin\frac{A}{2}\sin\frac{B}{2}}=$ $\frac{2R\sum {\sin\frac{A}{2}\cos\frac{A}{2}}}{\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}}=$ $\frac{R(\sin A+\sin B+\sin C)}{\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}}=$ $\frac{2R(a+b+c)}{r}=$ $\frac {4Rs}{r}=$

$\frac {4Rsr}{r^2}=\frac {abc}{r^2}=$ $\frac {4abc(a+b+c)}{8sr^2}\implies$ $\boxed{\sum {\frac{(b+c)^2}{-a+b+c}}\le\frac {4abc(a+b+c)}{(-a+b+c)(a-b+c)(a+b-c)}}\ (2)$ because $\left\{\begin{array}{ccc}
\cos^2\frac{A-B}2 & \le & 1\\\\
\sin A+\sin B+\sin C & = & \frac sR\\\\
\sin\frac A2\sin\frac B2\sin\frac C2 & = & \frac r{4R}\end{array}\right\|$ .



P10. Prove that $\{x,y,z\}\subset\mathbb R^*_+\implies $ $7xyz+3\sqrt {\left(x^2+y^2+z^2\right)\left(x^4+y^4+z^4\right)}\ge 2(x+y)(y+z)(z+x)$.

Proof. I"ll use the well-known identity $(x+y+z)^3=(x^3+y^3+z^3)+3(x+y)(y+z)(z+x)$ . Our inequality is equivalently with

$ 21xyz+9\sqrt{(\sum_{cyc}x^2)\cdot(\sum_{cyc}x^4)}\geq 2(x+y+z)^3-2(x^3+y^3+z^3)$. From the Cauchy-Buniakowski-Schwarz's inequality obtain that $21xyz+9\sqrt{(\sum_{cyc}x^2)(\sum_{cyc}x^4)}\geq$

$21xyz+9(x^3+y^3+z^3)\geq $ $2(x+y+z)^3-2(x^3+y^3+z^3)\Leftrightarrow $ $21xyz+11(x^3+y^3+z^3)\geq $ $2(x+y+z)^3=$ $2(x^3+y^3+z^3)+6\sum_{cyc}ab(a+b)+12xyz\Leftrightarrow $

$9xyz+9(x^3+y^3+z^3)\geq $ $6\sum_{cyc}ab(a+b)\Leftrightarrow $ $(3xyz+x^3+y^3+z^3)+ 2(x^3+y^3+z^3)\geq $ $2\sum_{cyc}ab(a+b)$ . From the Schur's inequality for $r=1$ obtain that

$3xyz+x^3+y^3+z^3\geq\sum_{cyc}ab(a+b)\Leftrightarrow \sum_{cyc}a(a-b)(a-c)\geq 0$. Remain to prove $2(x^3+y^3+z^3)\ge$ $\sum_{cyc}ab(a+b)$ what results from $a^3+b^3\geq ab(a+b), (\forall) a,b\in\mathbb{R^*_{+}}$



P11. Prove that $\{a,b,c\}\subset\mathbb R_+^*\ \Longrightarrow\ \left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge abc(a+b)(b+c)(c+a)$ and $\left(a^2+c^2\right)\left(b^2+c^2\right)\geq  c(a+b)(ab+c^2)$ .

Proof 1. . $\left\|\ \begin{array}{c}
 a^4+b^2c^2\ge 2a^2bc\\\\
a^2\left(b^2+c^2\right)=a^2\left(b^2+c^2\right)\end{array}\ \right\|\ \bigoplus\ \Longrightarrow\ \left(a^2+b^2\right)\left(a^2+c^2\right)\ge$ $ a^2(b+c)^2 \implies$ $\left\|\ \begin{array}{c}
 \left(a^2+b^2\right)\left(a^2+c^2\right)\ge a^2(b+c)^2\\\\
 \left(b^2+c^2\right)\left(b^2+a^2\right)\ge b^2(c+a)^2\\\\
 \left(c^2+a^2\right)\left(c^2+b^2\right)\ge c^2(a+b)^2\end{array}\ \right\|\ \bigodot\ \Longrightarrow$

$\prod\left(b^2+c^2\right)\ge$ $ abc\prod (b+c)$ . See
aici $\left\|\begin{array}{c}
 (a\cdot c+c\cdot b)^2\le \left(a^2+c^2\right)\left(c^2+b^2\right)\\\\
 (a\cdot b+c\cdot c)^2\le \left(a^2+c^2\right)\left(b^2+c^2\right)\end{array}\right\|\bigodot\Longrightarrow$ $\left|c(a+b)\left(ab+c^2\right)\right|\le \left(a^2+c^2\right)\left(b^2+c^2\right)$ .

Since $x\le |x|$ obtain that $c(a+b)\left(ab+c^2\right)\le $ $\left(a^2+c^2\right)\left(b^2+c^2\right)$ with the equality $a=b=c$ .

Proof 2. $\left\{\begin{array}{ccc}
2(a^2+b^2) \geq (a+b)^2 & ; & a^2+b^2 \geq 2ab\\\\
2(b^2+c^2) \geq (b+c)^2 & ; & b^2+c^2 \geq 2bc\\\\
2(c^2+a^2) \geq (c+a)^2 & ; & c^2+a^2 \geq 2ca\end{array}\right\|\bigodot\implies$ $ \left[\prod\left(b^2+c^2\right)\right]^2 \ge \left[abc\prod (b+c)\right]^2\iff$ $\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right) \geq  abc(a+b)(b+c)(c+a)$ .


An easy extension. Prove that $\{m,n,p,a,b,c\}\subset\left[0,\infty\right)\Longrightarrow$ $\prod\left(b^2+c^2+mbc\right)\ge$ $abc\prod\left(b+c+\sqrt {npbc}\right)$ .

Proof. $\boxed{\left\{\begin{array}{ccc}
\left(a^2+b^2+pab\right)\left(c^2+a^2+nca\right)\ge \left(ac+ba+a\sqrt{pncb}\right)^2=a^2\left(c+b+pn\sqrt{cb}\right)^2\\\\
\left(b^2+c^2+mbc\right)\left(a^2+b^2+pab\right)\ge \left(ba+cb+b\sqrt{mpac}\right)^2=b^2\left(a+c+mp\sqrt{ac}\right)^2\\\\
\left(c^2+a^2+nca\right)\left(b^2+c^2+nbc\right)\ge \left(cb+ac+c\sqrt{nmba}\right)^2=c^2\left(b+a+nm\sqrt{ba}\right)^2\end{array}\right\|\bigodot\implies\prod\left(b^2+c^2+mbc\right)\ge\ abc\prod\left(b+c+\sqrt {npbc}\right)}$


P12. Prove that in any triangle $ABC$ there are the inequalities $\left\{\begin{array}{ccc}
\sum\sqrt{\frac a{b+c-a}} & \le &  1+\frac Rr\\\\
\sum\sqrt{\frac {a^3}{b+c-a}} & \le &  \frac {Rs}r\end{array}\right\|$ .

Proof. I"ll use the well-known inequality $\boxed{\cos\frac {B-C}2\ge \sqrt{\frac {2r}R}}\ \odot 2\cos\frac {B+C}2=2\sin\frac A2\ \iff$ $2\cos\frac {B+C}2\cos\frac {B-C}2\ge 2\sin\frac A2\cdot \sqrt{\frac {2r}R}\iff$

$\cos B+\cos C\ge\sqrt {\frac {2r}R\cdot 4\sin^2\frac A2}=$ $\sqrt {\frac {2r}R\cdot \frac {4(s-b)(s-c)}{bc}}=$ $\sqrt {\frac {2r}R\cdot\frac {4(s-b)(s-c)}{bc}\cdot \frac {a(s-a)}{a(s-a)}}=$ $\sqrt {\frac {2r}R\cdot\frac {4sr^2}{4Rsr}\cdot \frac a{s-a}}=$ $\frac rR\sqrt{\frac {2a}{s-a}}=$ $\frac {2r}R\sqrt{\frac {a}{b+c-a}}\iff$

$\boxed{\cos B+\cos C\ge \frac {2r}R\sqrt{\frac {a}{b+c-a}}}\ (*)$ $\ \implies\ \sum \sqrt{\frac {a}{b+c-a}}\le $ $\frac R{2r}\cdot \sum (\cos B+\cos C)=$ $\frac Rr\cdot \sum \cos A=$ $\frac Rr\cdot \left(1+\frac rR\right)=$ $1+\frac Rr\iff$ $\boxed{\sum \sqrt{\frac {a}{b+c-a}}\le 1+\frac Rr}$.

Otherwise. Prove easily that $\boxed{\sum (s-b)(s-c)=r(4R+r)}\ (1)$ and $\boxed{\sum a(s-b)(s-c)=2sr(2R-r)}\ (2)$. Therefore,

$\sum (b+c)(s-b)(s-c)=$ $2s\sum (s-b)(s-c)-\sum a(s-b)(s-c)\ \stackrel{(1\wedge 2)}{\implies}\ 2sr(4R+r)$ $-2sr(2R-r)=4sr(R+r)=$

$\boxed{\sum (b+c)(s-b)(s-c)=4sr(R+r)}\ (3)$. In conclusion, $\sqrt {s(b+c-a)}\le \frac {a+(b+c-a)}2=\frac {b+c}2\implies$ $\sqrt{\frac a{b+c-a}}=\frac {\sqrt{a(b+c-a)}} {b+c-a}\le \frac {b+c}{2(b+c-a)}\implies$

$\sum\sqrt{\frac a{b+c-a}}\le\sum \frac {b+c}{2(b+c-a)}=$ $\frac 14\sum\frac {b+c}{s-a}=$ $\frac 14\sum\frac {(b+c)(s-b)(s-c)}{(s-a)(s-b)(s-c)}\ \stackrel{(3)}{=}\ \sum\frac {4sr(R+r)}{4sr^2}=$ $\sum\frac {R+r}r\implies$ $\boxed{\sum\sqrt{\frac a{b+c-a}}\le 1+\frac Rr}$.

$\blacktriangleright\ \sum \left[a(\cos B+\cos C)\right]\ge\frac {2r}R\cdot\sum\sqrt {\frac {a^3}{b+c-a}}\iff$ $a+b+c\ge\frac {2r}R\cdot\sum\sqrt {\frac {a^3}{b+c-a}}\iff$ $\boxed{\sum\sqrt{\frac {a^3}{b+c-a}}\le \frac {Rs}r}$ .

Remark. $\boxed{\cos\frac {B-C}2\ge \sqrt{\frac {2r}R}}\ \odot 2\sin\frac {B+C}2=2\cos\frac A2\ \iff$ $2\sin\frac {B+C}2\cos\frac {B-C}2\ge 2\cos\frac A2\cdot \sqrt{\frac {2r}R}\iff$ $\sin B+\sin C\ge\sqrt {\frac {2r}R\cdot4\cos^2\frac A2}\iff$

$\frac {b+c}{2R}\ge \sqrt{\frac {2r}R\cdot\frac {4s(s-a)}{bc}}\iff$ $bc(b+c)^2\ge 32Rsr(s-a)\iff$ $bc(b+c)^2\ge8abc(s-a)\iff$ $(b+c)^2\ge 4a(b+c-a)\iff$

$[(\underline{b+c-a})+\underline a]^2\ge 4\underline a(\underline {b+c-a})$, what is truly. Have equality iff $b+c-a=a$, i.e. $\boxed{b+c=2a}$.
See here


P13. Let $\{a,b,c,x,y,z\}\subset\mathbb R^*_+$ . Prove that $\frac x{ay+bz}+\frac y{az+bx}+ \frac z{ax+by}\ge \frac 3{a+b}$ .

Proof. $\frac {x^2}{axy+bzx}+\frac {y^2}{ayz+bxy}+\frac {z^2}{azx+byz}\ \stackrel{(C.B.S)}{\geq}\ \frac{(x+y+z)^2}{(a+b)(xy+yz+zx)}$ $\ge\frac3{a+b}\ ,$ which results from the well-known inequality $ (x+y+z)^2 \geq 3(xy+yz+zx)$ .


P14. Ascertain $m\in\mathbb R$ so that the equation $\sin 2x=m(\sin x+\cos x)$ has at least a zero in $\left(0,\frac {\pi}2\right)$ .

Proof. Rewriting the equation as $\frac{2}{m}=\frac{1}{\sin x}+\frac{1}{\cos x} \geq \frac{4}{\sin x+\cos x} \geq \frac{4}{\sqrt{2}}$ . So, $m \leq \frac{1}{\sqrt{2}}$ . Also, $\frac{1}{m}=\frac{1}{2}\left(\frac{1}{\sin x}+\frac{1}{\cos x}\right) \leq \sqrt{\frac{1}{2\sin^2x\cos^2x}}= \frac{\sqrt{2}}{\sin 2x}$ .

So, $m \geq 0$ (Its also obvious from the original equation itself). Also, we get solutions (easy to check) at both the boundary values of $m$ . So, $m\in\left[0,\frac{1}{\sqrt{2}}\right]$ .



P15. Prove that the inequality $ \boxed {\ \frac {\cos^2A}{a^2} + \frac {\cos^2B}{b^2} + \frac {\cos^2C}{c^2}\ \ge\ \frac {1}{4R^2}\cdot \left(\frac {a^2 + b^2 + c^2}{4S\sqrt 3}\right)^2\ }\ \ge\ \frac {1}{4R^2}$ .

Proof. $ 4R^2\cdot\sum \frac {\cos^2A}{a^2} =$ $ \sum\cot^2A = \sum\left(\frac {b^2 + c^2 - a^2}{4S}\right)^2\ge$ $ \frac {1}{16S^2}\cdot\frac 13\cdot\left[\sum\left(b^2 + c^2 - a^2\right)\right]^2 = \left(\frac {a^2 + b^2 + c^2}{4S\sqrt 3}\right)^2\ge 1$ .


P16. Prove that $\{a,b,c,d\}\subset \mathbb R^*_+$ and $abc+abd+acd+bcd=4\implies$ $\left\{\begin{array}{ccc}
a+b+c+d & \ge & 4\\\\
a^2+b^2+c^2+d^2 & \ge & 4\end{array}\right\|\ .$

Proof. $4=abc+abd+acd+bcd=$ $ab(c+d)+cd(a+b)\le$ $ \left(\frac {a+b}2\right)^2\cdot (c+d)+\left(\frac {c+d}2\right)^2\cdot (a+b)=$ $(a+b)(c+d)\cdot \frac {\sum a}4\le$ $\left[\frac {(a+b)+(c+d)}2\right]^2\cdot \frac {\sum a}4=$

$\frac {(\sum a)^3}{16}\le$ $\frac {\left(2\sqrt{a^2+b^2+c^2+d^2}\right)^3}{16}=\frac 12\cdot \left(\sum a^2\right)^{\frac 32}$ $\implies$ $8\le \left(\sum a^2\right)^{\frac 32}\implies$ $8^{\frac 23}\le \sum a^2\implies 4\le  a^2+b^2+c^2+d^2\ .$ Remark. $4\le \frac {(\sum a)^3}{16}\implies$ $\boxed{\sum a\ge 4}\ .$



P17. Sa se arate ca intr-un triunghi $ABC$ exista echivalenta $:$

$\boxed{\ \cos\ (B-C)\ \le\ \frac {2bc}{b^2+c^2}\ \le\ 1\ \Longleftrightarrow\  A\ \le\ 90^{\circ}\ \ \vee\ \ B=C\ \Longleftrightarrow\ \frac rR\ \le\ \frac {a(b+c-a)}{b^2+c^2}\ \le\ \frac 12\ \Longleftrightarrow\ \frac {2a(p-b)(p-c)}{p\left(b^2+c^2\right)}\ \le\ \frac rR\ }$ (demonstratia aici).

Proof. $\boxed{\cos (B-C)\le \frac {2bc}{b^2+c^2}\ }\ .$ Adunam $1$ stanga/dreapta si folosim $1+\cos x=2\cos^2\frac x2$ $\Longleftrightarrow$ $\boxed{2\cos^2\frac {B-C}{2}\le \frac {(b+c)^2}{b^2+c^2}}\ .$ Inmultim cu $2\sin ^2\frac {B+C}{2}=2\cos^2\frac A2>0\ .$

Folosim $2\sin\frac {B+C}{2}\cos\frac {B-C}{2}=$ $\sin B+\sin C$ si $\cos^2\frac A2=\frac {p(p-a)}{bc}$ $\Longleftrightarrow$ $\boxed{(\sin B+\sin C)^2\le \frac {(b+c)^2}{b^2+c^2}\cdot\frac {2p(p-a)}{bc}}\ .$ Insa $\sin B=\frac {b}{2R}\ ,$ $\sin C=\frac {c}{2R}$ $\Longleftrightarrow$

$\boxed{bc\left(b^2+c^2\right)\le 4R^2\cdot 2p(p-a)}\ .$ Inmultim cu $r$ si folosim $4Rpr=abc$ $\Longleftrightarrow$ $\boxed{rbc\left(b^2+c^2\right)\le R\cdot abc\cdot 2p(p-a)}\ .$ Simplificam prin $bc>0$ si stim ca $2(p-a)=b+c-a$

$\Longleftrightarrow$ $\boxed{\frac rR\le\frac {a(b+c-a)}{b^2+c^2}}$ $\Longleftrightarrow$ $\frac {4(p-a)(p-b)(p-c)}{abc}\le \frac {2a(p-a)}{b^2+c^2}$ $\Longleftrightarrow\ 2\left(b^2+c^2\right)(p-b)(p-c)\le a^2bc$ $\Longleftrightarrow$ $\left(b^2+c^2\right)\left[a^2-(b-c)^2\right]\le 2a^2bc$ $\Longleftrightarrow$

$a^2\left[\left(b^2+c^2\right)-2bc\right]\le\left(b^2+c^2\right)(b-c)^2$ $\Longleftrightarrow$ $a^2(b-c)^2\le \left(b^2+c^2\right)(b-c)^2$ $\Longleftrightarrow$ $\boxed{B=C\ \ \vee\ \ A\ \le\ 90^{\circ}}$ deoarece $a^2\le b^2+c^2\Longleftrightarrow A\le 90^{\circ}\ .$


P18.Aratati ca in orice triunghi avem $OH \geq R|\sin(B-C)$ si $IH\ge\frac{b+c}{2p}\sqrt{4p(p-a)\left(\frac{bc}{(b+c)^2}-\frac{(p-b)(p-c)}{a^2}\right)}\ .$

Demonstratie 1. In triunghiul $AOH\ :\ \frac{AH}{|\sin (B-C)|}=\frac{R}{\sin AHO}\Longrightarrow OH=\frac{R|\sin (B-C)|}{\sin AHO}\ge R|\sin (B-C)|\ .$

Demonstratie 2. $OH\ \ge\ pr_{BC}OH=pr_{BC}OA=R\cdot \left|\cos\left(90^{\circ}-B+C\right)\right|=R\cdot \left|\sin (B-C)\right|\ .$ Procedam asemanator si pentru $IH\ :$

$IH\ \ge\ pr_{BC}IH=$ $pr_{BC}AI=\frac{b+c}{2p}\sqrt{b^2_a-h^2_a}\Longleftrightarrow $ $IH\ge\frac{b+c}{2p}\sqrt{4p(p-a)\left(\frac{bc}{(b+c)^2}-\frac{(p-b)(p-c)}{a^2}\right)}\ .$


P19. Sa se arate ca $:\ \boxed{\ \begin{array}{cc}
 A=60^{\circ}\ \Longleftrightarrow\ OI=2R\cdot\sin\frac {|B-C|}{4} & (1)\\\\

 OI=R\sqrt {\left(2\sin\frac A2-1\right)^2+8\sin\frac A2\sin^2\frac {B-C}4} & (2)\\\\
OI\ \ge\ 2R\cdot \sin\frac {|B-C|}{4}\sqrt {2\sin\frac A2} & (3)\end{array}\ }\ .$

Demonstratie.

$1\blacktriangleright$ $\boxed{\ \cos A+\cos B+\cos C=1+\frac rR\ }\ \wedge\ A=60^{\circ}\ \implies\ \cos B+\cos C=$ $\frac 12+\frac rR$ $\Longleftrightarrow$ $2\cos\frac{B+C}{2}\cdot\cos\frac {B-C}{2}=$ $\frac 12+\frac rR$ $\Longleftrightarrow$ $\cos\frac{B-C}{2}=\frac 12+\frac rR$ $\Longleftrightarrow$

$1-\cos\frac{B-C}{2}=$ $\frac 12-\frac rR\ \Longleftrightarrow$ $2sin^2\frac{B-C}{4}=\frac{R-2r}{2R}$ $\Longleftrightarrow$ $4R\sin^2\frac{B-C}{4}=R-2r$ $\Longleftrightarrow$ $4R^2\sin^2\frac{B-C}{4}=R^2-2Rr=OI^2$ $\Longleftrightarrow$ $\boxed{\ OI=2R\cdot\sin\frac{|B-C|}{4}\ }\ .$

$2\blacktriangleright$ Folosim $\cos A=1-2\sin^2\frac A2\ .$ Asadar, $\cos A+\cos B+\cos C=1+\frac rR\Longleftrightarrow$ $\cos B+\cos C=\frac rR+2\sin^2\frac A2$ $\Longleftrightarrow $ $2\cos\frac{B+C}2\cos\frac{B-C}2=$ $\frac rR+2\sin^2\frac A2$ $\Longleftrightarrow $

$2\sin\frac A2\cos\frac{B-C}{2}=\frac{r}{R}+2\sin^2\frac A2$ $\Longleftrightarrow $ $4R^2\sin\frac A2\left(1-2\sin^2\frac{B-C}4\right)=$ $2Rr+4R^2\sin^2\frac A2$ $\Longrightarrow $ $OI^2=R^2-2Rr=$ $R^2+4R^2\sin^2\frac A2-4R^2\sin\frac A2+$

$8R^2\sin\frac A2\sin^2\frac{B-C}{4}$ $\Longleftrightarrow $ $OI^2=R^2\left(2\sin^2\frac A2-1\right)^2+8R^2\sin\frac A2\sin^2\frac{B-C}{4}$ $\Longleftrightarrow OI=R\sqrt {\left(2\sin\frac A2-1\right)^2+8\sin\frac A2\sin^2\frac {B-C}{4}}\ .$

$3\blacktriangleright$ Inlocuind pe $OI$ si ridicand la patrat, inegalitatea de demonstrat devine $:\ \left(2\sin\frac A2-1\right)^2\ge 0\ ,$ ceea ce este adevarat. Egalitatea are loc daca si numai daca $A=60^{\circ}\ .$



P20. Aratati ca in orice $\triangle ABC$ are loc inegalitatea $:\ \sum \frac{a}{AI^2} \geq \frac{p}{2r^2}\ .$

Demonstratie 1. $\mathrm{LHS}=\frac{1}{4R}\sum \frac{\sin A}{\sin^2\frac{B}{2}\cdot\sin^2\frac{C}{2}}\ge\frac{1}{4R}\frac{\prod\cos\frac{A}{2}}{\prod\sin^2\frac{A}{2}}=\mathrm{RHS}\ .$ Asadar, $\sum \sin A\ge\sum \sin 2A\Longleftrightarrow$ $\prod \sin \frac{A}{2}\le \frac{1}{8}\ .$ Altfel. $\sum \frac{a}{AI^2}=\frac{p(R-r)}{r^2R}\geq \frac{p}{2r^2}\ .$

Demonstratie 2. Vom demonstra fara a folosi identitatea $\boxed{\ \sum a^2(p-b)(p-c)=4p^2r(R-r)\ }\ .$ Astfel, $IA^2=\frac {bc(p-a)}{p}$ $\Longrightarrow\sum\frac {a}{IA^2}=\sum\frac {ap}{bc(p-a)}=\frac {p}{abc}\sum\frac {a^2}{p-a}=$

$\frac {1}{4Rr}\sum\frac {a^2}{p-a}\ .$ Insa $\sum\frac {a^2}{p-a}\stackrel{C.B.S.}{\ \ \ge\ \ }\frac {\left(\sum a\right)^2}{\sum (p-a)}=4p\ .$ Asadar $\sum\frac {a}{IA^2}\ge \frac {p}{Rr}\ ,$ insa mai slaba decat cea propusa deoarece $\frac {p}{2r^2}\ge\frac {p}{Rr}\ .$

Consecinta. Sa se arate ca in orice $\triangle ABC$ exista relatia $\boxed{\ \max\left\{\ \frac {a}{p-a}\ ,\ \frac {b}{p-b}\ ,\ \frac {c}{p-c}\ \right\}\ \ge \ \frac Rr\ }\ .$ Indicatie "tare" $:\ \frac {a\cdot\frac {a}{p-a}+b\cdot\frac {b}{p-b}+c\cdot\frac {c}{p-c}}{a+b+c}\ \ge\ \frac {R}{r}\ .$



P21. Sa se arate ca daca $\triangle ABC$ este ascutitunghic atunci $2[p^2-R(R-2r)]\ \le\boxed{\sum\frac {a(a^2+2bc)}{b+c}\ \le\ \frac {4(R+r)^2(2R-r)}{R}\ \le\ 9R(2R-r)}\ .$

Proof. Prima inegalitate este adevarata in orice $\triangle ABC$ (demonstrate !). Revenim. Folosind teorema Cosinusului partea stanga a inegalitatii este echivalenta cu $:\ \sum\ \frac{a(a^2+2bc)}{b+c}=$

$\sum\ \frac{a(b^2+c^2-2bc\cos A+2bc)}{b+c}=$ $\sum\ \frac{a[(b+c)^2-2bc\cos A]}{b+c}=$ $\sum\ a(b+c)-2abc\sum\ \frac{\cos A}{b+c}\ .$ Asadar, $LHS\equiv 2(ab+bc+ca)-2abc\cdot \left(\sum \frac{\cos A}{b+c}\right)\ (\ast)\ .$

In continuare vom demonstra inegalitatea (valabila in triunghi ascutitunghic !) $:\ \boxed{\sum\ \frac{\cos A}{b+c}\ \ge\ \frac{(R+r)^2}{2R^2p}}\ .$ Intr-adevar, aplicand inegalitatea C.B.S. si folosind faptul ca

$\boxed{\sum\ \cos A=1+\frac rR}$ si $\boxed{a=b\cos C+c\cos B}$ obtinem $:\ \sum\ \frac{\cos A}{b+c}=$ $\sum\frac{\cos^2 A}{(b+c)\cos A}\ \stackrel{\mathrm{C.B.S}}{ge}\ \frac{\left(\sum\cos A\right)^2}{\sum\ (b\cos A+c\cos A)}=$ $\frac{\left(1+\frac rR\right)^2}{\sum\ (b\cos C+c\cos B)}=$ $\frac{\frac{(R+r)^2}{R^2}}{\sum\ a}=$

$\frac{(R+r)^2}{2R^2p}\ .$ Revenind in $\stackrel{(*)}{\iff}\ LHS\le 2(ab+bc+ca)-8Rrp\ \cdot\ \frac{(R+r)^2}{2R^2p}=$ $2(ab+bc+ca)-\frac{4r(R+r)^2}{R}\ .$ In continuare aplicam inegalitatea Gerretsen $:$

$\boxed{ab+bc+ca\le 4(R+r)^2}\ \iff\ LHS\ \le\ 8(R+r)^2-\frac{4r(R+r)^2}{R}\iff$ $\boxed{\sum\ \frac{a(a^2+2bc)}{b+c}\ \le\ \frac{4(R+r)^2(2R-r)}R}\ .$
Frumoasa inegalitate !


P22. Sa se arate ca in $\triangle ABC$ cu cercul circumscris $w$ exista relatiile $\boxed{2(a+b+c)\le\sum\frac {bc}{s-a}\le\frac {(5R-2r)(4R+r)^2}{2s(2R-r)}}$ (notatii standard).

Demonstratie. Vom folosi relatia metrica remarcabila $\boxed{H\Gamma^2=4R^2\left[1-\frac{2s^2(2R-r)}{R(4R+r)^2}\right]\ge 0}\ (**)\ ,$ unde $H$ este ortocentrul si $\Gamma$ este punctul lui Gergonne pentru $\triangle ABC$ de unde

rezulta usor $\boxed{2s^2(2R-r)\le R(4R+r)^2}\ (*)\ .$ Asadar, $\sum\frac {bc}{s-a}=\frac {abc}s\cdot\sum\left(\frac 1{s-a}+\frac 1a\right)=$ $4Rr\cdot\left(\sum\frac 1{s-a}+\sum\frac 1a\right)=$ $4Rr\cdot \left[\frac {r(4R+r)}{sr^2}+\frac {s^2+r(4R+r)}{4Rrs}\right]=$

$\frac {4R(4R+r)}s+s+\frac {r(4R+r)}s=$ $s+\frac {(4R+r)^2}s\implies$ $\boxed{\sum\frac {bc}{s-a}=s+\frac {(4R+r)^2}s}\ (1)\ .$ In concluzie, inegalitatea propusa este echivalenta cu inegalitatea $s+\frac {(4R+r)^2}s\le$

$\frac {(5R-2r)(4R+r)^2}{2s(2R-r)}\iff$ $2s^2(2R-r)+2(2R-r)(4R+r)^2\le (5R-2r)(4R+r)^2\iff$ $2s^2(2R-r)\le \left[(5R-2r)-(4R-2r)\right](4R+r)^2\iff$

$2s^2(2R-r)\le R(4R+r)^2$ , adica ineg. adevarata $(*)\ .$ Se observa ca $\sum\frac {bc}{s-a}\ge 4s\iff$ $\frac {(4R+r)^2}s\ge 3s\iff$ $s\sqrt 3\le 4R+r$ , care este cunoscuta a fi adevarata.

Observatie. Vom dovedi relatia remarcabila $(**)$ folosind identitatea de tip Leibniz $\boxed{\sum (s-b)(s-c)\cdot HA^2=r(4R+r)\cdot H\Gamma ^2+\frac{4s^2r^2(R+r)}{4R+r}}\ (2)$ unde $\Gamma$ are coordonatele

$\left(\frac 1{s-a},\frac 1{s-b},\frac 1{s-c}\right)$ in raport cu $w\ .$ Se stie ca $\sum (s-b)(s-c)=r(4R+r)$ si puterea lui $\Gamma$ fata de $w$ este $p_w\left(\Gamma\right)=$ $-r(R+r)\cdot\left(\frac {2s}{4R+r}\right)^2\ .$ Se arata usor relatia

$\boxed{\sum a^2(s-b)(s-c)=4s^2r(R-r)}\ (***)\ .$ Asadar, $HA=2R|\cos A|\implies$ $HA^2=4R^2-a^2$ $\implies$ $\sum (s-b)(s-c)\cdot HA^2=$ $\sum (s-b)(s-c)\cdot \left(4R^2-a^2\right)=$

$4R^2\sum (s-b)(s-c)-$ $\sum a^2(s-b)(s-c)\ \stackrel{(***)}{=}\ 4R^2r(4R+r)-4s^2r(R-r)$ $\implies$ $\boxed{\sum (s-b)(s-c)\cdot HA^2=4R^2r(4R+r)-4s^2r(R-r)}\ (3)\ .$ Din relatia

Leibniz
$(2)$ si relatia precedenta $(3)$ obtinem $4R^2r(4R+r)-4s^2r(R-r)=$ $r(4R+r)\cdot H\Gamma ^2+$ $\frac{4s^2r^2(R+r)}{4R+r}$ $\iff$ $H\Gamma^2=4R^2-\frac{4s^2(R-r)}{4R+r}-\frac{4s^2r(R+r)}{(4R+r)^2}$ $\iff$

$H\Gamma^2=4R^2-\frac{4s^2}{(4R+r)^2}\cdot[(4R+r)(R-r)+r(R+r)]=$ $4R^2-\frac{4s^2}{(4R+r)^2}\cdot 2R(2R-r)=$ $4R^2-\frac {8s^2R(2R-r)}{(4R+r)^2}\implies$ $H\Gamma^2=4R^2\left[1-\frac{2s^2(2R-r)}{R(4R+r)^2}\right]\ .$



P23. Let $\triangle ABC$ with the incircle $C(I)$ and the circumcircle $w=\mathbb C(O,R)\ .$ Consider $D\in (BC)\ ,$ $E\in (CA)\ ,$ $F\in (AB)$ and denote $\{A,X\}=AD\cap w\ ,$

$\{B,Y\}=BE\cap w\ ,$ $\{C,Z\}=CF\cap w\ .$ Prove that $\frac {XA}{XD}+\frac {YB}{YE}+\frac {ZC}{ZF}\ \ge\ \left(\frac {b+c}{a}\right)^2+\left(\frac {c+a}{b}\right)^2+\left(\frac {a+b}{c}\right)^2$ with equality iff $I\ \in\ AD\cap BE\cap CF\ .$


Proof. I"ll prove $:\ \frac{XA}{XD}\ \ge\ \left(\frac {b+c}a\right)^2\ ,$ with equality iff $AD$ is the bisector of $\widehat {BAC}\ .$ Apply the Stewart's relation to the cevian $AD/\triangle ABC\ :\ a\cdot AD^2+a\cdot BD\cdot CD=$

$c^2\cdot CD+b^2\cdot BD$ $\Longrightarrow \frac{AD^2}{BD\cdot CD} + 1= \frac{c^2}{a\cdot BD}+\frac{b^2}{a\cdot CD}\ \stackrel{\small C.B.S.}{\ge}\ \left(\frac{b+c}a\right)^2$ cu egalitate iff $\frac{c}{a\cdot BD}=\frac{b}{a\cdot CD}\iff$ $AD$ is the bisector of $\widehat{BAC}\ .$ But $X\in AD\cap w\ ,$

$A\ne X\ \Longrightarrow$ $BD\cdot CD=AD\cdot DX\ .$ The last inequality is equivalent with $\frac{AD^2+AD\cdot DX}{AD\cdot DX}\ \ge\ $ $\left(\frac {b+c}a\right)^2\ \Longleftrightarrow\ $ $\frac{XA}{XD}\ \ge\ \left(\frac {b+c}a\right)^2$ $\implies$ $\sum \frac{XA}{XD}\ \ge\ \sum \left(\frac {b+c}a\right)^2\ .$



P24. Fie $\{a,b,c,d\}\subset R^*$ so that $\left\{\begin{array}{ccc}
a+b+c+d & = & 10\\\\
a^2+b^2+c^2+d^2 & = & 28\end{array}\right\|\ .$ Prove that $abcd\ne 0\ ,$ $d\le 4$ and find the maximum of the sum $\sum\frac 1a\ .$

Proof. $\left\{\begin{array}{c}
a+b+c=10-d\\\\
a^2+b^2+c^2=28-d^2\\\\
(a+b+c)^2\le 3\left(a^2+b^2+c^2\right)\implies\end{array}\right\|\implies$ $(10-d)^2\le 3\left(28-d^2\right)\implies$ $d^2-5d+4\le 0\implies$ $\boxed{\ \{a,b,c,d\}\subset [1,4]\ }\ .$

Apply the P. Schweitzer's inequality $\boxed{x_k\in [a,b]\ ,\ k\in\overline {1,n}\implies n^2\le \sum x_k\cdot\sum\frac {1}{x_k}\le \frac {(a+b)^2}{4ab}\cdot n^2}$ and obtain that $\sum \frac 1a\in \left[\frac 85,\frac 52 \right]\ .$



P25. Sa se arte ca in orice triunghi $ABC$ exista inegalitatea $a^2+b^2+c^2\ge 4S\cdot \left(\tan\frac A2+\tan\frac B2+\tan\frac C2\right)+\frac {8r}{R}\cdot OI^2\iff$ $s^2+5r^2\ge 16Rr\ .$

Demonstratie. Se folosesc cunoscutele identitati geometrice $\sum r_a=4R+r\ ,$ $\tan\frac A2=\frac r{s-a}$ si $OI^2=R(R-2r)$ (notatii standard).

Intr-adevar, $\sum a^2\ge 4S\cdot\sum\tan \frac A2+\frac {8r}R\cdot OI^2\iff$$2\left(s^2-r^2-4Rr\right)\ge 4S\sum\frac r{s-a}+\frac {8r}R\cdot\left(R^2-2Rr\right)\iff$

$s^2\ge r^2+4Rr+2r\sum r_a+4r(R-2r)\iff$ $s^2\ge 8Rr-7r^2+2r(4R+r)\iff$ $s^2+5r^2\ge 16Rr\ ,$ what is true.



P26. Let $\{x,y\}\subset\mathbb R_+^*$ so that $xy<1\ .$ Prove that $\boxed{\left(\frac{2x}{1+x^2}\right)^2+\left(\frac{2y}{1+y^2}\right)^2\le\frac {1}{1-xy}}\ (*)\ .$

Proof. $(\exists )\ \{a,b\}\subset \left(0,\frac {\pi}2\right)$ so that $\left\{\begin{array}{ccc}
x=\tan a\\\\
y=\tan b\end{array}\right\|$ and $xy<1\iff \tan a\tan b<1\iff$ $\sin a\sin b<\cos a\cos b\iff$ $\cos(a+b)>0\iff$ $a+b\in\left(0,\frac {\pi}2\right)\ .$

Our inequality is equivalent with $\sin^22a+\sin^22b\le \frac 1{1-\tan a\tan b}\iff$ $E\ge 0$ where $E\equiv \tan a\tan b\left(\sin^2 2a+\sin^2 2b\right)+1-\sin^2 2a-\sin^2 2b\ .$ Observe

that $E\ge 2\tan a\tan b\sin 2a\sin 2b+1-\sin^2 2a-\sin^2 2b=$ $8\sin^2a\cdot\sin^2b+1-4\sin^2 a\left(1-\sin^2 a\right)-4\sin^2 b\left(1-\sin^2b\right)=$ $4\left(\sin^2a+\sin^2b\right)^2+$

$1-4\left(\sin^2a+\sin^2b\right)=$ $\left(2\sin^2 a+2\sin^2b-1\right)^2\ge 0\ .$ Equality occurs for $:$ if $a,b>0$ then $\sin 2a=\sin 2b,\;\sin^2a+\sin^2b=\frac{1}{2}\iff$ $a=b\ ,\ \sin a=\frac{1}{2}\ ,$

$\{a,b\}\subset\left[0,\frac{\pi}4\right]\iff$ $a=\frac{\pi}6\ ,\ b=\frac{\pi}6\iff$ $x=y=\frac{1}{\sqrt{3}}\ ;$ if $a=0$ or $b=0$ then $b=\frac{\pi}{4}$ or $a=\frac{\pi}{4}\iff$ $x=0\ ,\ y=1$ or $x=1\ ,\ y=0\ .$



P27. Let $\triangle ABC$ and $\{\alpha , \beta , \gamma\}\subset\mathbb R\ .$ Prove that $\left\{\begin{array}{cccccccc}
\alpha +\beta +\gamma  & = & 0 & \implies & \beta\gamma a^2+\gamma\alpha b^2+\alpha \beta c^2 & \le & 0 & (1)\\\\
\alpha a+\beta b+\gamma c & = & 0 & \implies & \alpha\beta +\beta \gamma +\gamma\alpha & \le & 0 & (2)\end{array}\right\|\ .$

Proof.

$1.\blacktriangleright$ Suppose w.l.o.g. $\alpha\beta\gamma\ne 0\ .$ Thus, $\beta\gamma a^2+\gamma\alpha b^2+\alpha \beta c^2\le 0\iff$ $\beta\gamma a^2\le -\alpha \left(\gamma b^2+\beta c^2\right)\iff$ $\beta\gamma a^2\le (\beta +\gamma )\left(\gamma b^2+\beta c^2\right)\iff$

$\beta^2c^2+\beta\gamma \left(b^2+c^2-a^2\right)+\gamma^2b^2\ge 0\iff$ $\beta^2c^2+2\beta\gamma bc\cos A+\gamma^2b^2\ge 0\iff$ $\left(\beta c+\gamma b\cos A\right)^2+\gamma^2b^2\sin^2A\ge 0\ ,$ what is true.

We have equality, i.e. $\beta\gamma a^2+\gamma\alpha b^2+\alpha \beta c^2= 0\iff\alpha =\beta =\gamma=0\ .$

$2.\blacktriangleright$ Suppose w.l.o.g. $\alpha\beta\gamma\ne 0$ and denote $\boxed{t=\frac {\beta}{\gamma}}\ (*)\ .$ Thus, $-\alpha =\frac {\beta b+\gamma c}a$ and $-(\alpha\beta +\beta \gamma +\gamma\alpha) =$ $-\beta\gamma -\alpha (\beta +\gamma)=$ $-\beta\gamma +\frac {(\beta +\gamma)(\beta b+\gamma c)}a\ .s.s.$

$ -a\beta\gamma +$ $(\beta +\gamma)(\beta b+\gamma c)\ .s.s.\ -at +$ $(t+1)(bt+c)=$ $bt^2+(b+c-a)t+c\ .$ Denote $\boxed{f(t)=bt^2+(b+c-a)t+c}\ .$ Observe that $\Delta =(b+c-a)^2-4bc=$

$(b+c)^2-4bc+a^2-2a(b+c)=$ $(b-c)^2+a^2-2a(b+c)\le$ $ a^2+a^2-2a(b+c)=$ $2a^2-2a(b+c)\le 0\implies$ $\Delta\le 0\ ,$ i.e. $f(t)\ge 0$ for any $t\in\mathbb R^*\ .$

In conclusion, $-(\alpha\beta +\beta \gamma +\gamma\alpha)\ge 0\iff \alpha\beta +\beta \gamma +\gamma\alpha\le 0\ .$


Application. Let $\triangle ABC$ and $M\in (BC)\ ,$ $N\in (CA)\ ,$ $P\in (AB)$ so that $AP+BM+CN=PB+MC+NA\ .$ Prove that $[MNP]\le \frac S4\ ,$ where $S=[ABC]\ .$

Proof. Denote $AP=\gamma c\ ,$ $BM=\alpha a\ ,$ $CN=\beta b\ ,$ i.e. $BP=(1-\gamma ) c\ ,$ $CM=(1-\alpha ) a\ ,$ $BN=(1-\beta )b\ ,$ where $\{\alpha ,\beta ,\gamma\}\subset(0,1)\ .$ Thus, $AP+BM+CN=$

$PB+MC+NA\iff$ $ \boxed{(2\alpha -1)a+(2\beta -1)b+(2\gamma -1)c=0}\ (*)\ .$ From the previous PP27 (the second implication) obtain $(2\alpha -1)(2\beta -1)+(2\beta -1)(2\gamma -1)+$

$(2\gamma -1)(\alpha -1)\le 0$ $\iff$ $4\cdot \sum \beta\gamma-2\cdot\sum (\beta +\gamma )+3\le 0\iff$ $4\cdot \sum \beta\gamma-4\cdot\sum \alpha +3\le 0\iff$ $\boxed{\sum \alpha -\sum \beta\gamma\ge\frac 34}\ (2)\ .$ Prove easily that $\frac {[MNP]}{[ABC]} =$

$1-\frac {[PAN]}{[BAC]}-\frac {[MBP]}{[CBA]}-\frac {[NCM]}{[ACB]}=$ $1-\gamma (1-\beta )-\alpha (1-\gamma )-\beta (1-\alpha )=$ $1-\sum \alpha +\sum\beta\gamma\ \stackrel{(2)}{\le}\ 1-\frac 34=\frac 14\ ,$ i.e. $[MNP]\le\frac S4\ .$



P28 (own). $\triangle ABC\Longrightarrow \left(\forall\right)\ X\ ,\ \frac{XA^2}{a}+\frac{XB^2}{b}+\frac{XC^2}{c}\ge \frac{a^3+b^3+c^3}{ab+bc+ca}$ . Remark. Try some particular cases: $X\in \{O,H,G,\ldots\}\ .$

Proof (Constantin MATEESCU). The solution has been inspired from one of the problems in Virgil's book on Planar Geometry (este singura carte pe care o port cu mine oriunde! :) ). I don't think there

is a different way to derive this amazing inequality which features a very special equality case! Firstly, we need to recall that the distance between two points $P$ and $P^{\prime}$ whose normalised barycentric

coordinates w.r.t. $\triangle ABC$ are $(\alpha, \beta, \gamma)$ and $(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime})$ respectively, is given by the following relation
$:\ \boxed{ {PP^{\prime}}^2 = - \left[(\beta - \beta^{\prime}) (\gamma - \gamma^{\prime}) a^2 + (\gamma - \gamma^{\prime}) (\alpha - \alpha^{\prime}) b^2 + (\alpha - \alpha^{\prime}) (\beta - \beta^{\prime}) c^2\right] }\ .$

Consequence. For $P(\alpha, \beta, \gamma)$ and $P^{\prime}(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime})$ w.r.t. $\triangle ABC$ the following inequality holds $:\ \boxed{ (\beta - \beta^{\prime}) (\gamma - \gamma^{\prime}) a^2 + (\gamma - \gamma^{\prime}) (\alpha - \alpha^{\prime}) b^2 + (\alpha - \alpha^{\prime}) (\beta - \beta^{\prime}) c^2 \le 0 }\ .$ Now let $P = X$

and let $P^{\prime}$ be the isotomic of the incenter $I$ of $\triangle ABC$. Thus: $X(\alpha, \beta, \gamma )$ and $P^{\prime}\left(\frac {bc}{ab + bc + ca}, \frac {ca}{ab + bc + ca}, \frac {ab}{ab + bc +ca}\right)\ .$ Using the above corollary we succesively obtain that

$\sum a^2\left(\beta - \frac {ca}{ab + bc + ca}\right)\left(\gamma - \frac {ab}{ab + bc + ca}\right) \le 0\iff \sum a^2\beta\gamma - \sum \frac{a^3(b\beta + c\gamma)}{ab + bc + ca} + abc\sum \frac {a^3}{(ab + bc + ca)^2} \le 0\iff$ $ \frac {a^3 + b^3 + c^3}{ab + bc + ca} \le \sum \frac{a^3(b\beta + c\gamma)}{abc} - $

$\frac {ab + bc + ca}{abc}\sum a^2\beta\gamma\iff \frac {a^3 + b^3 + c^3}{ab + bc + ca} \le \sum \frac {bc(b^2\gamma + c^2\beta)}{abc} - $ $\frac {ab + bc + ca}{abc}\sum a^2\beta\gamma\iff $ $\frac {a^3 + b^3 + c^3}{ab + bc + ca} \le \sum \left(\frac {bc(b^2\gamma + c^2\beta)}{abc} - \frac {bc}{abc}\sum a^2\beta\gamma \right)\iff $

$\frac {a^3 + b^3 + c^3}{ab + bc + ca} \le \sum \frac {\left(b^2\gamma + c^2\beta\right) - \left(a^2\beta\gamma + b^2\gamma\alpha + c^2\alpha\beta\right)}a\iff $ $\frac {a^3 + b^3 + c^3}{ab + bc + ca} \le \sum \frac {-\left[\beta\gamma a^2 + \gamma\left(\alpha - 1\right) b^2 + \left(\alpha - 1\right)\beta c^2\right]}a\iff $ $\boxed{\frac {a^3 + b^3 + c^3}{ab + bc + ca} \le \frac {XA^2}a + \frac {XB^2}b + \frac {XC^2}c}\ .$

The equality is attained $\iff\ X$ is the isotomic of the incenter $I$ of $\triangle ABC$. Particular cases. $\boxed{\begin{array}{ccc}
X:= H\ \mathrm{\left(\underline{orthocenter}\right)} & \implies & \sum\frac a{\tan^2A}\ge \frac {a^3+b^3+c^3}{ab+bc+ca}\\\\
X:=O\ \mathrm{\left(\underline{circumcenter}\right)} & \implies & \sqrt {abc\left(a^3+b^3+c^3\right)}\le R\cdot (ab+bc+ca)\end{array} }\ .$



P29 (Nguyen Viet Hung, Vietnam) <= click.

Proof 1 (with barycentric coordinates). $G\left(\frac 13,\frac 13,\frac 13\right)\ ,$ $I\left(\frac {a}{\sum a},\frac {b}{\sum a},\frac {c}{\sum a}\right)\ ,$ $K\left(\frac {a^2}{\sum a^2},\frac {b^2}{\sum a^2},\frac {c^2}{\sum a^2}\right)$ $\implies$ $\frac {[GIK]}{[ABC]}=\left|\begin{array}{ccc}
\frac 13 & \frac 13 & \frac 13\\\\
\frac {a}{\sum a} & \frac {b}{\sum a} & \frac {c}{\sum a}\\\\
\frac {a^2}{\sum a^2} & \frac {b^2}{\sum a^2} & \frac {c^2}{\sum a^2}\end{array}\right|=$

$\frac 13\cdot \frac 1{\sum a}\cdot\frac 1{\sum a^2}\cdot \mathrm{mod}\left|\begin{array}{ccc}
1 & 1 & 1\\\\
a & b & c\\\\
a^2 & b^2 & c^2\end{array}\right|=$ $\frac{\left|\ V(a,b,c)\ \right|}{3(a+b+c)\left(a^2+b^2+c^2\right)}=$ $\frac {|(c-a)(c-b)(b-a)|}{3(a+b+c)\left(a^2+b^2+c^2\right)}\implies$ $\boxed{\ \frac {[GIK]}{[ABC]}=\frac {|(c-a)(c-b)(b-a)|}{3(a+b+c)\left(a^2+b^2+c^2\right)}\ }\ .$
This post has been edited 62 times. Last edited by Virgil Nicula, Jan 21, 2018, 2:14 PM

456. Probleme de Algebra.

by Virgil Nicula, Aug 4, 2017, 12:56 PM

P1. $P(X)=X^3-mX^2+nX-p$ is a polynomial with the real coefficients and $P(x)=0$ has only real roots $\{a,b,c\}\ .$ Find $|(a-b)(b-c)(c-a)|$ depending on $\{m,n,p\}\ .$

Proof. $S_k=a^k+b^k+c^k\ ,\ (\forall ) k\in\mathbb N^*$ and $\left\{\begin{array}{ccccc}
s_1 & \equiv  & a+b+c & = & m\\\\
s_2 & \equiv & ab+bc+ca & = & n\\\\
s_3 & \equiv & abc & = & p\end{array}\right\|\ \implies\ \left\{\begin{array}{ccccc}
S_1=s_1=m\\\\
S_2=s_1^2-2s_2=m^2-2n\\\\
S_3=s_1^3-3s_1s_2+3s_3=m^3-3mn+3p\\\\
S_4=s_1^4-4s_1^2s_2+4s_1s_3-2s_2^2=m^4-4m^2n+4mp+2n^2\end{array}\right\|\ .$

From $\Delta=\det\left\|\begin{array}{ccc}
1 & 1 & 1\\\\
a & b & c\\\\
a^2 & b^2 & c^2\end{array}\right\|=(a-b)(b-c)(c-a)$ obtain $\Delta^2=\det\left(\left\|\begin{array}{ccc}
1 & 1 & 1\\\\
a & b & c\\\\
a^2 & b^2 & c^2\end{array}\right\|\cdot\left\|\begin{array}{ccc}
1 & a & a^2\\\\
1 & b & b^2\\\\
1 & c & c^2\end{array}\right\|\right)=$ $\det\left\|\begin{array}{ccc}
3 & s_1 & S_2\\\\
s_1 & S_2 & S_3\\\\
S_2 & S_3 & S_4\end{array}\right\|=$

$3S_2S_4+2s_1S_2S_3-$ $\left(S_2^3+3S_3^2+s_1^2S_4\right)=$ $3\left(m^2-2n\right)\left(m^4-4m^2n+4mp+2n^2\right)+$ $2m\left(m^2-2n\right)\left(m^3-3mn+3p\right)-$

$\left[\left(m^2-2n\right)^3+3\left(m^3-3mn+3p\right)^2+m^2\left(m^4-4m^2n+4mp+2n^2\right)\right]=$ $-4m^3p+m^2n^2+18mnp-4n^3-27p^2\implies$

$\boxed{|\Delta|=\sqrt{-4m^3p+m^2n^2+18mnp-4n^3-27p^2}}\ .$ Observe that $\boxed{\{a,b,c\}\subset \mathbb R\implies 4m^3p+4n^3+27p^2\le m^2n^2+18mnp}\ .$



P2 (Israel Diaz ACHA: click => here). Let $Q(x)=x^3+4x^2-11x-43=0\implies \odot\begin{array}{ccc}
\nearrow & x_1=a & \searrow\\\\
\rightarrow & x_2=b & \rightarrow\\\\
\searrow & x_3=c & \nearrow\end{array}\odot\ ,$ where $\{a,b,c\}\subset\mathbb R^*\ ,$

$a<b<c$ and $\left\{\begin{array}{ccccc}
s_1 & \equiv  & a+b+c & = & -4\\\\
s_2 & \equiv & ab+bc+ca & = & -11\\\\
s_3 & \equiv & abc & = & 43\end{array}\right\|\ .$ Find the polynominal $P\in \mathbb R[X]\ ,\ \mathrm{gr}(P)=2$ such that $\left\{\begin{array}{ccc}
P(a) & = & c\\\\
P(b) & = & a\\\\
P(c) & = & b\end{array}\right\|\ .$


Proof. Exist $\{m,n,p\}\subset \mathbb R\ ,\ P(X)=m(X-b)(X-c)+n(X-c)(X-a)+p(X-a)(X-b)\implies$

$\left\{\begin{array}{ccccc}
P(a)=c & \implies & m(a-b)(a-c)=c & \implies & m=\frac c{(a-b)(a-c)}\\\\
P(b)=a & \implies & n(b-c)(b-a)=a & \implies & n=\frac a{(b-c)(b-a)}\\\\
P(c)=b & \implies & p(c-a)(c-b)=b & \implies & p=\frac b{(c-a)(c-b)}\end{array}\right\|\implies$ $\boxed{\frac m{c(c-b)}=\frac n{a(a-c)}=\frac p{b(b-a)}=\frac 1k}\ ,$ where $\boxed{k=(a-b)(b-c)(c-a)}\ (*)\ .$

Thus, $P(X)=(m+n+p)X^2-[m(b+c)+n(c+a)+p(a+b)]X+mbc+nac+pab\implies$ $k\cdot P(X)=X^2\cdot\sum\limits_{\mathrm{cyc}} c(c-b)-X\cdot\sum\limits_{\mathrm{cyc}}c(c-b)(b+c)+$

$\sum\limits_{\mathrm{cyc}}bc^2(c-b)\ .$ See
here. So $a<b<c\implies k>0$ and from upper problem P1 get $k=|\Delta|=\sqrt{2401}=49\implies \boxed{k=49}\ .$

Now I"ll calculate the coefficients of the required polynominal $P(X)\ .$ Denote $\boxed{u_1=\sum b^2c\ ,\ v_1=\sum\limits_{\mathrm{cyc}}  bc^3\ ;\ u_2=\sum bc^2\ ,\ v_2=\sum\limits_{\mathrm{cyc}}  b^3c}\ .$ Therefore $:$

$\blacktriangleright\ \sum\limits_{\mathrm{cyc}} c(c-b)=$ $\sum\limits_{\mathrm{cyc}}\left(c^2-bc\right)=$ $S_2-s_2=s_1^2-3s_2=m^2-3n=(-4)^2-3(-11)=16+33=49$ $\implies \boxed{\sum\limits_{\mathrm{cyc}} c(c-b)=49}\ .$

$\blacktriangleright\ \sum\limits_{\mathrm{cyc}}c(c-b)(c+b)=$ $\sum\limits_{\mathrm{cyc}}\left(c^3-b^2c\right)=S_3-\sum\limits_{\mathrm{cyc}} b^2c=\left(s_1^3-3s_1s_2+3s_3\right)-u_1\ ;\ \sum\limits_{\mathrm{cyc}}bc^2(c-b)=$ $\sum\limits_{\mathrm{cyc}}\left(bc^3-b^2c^2\right)=v_1-\sum\limits_{\mathrm{cyc}} (bc)^2=v_1-\left(s_2^2-2s_1s_3\right)\ .$

Observe that $:\ \left\{\begin{array}{ccccc}
u_2+u_1=\sum\limits_{\mathrm{cyc}}bc(b+c)=s_1s_2-3s_3=s_1s_2-3s_3=-85 & \implies & u_2+u_1 & = & -85 \\\\
u_2-u_1=\sum\limits_{\mathrm{cyc}}bc(c-b)=(a-b)(b-c)(c-a)=k=49 & \implies & u_2-u_1 & = & 49\end{array}\right\|\implies$ $\left\{\begin{array}{ccc}
u_1 & = & -67\\\\
u_2 & = & -18\end{array}\right\|\ ;$

$\left\{\begin{array}{ccccc}
v_1+v_2=\sum\limits_{\mathrm{cyc}}bc\left(b^2+c^2\right)=\sum\limits_{\mathrm{cyc}}\left(s_2S_2-s_1s_3\right)=s_1^2s_2-2s_2^2-s_1s_3=-246 & \implies & v_1+v_2 & = & -246\\\\
v_1-v_2=\sum\limits_{\mathrm{cyc}}bc\left(c^2-b^2\right)=(a-b)(b-c)(c-a)(a+b+c)=ks_1=-196  & \implies & v_1-v_2 & = & -196\end{array}\right\|\implies$ $\left\{\begin{array}{ccc}
v_1 & = & -221\\\\
v_2 & = & -25\end{array}\right\|\ .$

Thus, $\sum\limits_{\mathrm{cyc}}c(c-b)(c+b)=$ $\left(s_1^3-3s_1s_2+3s_3\right)-u_1=0$ and $\sum\limits_{\mathrm{cyc}}bc^2(c-b)=$ $\sum\limits_{\mathrm{cyc}}\left(bc^3-b^2c^2\right)=$

$v_1-\sum\limits_{\mathrm{cyc}} (bc)^2=v_1-\left(s_2^2-2s_1s_3\right)=-686\implies 49\cdot P(X)=49X^2-686\implies$ $\boxed{P(X)=X^2-14}\ .$



P3 (Turan BEY). Let $x\in \mathbb C$ satisfying the relation $x^2-x\sqrt 3+1=0\
 .$ Find the value $f(x)=\left(3+\sqrt{12}\right)\cdot g(x)\ ,$ where $g(x)=\frac {\left(x^5+1\right)^2}{x^{10}+1}\ .$

Proof. Observe that $\boxed{x+\frac 1x=\sqrt 3}$ and $g(x)=\frac {x^{10}+2x^5+1}{x^{10}+1}=$ $1+\frac {2x^5}{x^{10}+1}=$ $1+\frac 2{x^5+\frac 1{x^5}}\implies$ $g(x)=1+\frac 2{S_5}\ ,$ where $S_k=x^k+\frac 1{x^k}\ ,\ k\in\mathbb N^{*}\ ,$ $\underline{S_1=\sqrt 3}\ .$

Prove easily $\boxed{S_{k+2}=S_1\cdot S_{k+1}-S_k\ ;\ (\forall )\ k\in\mathbb N^{*}}\ .$ Hence, $S_2=S_1^2-2=1\implies \underline{S_2=1}\implies$ $S_3=S_1S_2-S_1=0\implies$ $\underline{S_3=0}\implies$ $S_4=S_1S_3-S_2=-1\implies$

$\underline{S_4=-1}\implies$ $S_5=S_1S_4-S_3=-\sqrt 3\implies$ $\boxed{S_5=-\sqrt 3}\ .$ In conclusion, $g(x)=1-\frac 2{\sqrt 3}=-\frac {2-\sqrt 3}{\sqrt 3}\implies$ $f(x)=-\frac {\left(2-\sqrt 3\right)\left(3+2\sqrt 3\right)}{\sqrt 3}\implies$ $\boxed{f(x)=-1}\ .$



P4. Let the function $f:\mathbb R\rightarrow\mathbb R\ ,$ where $f(x)= a_0x^3+a_1x^2+a_2x+a_3\ ,\ a_0\ne 0$ and three collinear points $\left\{P_k\ ,\ k\in\overline{1,3}\right\}\subset \mathbb G_f\ .$

For any $k\in\overline{1,3}$ the tangent $P_kP_k$ to graph $\mathbb G_f$ at the point $P_k\in \mathbb G_f$ meet again $\mathbb G_f$ in $Q_k\ .$ Prove that the points $Q_k\ ,\ k\in\overline {1,3}$ are collinearly.


Proof. $P_k\left(x_k,f\left(x_k\right)\right)\in\mathbb G_f\ ,\ k\in\overline{1,3}$ are collinearly $\iff$ $\left|\begin{array}{ccc}
x_1 & f\left(x_1\right) & 1\\\\
x_2 & f\left(x_2\right) & 1\\\\
x_3 & f\left(x_3\right) & 1\end{array}\right|=0\iff$ $\left(x_2-x_1\right)\left(x_3-x_1\right)\left(x_2-x_3\right)\left[a_0\left(x_1+x_2+x_3\right)+a_1\right]=0\iff$

$\boxed{x_1+x_2+x_3=-\frac {a_1}{a_0}}\ (*)\ .$ Let $Q_k\left(y_k,f\left(y_k\right)\right)\in\mathbb G_f\ ,\ k\in\overline{1,3}\ .$ Thus, $(\forall )\ k\in\overline{1,3}\ ,$ $\left\{P_k,P_k,Q_k\right\}$ are collinearly $\iff (\forall )\ k\in\overline{1,3}\ ,$ $2x_k+y_k=-\frac {a_1}{a_0}$ $\implies$

$2\sum x_k+\sum y_k=-\frac {3a_1}{a_0}\ \stackrel{(*)}{\iff}\ -\frac {2a_1}{a_0}+\sum y_k=$ $-\frac {3a_1}{a_0}\iff\sum y_k=-\frac {a_1}{a_0}\iff$ the points $Q_k\ ,\overline{1,3}$ are collinearly.

Particular case. If there is at least an extremum point, then the extremum points and the inflection point are collinearly.



P5 (Javier CRUZ).. Solve over $\mathbb R$ the following system of the equations $\boxed{\ \odot\begin{array}{ccccccc}
\nearrow & x^3 & - & y^3 & = & 74 & \searrow\\\\
\searrow & x^2 & + & y^2 & = & 26 & \nearrow\end{array}\odot\ }$ .

Proof. Let $S=x+y\ ,$ $P=xy$ and $D=x-y\ .$ Our system becomes $\odot\begin{array}{ccccc}
\nearrow & D\left(S^2-P\right) & = & 74 & \searrow\\\\
\rightarrow & S^2-4P & = & D^2\ & \rightarrow\\\\
\searrow & S^2-2P & = & 26 & \nearrow\end{array}\odot\implies$ $\odot\begin{array}{cccccc}
\nearrow & S^2+D^2 & = & 52 & \searrow\\\\
\searrow & 2P+26 & = & S^2 & \nearrow\end{array}\bigoplus\implies$ $\left\{\begin{array}{cc}
\boxed{\ S^2=52-D^2\ } & (1)\\\\
\boxed{\ 2P=26-D^2\ } & (2)\end{array}\right\|\ .$ Thus, $D\left(S^2-P\right)=74\ \stackrel{1\wedge 2}{\iff}\ D\left[\left(52-D^2\right)-\frac {26-D^2}2\right]=74\iff$ $D^3-78D+148=0\iff$ $D\in\left\{\ 2\ ,\ -1\pm 5\sqrt 3\ \right\}$ a.s.o.


P6. Solve over $\mathbb R$ the irrational equation $\sqrt {5-x^2}+x\sqrt{5-x^2}+x=5\ .$

Proof. Denote $\boxed{y=\sqrt {5-x^2}}\ (*)\ ,$ i.e. $\boxed{x^2+y^2=5}\ (1)\ .$ Observe that $\sqrt {5-x^2}+x\sqrt{5-x^2}+x=5$ $\iff$ $y+xy+x=5\iff$ $\boxed{(1+x)(1+y)=6}\ (2)\ ,$

where $\boxed{-1<x\le \sqrt 5}\ .$ From the system of the relations $(1\ \wedge\ 2)$ with the substitution $\boxed{x+y=t\ (3)}$ obtain that $2xy=t^2-5$ and the equation $1+t+\frac {t^2-5}2=6\ ,$

i.e. $t^2+2t-15=0\begin{array}{ccccccccccc}
\nearrow & t_1=-5 & \implies & x+y & = & -5 & \implies & xy & = & 10 & \searrow\\\\
\searrow & t_2=3 & \implies & x+y & = & 3 & \implies & xy & = & 2 & \nearrow\end{array}\odot \implies$ $\left\{\begin{array}{ccc}
x+y & = & 3\\\\
xy & = & 2\end{array}\right\|\implies$ $\{x,y\}=\{2,3\}\ .$



P7. Problema propusa (<= click) pentru clasa a VII - a. SUCCES!

Proof. $\boxed{\ \left\{\begin{array}{cccc}
x^2-x+1=0 & \implies & \boxed{\ x^2=x-1\ } & (1)\\\\
x^3+1=(x+1)\left(x^2-x+1\right) & \stackrel{(1)}{\implies} & \boxed{\ x^3=-1\ } & (2)\end{array}\right\|\implies\ \left\{\begin{array}{cccc}
x^5=x^3\cdot x^2\ \stackrel{(1\wedge 2)}{=}\ (-1)(x-1) & \implies & \boxed{\ x^5=1-x\ } & (3)\\\\
\frac 1{x^5}=\frac x{x^6}=\frac x{\left(x^3\right)^2}\ \stackrel{(2)}{=}\ \frac x{(-1)^2}=x & \implies & \boxed{\  \frac 1{x^5}=x\ } & (4)\end{array}\right\|\ \stackrel{(3\wedge 4)}{\implies}\ \boxed{x^5+\frac 1{x^5}=1}\ }$
This post has been edited 221 times. Last edited by Virgil Nicula, Mar 16, 2019, 6:29 AM

456* Integrals.

by Virgil Nicula, Jul 31, 2017, 1:31 PM

P1 (Kunihiko Chikaya). Calculate the definite integral $I=\int\limits_{\sqrt 2-1}^{\sqrt 2+1}f(x)\ \mathrm{dx}\ ,$ where $f(x)=\frac {x^4+x^2+2}{x^4+2x^2+1}\ .$

Proof. $f(x)=1+g(x)\ ,$ where $g(x)=\frac {1-x^2}{\left(x^2+1\right)^2}$ and $\left|x-\sqrt 2\right|\le 1\iff \boxed{I=2+J}\ (*)\ \ ,$ where $J=\int\limits_{\sqrt 2-1}^{\sqrt 2+1}g(x)\ \mathrm{dx}\ .$ Thus, $J=\int\limits_{\sqrt 2-1}^{\sqrt 2+1}\frac {1-x^2}{\left(x^2+1\right)^2}\ \mathrm{dx}=$

$\int\limits_{\sqrt 2-1}^{\sqrt 2+1}\frac {\frac 1{x^2}-1}{\left(x+\frac 1x\right)^2}\ \mathrm{dx}=$ $\int\limits_{\sqrt 2-1}^{\sqrt 2+1}\frac {-\left(x+\frac 1x\right)'}{\left(x+\frac 1x\right)^2}\ \mathrm{dx}\ \stackrel{t=\phi (x)=x+\frac 1x}{=}\ \int\limits_{2\sqrt 2}^{2\sqrt 2}\frac {-1}{t^2}\ \mathrm{dt}=$ $\left\{\ \frac 1t\ \right|_{2\sqrt 2}^{2\sqrt 2}=0\implies \boxed{\ J=0\ }\ (1)\ .$ In conclusion, $J=0$ and $I=2+J\implies I=2\ .$
This post has been edited 20 times. Last edited by Virgil Nicula, Feb 8, 2018, 7:30 PM

455. Problems for the relaxation in ... weekend!

by Virgil Nicula, Jul 9, 2017, 2:12 PM

$\boxed{\mathrm{LEMMA\ :}\ (\forall )\ x>0\ ,\ x^3+1\ge x\sqrt{2\left(x^2+1\right)}\ .\ \mathrm{APPLICATION\ :}\ (\forall )\ \triangle\ ABC\ ,\ a^3+b^3+c^3\ \ge\ \left(2+\sqrt 2\right)abc}$


P1. Prove that $\sum_{\mathrm{cyc}} a^2(s-a)=4rs(R+r)$ and $\sum_{\mathrm{cyc}}\frac {a^2}{(s-b)(s-c)}\ge 12\ ,$ where $2s=a+b+c\ ($ standard notations for $\triangle ABC)\ .$

Proof.

$\blacktriangleright$ Denote $\left\{\begin{array}{ccc}
x & := & s-a\\\
y & := & s-b\\\
z & := & s-c\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
a & = & y+z\\\
b & = & x+z\\\
c & = & x+y\end{array}\right\|\ .$ Hence $\left\{\begin{array}{ccc}
x+y+z & = & s\\\\
a+b+c & = & 2s\end{array}\right\|\ .$ Therefore, $\sum_{\mathrm{cyc}} a^2(s-a)=$ $\sum x(y+z)^2=$ $\sum \left[2xyz+x\left(y^2+z^2\right)\right]=$

$2\cdot \sum (xyz)+\sum x\left(y^2+z^2\right)=$ $6xyz+\sum yz(y+z)=$ $6xyz+\sum yz[(x+y+z)-x]=6xyz+\sum yz\cdot \sum x-\sum (xyz)=$ $3xyz+\sum (s-b)(s-c)\cdot\sum (s-a)=$

$3(s-a)(s-b)(s-c)+s\cdot \sum [bc-s(s-a)]=$ $3sr^2+s\left(\cancel{s^2}+r^2+4Rr\right)-\cancel{s^3}=4sr^2+4Rsr=4sr(R+r)\implies$ $\boxed{\sum_{\mathrm{cyc}} a^2(s-a)=4sr(R+r)}\ .$ We have equality iff $P=1\ ,$ i.e. $yz=1\ .$

$\blacktriangleright\ \sum_{\mathrm{cyc}}\frac {a^2}{(s-b)(s-c)}=\sum_{\mathrm{cyc}}\frac {(y+z)^2}{yz}=$ $\sum_{\mathrm{cyc}}\left(\frac yz+\frac zy+2\right)=6+\sum\left(\frac yz+\frac zy\right)\ge 12\implies$ $\boxed{\sum_{\mathrm{cyc}}\frac {a^2}{(s-b)(s-c)}\ge 12}\ .$ I used the identities $\left\|\begin{array}{c}
s(s-a)+(s-b)(s-c)=bc\\\\
ab+bc+ca=s^2+r^2+4Rr\\\\
(s-a)(s-b)(s-c)=sr^2\end{array}\right\|\ .$

Remark. $\sum\frac {a^2}{(s-b)(s-c)}=\frac 1{(s-a)(s-b)(s-c)}\cdot\sum a^2(s-a)=$ $\frac {4sr(R+r)}{sr^2}=\frac {4(R+r)}r\ge \frac {4(2r+r)}r=12\implies$ $\sum\frac {a^2}{(s-b)(s-c)}\ge 12\ .$



P2. For an $A$-rightangled $\triangle ABC$ denote $:\ M\ -$ the midpoint of $[AB]\ ;\ D\ -$ the projection of $A$ on $BC\ .$ Prove that the equivalence $\boxed{m\left(\widehat{MCA}\right)=2\cdot m\left(\widehat{MCB}\right)\iff\frac {DB}{DC}=\frac {1+\sqrt {17}}2}\ .$

Proof. Let $m\left(\widehat{MCB}\right)=\phi$ and $\boxed{t:=\frac {c^2}{b^2}}\ .$ $\implies$ $\frac {DB}{DC}=\frac {a\cdot DB}{a\cdot DC}=\frac {c^2}{b^2}=t\implies$ $\boxed{\frac{DB}{DC}=t}\ (*)\ .$ Thus, $1=\frac {MA}{MB}=\frac {CA}{CB}\cdot\frac {\sin\widehat{MCA}}{\sin\widehat{MCB}}=$ $\frac ba\cdot \frac {\sin 2\phi}{\sin\phi}\implies$ $1=\frac {2b\cos\phi}a \implies $ $\cos\phi =\frac a{2b}\ .$

Hence $ \cos^2\phi =\frac {a^2}{4b^2}=\frac {b^2+c^2}{4b^2}=\frac {t+1}4\implies$ $2\cos^2\phi -1=\frac {t+1}2-1=\frac {t-1}2\implies$ $\boxed{2\cos^2\phi -1=\frac {t-1}2}\ (1)\ .$ Thus, $\cos 2\phi =\frac {CA}{CM}=\frac {CA}{\sqrt {AC^2+AM^2}}=\frac b{\sqrt{b^2+\frac {c^2}4}}=$ $\frac {2b}{\sqrt{4b^2+c^2}}=\frac 2{\sqrt{t+4}}\implies$ $\boxed{\cos 2\phi =\frac 2{\sqrt{t+4}}}\ (2)\ .$ Thus, $\cos2\phi=2\cos^2\phi -1\ \stackrel{(1\wedge 2)}{\iff}\ \frac 2{\sqrt {t+4}}=\frac {t-1}2\iff$ $(t-1)\sqrt{t+4}=4\iff$ $t>1$ and $t^3+2t^2-7t-12=0\iff$

$(t+3)(t^2-t-4)=0\iff t^2-t-4=0\iff t=\frac {1+\sqrt {17}}2\ \stackrel{(*)}{\iff}\ \boxed{\frac {DB}{DC}=\frac {1+\sqrt {17}}2}\ .$



P3 (Kadir Altintas). Let $\triangle ABC$ with $b\ne c,$ the incenter $I,$ the orthocenter $H,$ the Nagel's point $N$ and the midpoint $M$ of $[IH].$ Prove that $NM\perp BC\iff b+c=5a.$

Proof. Denote $\left\{\begin{array}{cccc}
D\in AN\cap BC\ : & DB=s-c\ ; & DC=s-b\\\\ 
E\in BN\cap BC\ : & EC=s-a\ ; & EA=s-c\\\\ 
F\in CN\cap BC\ : & FA=s-b\ ; & FB=s-a\end{array}\right\|\ .$ From the Aubel's relation obtain that $\frac {NA}{ND}=\frac {FA}{FB}+\frac {EA}{EC}=\frac {s-c}{s-a}+\frac {s-b}{s-a}=\frac a{s-a}$ $\implies$ $\boxed{\frac {NA}{ND}=\frac a{s-a}}\ (*)$ $\implies$

$\frac {NA}a=\frac {ND}{s-a}=\frac {AD}s\ .$ Apply the Stewart's relation to the ray $[AD$ in $\triangle ABC\ :\ \boxed{a\cdot AD^2+a(s-b)(s-c)=c^2(s-b)+b^2(s-c)}\ .$ Apply the theorem of median to the following triangles $:$

$\left\{\begin{array}{cc}
BM/\triangle BIH\ : & 4\cdot MB^2=2\cdot\left(BI^2+BH^2\right)-IH^2\\\\
CM/\triangle CIH\ : & 4\cdot MC^2=2\cdot\left(CI^2+CH^2\right)-IH^2\end{array}\right\|\ .$ Product of the substruction between the previous relations becomes $4\cdot\left(MB^2-MC^2\right)=$ $2\left(BI^2-CI^2\right)+2\cdot\left(BH^2-CH^2\right)=$

$2\cdot\left[\frac {ac(s-b)}s-\frac {ab(s-c)}s\right]+2\cdot 4R^2\left(\cos^2B-\cos^2C\right)=2\cdot [(ac-4Rr)-(ab-4Rr)]+2\cdot 4R^2\left(\sin^2C-\sin^2B\right)=$ $2a(c-b)+2\left(c^2-b^2\right)=$ $2(c-b)(a+b+c)=$

$4s(c-b)\implies$ $4\cdot\left(MB^2-MC^2\right)=$ $4s(c-b)\iff$ $\boxed{MB^2-MC^2=s(c-b)}\ (1)\ .$ Apply the Stewart's relation to the ray $[NB/\triangle ABD\ :\ NB^2\cdot AD+AD\cdot NA\cdot ND=$

$c^2\cdot ND+(s-c)^2\cdot NA\iff$ $NB^2+\frac {a(s-a)}{s^2}\cdot AD^2=$ $\frac {c^2(s-a)}s+\frac {a(s-c)^2}s\iff$ $\boxed{s^2\cdot NB^2+a(s-a)\cdot AD^2=s\cdot\left[c^2(s-a)+a(s-c)^2\right]}\ .$ Get analogously the similar relation

$\boxed{s^2\cdot NC^2+a(s-a)\cdot AD^2=s\cdot \left[b^2(s-a)+a(s-b)^2\right]}\ .$ From the substruction between the previous relations get $s\cancel{^2}\cdot\left(NB^2-NC^2\right)=\cancel s(s-a)(c-b)(c+b)-\cancel sa^2(c-b)\iff$

$s\cdot\left(NB^2-NC^2\right)=(s-a)(c-b)(c+b)-a^2(c-b)=$ $(c-b)\left[(s-a)(b+c)-a^2\right]=(c-b)[s(b+c)-a(a+b+c)]=s[(c-b)[(b+c)-2a]\iff$

$\boxed{NB^2-NC^2=(c-b)(b+c-2a)}\ (2)\ .$ In conclusion, $NM\perp BC\iff$ $NB^2-NC^2=MB^2-MC^2\ \stackrel{1\wedge 2}{\iff}\ b+c-2a=s\iff 2(b+c)-4a=a+(b+c)\iff$ $b+c=5a\ .$

Remark 1. If $E$ is the Euler's nine-point center, then prove easily that $\boxed{EB^2-EC^2=\frac {c^2-b^2}2}\ .$ From PP3 we have $\boxed{NB^2-NC^2=(c-b)(b+c-2a)}\ .$ Therefore, $NE\perp BC\iff$

$NB^2-NC^2=EB^2-EC^2\iff$ $(\cancel{c-b})[(b+c)-2a]=\frac {(\cancel{c-b})(c+b)}2\iff$ $2(b+c)-4a=c+b\iff$ $b+c=4a.$ In conclusion, $\boxed{NE\perp BC\iff b+c=4a}\ .$

Remark 2. $I -$ the incenter of $\triangle ABC\implies$ $IB^2-IC^2=\frac {ac(s-b)}s-\frac {ab(s-c)}s=$ $ac-ab=a(c-b),$ i.e. $\boxed{IB^2-IC^2=a(c-b)}\ .$ From the previous remark obtain that

$\boxed{EB^2-EC^2=\frac {c^2-b^2}2}\ .$ Hence $IE\perp BC\iff$ $IB^2-IC^2=EB^2-EC^2\iff$ $a(c-b)=\frac {(c-b)(c+b)}2\iff$ $a=\frac{c+b}2\iff$ $b+c=2a,$ i.e. $\boxed{IE\perp BC\iff b+c=2a}$



P4 (Kadir Altintas). Let $\triangle ABC$ with $b\ne c,$ the incenter $I,$ the centroid $G,$ the Euler's nine-point center $E$ and the Lemoine's point $K\ .$ Prove that $\left\{\begin{array}{ccc}
KG\perp BC & \iff & b^2+c^2=5a^2\\\\
KE\perp BC & \iff & b^2+c^2=3a^2\\\\
KI\perp BC & \iff & a=b+c-\sqrt {2bc}\end{array}\right\|\ .$

Proof. I"ll use the relations $\boxed{s_a=\frac {2bc}{b^2+c^2}\cdot m_a}\ (*)$ and $\boxed{4m_a^2=2\left(b^2+c^2\right)-a^2}\ (1)\ ,$ where $m_a$ is the length of the $A$-median and $s_a$ is the length of the $A$-symmedian. Let $Y\in BK\cap AC$ and

$Z\in CK\cap AB\ .$ Prove easily that $\left\{\begin{array}{ccc}
\frac {KB}{a^2+c^2}=\frac {BY}{a^2+b^2+c^2}=\frac {2acm_b}{\left(a^2+c^2\right)\left(a^2+b^2+c^2\right)} & \implies & KB=\frac {2acm_b}{a^2+b^2+c^2}\\\\
\frac {KC}{a^2+b^2}=\frac {CZ}{a^2+b^2+c^2}=\frac {2acm_c}{\left(a^2+b^2\right)\left(a^2+b^2+c^2\right)} & \implies & KB=\frac {2acm_b}{a^2+b^2+c^2}\end{array}\right\|\ .$ Therefore, $KB^2-KC^2=\left(\frac {2acm_b}{a^2+b^2+c^2}\right)^2-\left(\frac {2abm_c}{a^2+b^2+c^2}\right)^2=$

$\frac {4a^2\left(c^2m_b^2-b^2m_c^2\right)}{\left(a^2+b^2+c^2\right)^2}=$ $\frac {a^2}{\left(a^2+b^2+c^2\right)^2}\cdot\left[c^2\left(2a^2+2c^2-\cancel{b^2}\right)-b^2\left(2a^2+2b^2-\cancel{c^2}\right)\right]=$ $\frac {a^2\left[2a^2\left(c^2-b^2\right)+2\left(c^4-b^4\right)\right]}{\left(a^2+b^2+c^2\right)^2}=$ $\frac {2a^2\left(c^2-b^2\right)\left(a^2+b^2+c^2\right)}{\left(a^2+b^2+c^2\right)^2}=$ $\frac {2a^2\left(c^2-b^2\right)}{a^2+b^2+c^2}\implies$

$\boxed{KB^2-KC^2=\frac {2a^2\left(c^2-b^2\right)}{a^2+b^2+c^2}}\ (2)\ .$ Prove easily that $\boxed{GB^2-GC^2=\frac {c^2-b^2}3}\ (3)\ .$ Hence $KG\perp BC\iff$ $KB^2-KC^2=GB^2-GC^2\stackrel{2\wedge 3}{\iff}\ \frac {2a^2\left(c^2-b^2\right)}{a^2+b^2+c^2}=\frac {c^2-b^2}3\iff$

$a^2+b^2+c^2=6a^2\iff b^2+c^2=5a^2\ .$ In conclusion, $\boxed{KG\perp BC \iff b^2+c^2=5a^2}\ .$ In the previous remark 2 proved that $EB^2-EC^2=\frac {c^2-b^2}2\ .$ Hence $KE\perp BC\iff$

$KB^2-KC^2=EB^2-EC^2\iff$ $\frac {2a^2\left(c^2-b^2\right)}{a^2+b^2+c^2}=\frac {c^2-b^2}2\iff$ $a^2+b^2+c^2=4a^2\iff$ $b^2+c^2=3a^2\ .$ In conclusion, $\boxed{KE\perp BC\iff b^2+c^2=3a^2}\ .$ From the previous

remark 2 obtain $IB^2-IC^2=a(c-b)\ .$ Hence $KI\perp BC\iff$ $KB^2-KC^2=IB^2-IC^2\iff$ $\frac {2a^2\left(c^2-b^2\right)}{a^2+b^2+c^2}=a(c-b)\iff$ $2a(b+c)=a^2+b^2+c^2\iff$

$a^2-2a(b+c)+(b+c)^2-2bc=0\iff$ $(b+c-a)^2=2bc\iff$ $b+c-a=\sqrt{2bc}\iff$ $a=b+c-\sqrt {2bc}\ .$ In conclusion, $\boxed{KI\perp BC\iff a=b+c-\sqrt {2bc}}\ .$


An easy extension. Let $M(x,y,z)$ be the point with barrycentrical coordinates w.r.t. $\triangle ABC,$ where $x+y+z=1.$ Prove that $\boxed{MB^2-MC^2=(z-y)\cdot a^2+x\left(c^2-b^2\right)}$ (standard notations).

Proof. If $M_k\left(x_k,y_k,z_k\right)$ where $k\in\overline{1,2},$ then $\boxed{M_1M_2^2=-\left[\left(y_1-y_2\right)\left(z_1-z_2\right)\cdot a^2+\left(z_1-z_2\right)\left(x_1-x_2\right)\cdot b^2+\left(x_1-x_2\right)\left(y_1-y_2\right)\cdot c^2\right]}\ .$ For example, if $M(x,y,z)$ and $A(1,0,0)$ then:

$MA^2=-\left[yz\cdot a^2+z(x-1)\cdot b^2+(x-1)y\cdot c^2\right]\implies\odot$ $\begin{array}{ccc}
\nearrow & MB^2=-\left[zx\cdot b^2+x(y-1)\cdot c^2+z(y-1)\cdot a^2\right] & \searrow\\\\
\searrow & MC^2=-\left[xy\cdot c^2+y(z-1)\cdot a^2+x(z-1)\cdot b^2\right] & \nearrow\end{array}\odot\implies$ $MB^2-MC^2=(z-y)\cdot a^2+x\left(c^2-b^2\right)\ .$

Exemple de coordonate baricentrice pentru cateva puncte remarcabile ale unui triunghi $ABC,$ unde $A(1,0,0)\ ;\ B(0,1,0)\ ;\ C(0,0,1)$ sunt varfurile triunghiului $ABC\ .$

$\blacktriangleright\ D\left(0,\frac 12,\frac 12\right)$ - mijlocul lui $[BC]\ ;\ A_1\left(-1,1,1\right)$ - simetricul lui $A$ fata de $D\ ;\ A_2\left(2,-\frac 12,-\frac 12\right)$ - simetricul lui $D$ fata de $A\ ;\ G\left(\frac 13,\frac 13,\frac 13\right)$ - centru de greutate al triunghiului $ABC\ .$

$\blacktriangleright\ I\left(\frac a{2s},\frac b{2s},\frac c{2s}\right)$ - centrul cercului inscris $w=\mathbb (I,r)\ ,\ a+b+c=2s\ ;\ O\left(\frac {R^2\sin 2A}{2S},\frac {R^2\sin 2A}{2S},\frac {R^2\sin 2A}{2S}\right)$ - centrul cercului circumscris $\Omega =\mathbb C\left(O,R\right)\ ,\ \sum \sin 2A=\frac {2S}{R^2}\ .$

$\blacktriangleright\ H\left(\cot B\cot C,\cot C\cot A,\cot A\cot B\right)$ - ortocentrul$,\ \sum\cot B\cot C=1\ ;\ I_a\left(\frac {-a}{2(s-a)},\frac b{2(s-a)},\frac c{2(s-a)}\right)$ - centrul cercului exinscris $w_a=\mathbb C\left(I_a,r_a\right)\ ,\ -a+b+c=2(s-a).$

$\blacktriangleright\ N\left(\frac {s-a}s,\frac {s-b}s,\frac {s-c}s\right)$ - punctul lui Nagel$,\ \sum (s-a)=s\ ;\ \Gamma\left(\frac {(s-b)(s-c)}{r(4R+r)},\frac {(s-c)(s-a)}{r(4R+r)},\frac {(s-a)(s-b)}{r(4R+r)}\right)$ - punctul lui Gergonne$,\ \sum (s-b)(s-c)=r(4R+r)\ .$

$\blacktriangleright\ L\left(\frac {a^2}{\sum a^2},\frac {b^2}{\sum a^2},\frac {a^2}{\sum a^2}\right)$ - punctul lui Lemoine (centrul simedian). Daca $s_a-$ lungimea $A$-simedianei si $m_a-$ lungimea $A$-medianei, atunci $\boxed{s_a=\frac {2bc}{b^2+c^2}\cdot m_a}$ si $\boxed{4m_a^2+a^2=2\left(b^2+c^2\right)}\ .$

Applications. $\left\{\begin{array}{ccccccc}
GA^2=\frac {4m_a^2}9 & \implies & GB^2-GC^2=\frac 13\cdot \left(c^2-b^2\right) & ; & IA^2=bc-4Rr & \implies & IB^2-IC^2=a(c-b)\\\\
\begin{array}{cccc}
I_aB^2 & = & r_a^2+(s-c)^2 & \searrow\\\\
I_aC^2 & = & r_a^2+(s-b)^2 & \nearrow\end{array} & \implies & I_aB^2-I_aC^2=a(b-c) & ; & I_aA^2=r_a^2+s^2 & \implies & \begin{array}{ccccc}
\nearrow & I_aA^2-I_aB^2=c(a+b)\\\\
\searrow & I_aA^2-I_aC^2=b(a+c)\end{array}\\\\
HA^2=4R^2-a^2 & \implies & HB^2-HC^2=c^2-b^2 & ; & LA=\frac {2bcm_a}{a^2+b^2+c^2} & \implies & LB^2-LC^2=\frac {2a^2\left(c^2-b^2\right)}{a^2+b^2+c^2}\end{array}\right\|\ \mathrm{a.s.o.\ !}$

$\boxed{an_a^2+a(s-b)(s-c)=c^2(s-b)+b^2(s-c)\implies \odot\begin{array}{ccccc}
\nearrow & s^2\cdot NB^2+a(s-a)n_a^2 & = & s\cdot \left[c^2(s-a)+a^2(s-c)^2\right] & \searrow\\\\
\searrow & s^2\cdot NC^2+a(s-a)n_a^2 & = & s\cdot \left[b^2(s-a)+a^2(s-b)^2\right] & \nearrow \end{array}  \odot \implies NB^2 - NC^2 = (c-b)(b+c-2a)}$


P5:

Proof. $f(\theta )=\frac 1{2+\cos\theta}+\frac 1{2+\sin\theta}=$ $\frac {(\sin\theta +\cos\theta)+4}{\sin\theta\cos\theta +2(\sin\theta +\cos\theta)+4},$ where $\theta\in\mathbb R\ .$ I"ll use the substitution $\boxed{t=h(\theta )=\sin\theta +\cos\theta }\ ,$ where $|t|\le \sqrt 2$ and $\boxed{\sin\theta\cos\theta =\frac {t^2-1}2}\ (*)\ .$

Hence $f(\theta )=(g\circ h)(\theta),$ where $g(t)=\frac {2(t+4)}{t^2+4t+7}$ and $|t|\le\sqrt 2\ .$ Prove easily that $g'(t)\ s.s\ -(t^2+8t+9)\ s.s.\ -\left(t+4-\sqrt 7\right),$ i.e. $g$ is increasing $(\nearrow )$ on $\left[-\sqrt 2,\sqrt 7-4\right]$ and decreasing

$(\searrow )$ on $\left[\sqrt 7-4,\sqrt 2\right]\ .$ Thus, $g(-4+\sqrt 7)=\boxed{\frac {2+\sqrt 7}3\ge g(t)\ge \frac {2(4-\sqrt 2)}7}=g\left(\sqrt 2\right)\ .$ For $\{a,b\}\subset\mathbb R$ defined the equivalence $:\ a\ s.s\ b\iff a=b=0$ or $ab>0\iff\mathrm{sign} a=\mathrm{sign} b.$

$\boxed{\begin{array}{ccccccc}
t & \| & -\sqrt 2 & & \sqrt 7-4 & & \sqrt 2\\\
== & == & === & == & === & == & ===\\\
g^{\prime}(t) & \| & + & + & 0 & - & -\\\
== & == & === & == & === & == & ===\\\
g(t) & \| & \frac {2\left(4+\sqrt 2\right)}7 & \nearrow & \frac {2+\sqrt 7}3 & \searrow & \frac {2\left(4-\sqrt 2\right)}7\end{array}}\iff\left\|\begin{array}{c}
\min\limits_{t\in\left[-\sqrt 2,\sqrt 2\right]}g(t)=\min\limits_{x\in\mathbb R}f\left(\theta\right)=\frac {2\left(4-\sqrt 2\right)}7\\\\
\max\limits_{t\in \left[-\sqrt 2,\sqrt 2\right]}g(t)=\max\limits_{x\in\mathbb R}f\left(\theta\right)=\frac {2+\sqrt 7}3\end{array}\right\|\iff$ $f\left(I\right)=\left[\frac {2\left(4-\sqrt 2\right)}7,\frac {2+\sqrt 7}3\right],$ where $I=\left[-\sqrt 2,\sqrt 2\right]$



P6 (Carlos Hugo Olivera Díaz). Let an acute $\Delta\ ABC$ with the excircle $w_a$ for what denote $\left\{\begin{array}{ccc}
M\in AB\cap w_a\ & ; & X\in BC\ ,\ MX\perp BC\ ,\ MX=m\\\\
N\in AC\cap w_a\ & ; & Y\in BC\ ,\ NY\perp BC\ ,\ NY=n\\\\
D\in BC & ; & AD\perp BC \ ,\ AD=h_a\end{array}\right\|\ .$ Prove that $h_a=\frac {2mn}{1-\cos A}\ .$

Proof. $\left\{\begin{array}{ccccc}
MX\parallel AD & \iff & \frac {AD}{MX}=\frac {AB}{BM} & \iff & \frac {h_a}m=\frac c{s-c}\\\\
NY\parallel AD & \iff & \frac {AD}{NY}=\frac {AC}{CN} & \iff & \frac {h_a}n=\frac b{s-b}\end{array}\right\|$ $\bigodot$ $\implies$ $\frac {h_a^2}{mn}=\frac {bc}{(s-b)(s-c)}=\csc^2\frac A2=\frac 1{\sin^2\frac A2}=\frac 2{1-\cos A}\implies$ $\boxed {h_a^2=\frac {2mn}{1-\cos A}}\ .$


P7 (clasa a IV - a). Sa se determine perimetrul figurii mentionate aici (<= click).

Proof. The closed polygonal line $ABCDEFGHA$ has $:\ AB=315\ ,\ BC=300\ ,\ EF=55\ ;\ AB\parallel GH\parallel EF\parallel CD\ ;\ BC\parallel ED\parallel FG\parallel AH\ ;\ K\in AH\cap CD\ ,\ L\in HG\cap DE\ .$

The perimeter $p(CDEFGHA)=CD+DE+EF+FG+GL+LH+HA=$ $(CD+LH)+(LG+EF)+(DE+FG+HA)=$ $AB+2\cdot EF+BC\ .$ In conclusion,

$p(CDEFGHA)=$ $AB+2\cdot EF+BC$ and the required perimeter $p(ABCDEFGHA)=$ $AB+BC+p(CDEFGHA)=$ $AB+BC+(AB+2\cdot EF+BC)=$

$2\cdot (AB+BC+EF)=$ $2(315+300+55)=$ $2\cdot 670=1340$ $\implies $ $\boxed{p(ABCDEFGHA)=1340}\ .$



P8 (Miguel Ochoa Sanchez). Let $ABCD$ be a square with the circumcircle $w$ and choose $\left|\begin{array}{c}
M\in \overarc{BC}\ ;\ N\in \overarc{CD}\\\\
m\left(\widehat{MAN}\right)=45^{\circ}\end{array}\right|$ for which denote $F\in BC\cap w,$ $E\in CD\cap w\ .$ Prove that $\frac {MC}{AF}+\frac {NC}{AE}=1\ .$

Proof. Let $\left\{\begin{array}{c}
m\left(\widehat{CAM}\right)=m\left(\widehat{DAN}\right)=\alpha\\\\
m\left(\widehat{CAN}\right)=m\left(\widehat{BAM}\right)=\beta\end{array}\right\|$ where $\alpha +\beta =45^{\circ}\ .$ Thus, $\left\{\begin{array}{ccccc}
\frac {MC}{AF}=\frac {AC}{AB}\cdot\frac {MC}{AC}\cdot\frac {AB}{AF}=\sqrt 2\cdot\sin \alpha \cdot\cos\beta\\\\
\frac {NC}{AE}=\frac {AC}{AD}\cdot\frac {NC}{AC}\cdot\frac {AD}{AE}=\sqrt 2\cdot\sin\beta\cdot\cos\alpha\end{array}\right\|\bigoplus\implies$ $\frac {MC}{AF}+\frac {NC}{AE}=\sqrt 2\cdot (\sin\alpha\cos\beta +\sin\beta\cos\alpha )=$

$\sqrt 2\cdot\sin (\alpha +\beta )=\sqrt 2\cdot\frac {\sqrt 2}2=1\implies$ $\frac {MC}{AF}+\frac {NC}{AE}=1\ .$ Observe that $:\ BMCN,$ $CNDM,$ $ABMN,$ $ADNM$ are isosceles trapezoids and $MN=AB\ ;\ \triangle BMC\equiv\triangle CND\ ;$

the point $H\in BN\cap DM$ is the orthocenter of $\triangle AMN\ ;$ a.s.o. Remark. If $\alpha +\beta =\phi <90^{\circ},$ then $\frac {MC}{AF}+\frac {NC}{AE}=1+\sqrt 2\cdot\sin\left(\phi -45^{\circ}\right)\cdot\cos\left(\alpha -\beta \right)\ .$



Lemma. Prove that for any $x>0$ there is the inequality $x^3+1\ge x\sqrt {2\left(x^2+1\right)}\ .$

Proof 1. $x^3+1\ge \frac 12\cdot (x+1)\left(x^2+1\right)=\frac 12\cdot (x+1)\cdot \sqrt{x^2+1}\cdot\sqrt{x^2+1}\ge \frac 12\cdot 2\sqrt x\cdot \sqrt{2x}\cdot\sqrt{x^2+1}=x\sqrt{2\left(x^2+1\right)}\implies$ $\boxed{x^3+1\ge x\sqrt{2\left(x^2+1\right)}}\ .$

Proof 2. $\left\{\begin{array}{ccc} 
x^2+1 & \ge & 2x\\\\
x^4-x^2+1 & \ge & x\left(x^2-x+1\right)\end{array}\right\|\bigodot\implies$ $x^6+1\ge 2x^2\left(x^2-x+1\right)\iff$ $x^6+2x^3+1\ge 2x^2\left(x^2+1\right)\iff$ $\boxed{x^3+1\ge x\sqrt{2\left(x^2+1\right)}}\ .$

Proof 3. Observe that $x^3+1\ge\frac {3x^2+1}2\iff$ $2x^3-3x^2+1\ge 0\iff$ $(2x+1)(x-1)^2\ge 0$ what is truly. Hence $\boxed{x^3+1\ge \frac {3x^2+1}2}\ (*)\ .$

Therefore, $x\sqrt {2\left(x^2+1\right)}=\sqrt{2x^2\cdot \left(x^2+1\right)}\le$ $\frac {2x^2+\left(x^2+1\right)}2=$ $\frac {3x^2+1}2\ \stackrel{(*)}{\le}\ x^3+1$ $\implies$ $\boxed{x^3+1\ge x\sqrt {2\left(x^2+1\right)}}\ .$


P9 (Van Khea - Cambodgia). Prove that for any $A$-right-angled $\triangle ABC$ there is the inequality $a^3+b^3+c^3\ge \left(2+\sqrt 2\right)abc\ .$ (standard notations).

Proof 1. Suppose w.l.o.g. there is $x\in\left(0,\frac {\pi}2\right)$ so that $a=1\ ,\ b=\sin x$ and $c=\cos x\ .$ I"ll use the substitution $\boxed{t:=\sin x+\cos x}\ ,$ where $t\in\left(1,\sqrt 2\right]$ and $\boxed{\sin x\cos x=\frac {t^2-1}2}\ .$ The our inequality

becomes $1+(\sin x+\cos x)(1-\sin x\cos x)\ge \left(2+\sqrt 2\right)\sin x\cos x\iff$ $1+t\cdot\left(1-\frac{t^2-1}2\right)\ge \left(2+\sqrt 2\right)\cdot  \frac{t^2-1}2\iff$ $2(t+1)-t\left(t^2-1\right)\ge$ $\left(2+\sqrt 2\right)\left(t^2-1\right)\ \stackrel{t+1>0}{\iff}$

$2-t(t-1)\ge \left(2+\sqrt 2\right)(t-1)\iff$ $t^2+\left(1+\sqrt 2\right)t-\left(4+\sqrt 2\right)\le 0\iff$ $\left(t-\sqrt 2\right)\left(t+1+2\sqrt 2\right)\le 0\iff$ $t\in\left[-1-2\sqrt 2,\sqrt 2\right]\cap \left(1,\sqrt 2\right]\iff$ $t\in \left(1,\sqrt 2\right]$ what is truly.

Proof 2. from $a^3=a\cdot a^2=$ $a\cdot \left(b^2+c^2\right)\ge 2abc$ obtain that $\boxed{a^3\ge 2abc}\ (1)\ .$ I"ll use the previous lemma in the particular case $x=\frac bc\ :$

$b^3+c^3\ge bc\sqrt{2\left(b^2+c^2\right)}\iff\boxed{b^3+c^3\ge abc\sqrt 2}\ (2)\ .$ From the sum of the relations $(1)$ and $(2)$ get the required inequality $\boxed{a^3+b^3+c^3\ge \left(2+\sqrt 2\right)abc}\ .$



P10 (Kunihiko Chikaya). Prove that $\int_0^{\frac {\pi}2}\sqrt{1-2\sin 2x+3\cos^2x}\ \mathrm{dx}=\int_0^{\frac {\pi}2}|2\cos x-\sin x|\ \mathrm{dx}=2\sqrt 5-3\ .$

Proof. $1-2\sin 2x+3\cos^2x=$ $\left(1-\cos^2x\right)-4\sin x\cos x+4\cos^2x=$ $\sin^2x-4\sin x\cos x+4\cos^2x=(2\cos x-\sin x)^2\implies$

$\int_0^{\frac {\pi}2}\sqrt{1-2\sin 2x+3\cos^2x}\ \mathrm{dx}=\int_0^{\frac {\pi}2}|f(x)|\ \mathrm{dx}\ ,\ $ where $f:I\rightarrow \mathbb R\ ,\ f(x)=2\cos x-\sin x$ and $I=\left[0,\frac {\pi}2\right]\ .$ Prove easily that $f$ is strict

decreasing $(\searrow)$ on $I$ and $2=f(0)\ \searrow\ f(\arctan 2)=0\ \searrow\ -1=f\left(\frac {\pi}2\right)\ .$ Let $F(x)=\int_I f(x)\ \mathrm{dx}=2\sin x+\cos x+\mathbb C\ .$ Therefore,

$\int_0^{\frac {\pi}2}|f(x)|\ \mathrm{dx}=$ $\int_0^{arctan 2} f(x)\ \mathrm{dx}-\int_{\arctan 2}^{\frac {\pi}2} f(x)\ \mathrm{dx}=$ $2\cdot F(\arctan 2 )-F(0)-F\left(\frac {\pi}2\right)=2\cdot \left(2\cdot\frac 2{\sqrt 5}+\frac 1{\sqrt 5}\right)-3=2\sqrt 5-3\ .$



P11 (Kunihiko Chikaya). Let $\{x,y\}\subset\mathbb R$ such that $2\sin x\sin y+3\cos y+6\cos x\sin y=7\ .$ Find the value of $\tan^2x+2\tan^2y\ .$

Proof. I"ll use the welll-known inequality $\boxed{\left|a\sin\phi +b\cos\phi\right|\le \sqrt{a^2+b^2}}\ (*)\ .$ For example $\boxed{|\sin x+3\cos x|\le\sqrt {10}}\ (1)$ and $2\sin x\sin y+3\cos y+6\cos x\sin y=7\iff $

$2(\sin x+3\cos x)\cdot \underline{\sin y}+3\cdot\underline{\cos y}=7\implies$ $4(\sin x+3\cos x)^2+9\ge 49\implies$ $(\sin x+3\cos x)^2\ge 10\ \stackrel{(1)}{\implies}\ \sqrt {10}\ge |\sin x+3\cos x|\ge \sqrt{10}\implies\boxed{|\sin x+3\cos x|=\sqrt {10}}\ (2)$

$\iff$ $(\sin x+3\cos x)^2=10\left(\sin^2+\cos^2x\right)\iff$ $\left(\tan x+3\right)^2=10\left(\tan^2x+1\right)\iff$ $9\tan^2x-6\tan x+1=0\iff$ $(3\tan x-1)^2=0\implies$ $\boxed{\tan^2 x=\frac 19}\ (3)\ .$ Observe that

$7-3\cos y=2\sin y(\sin x+3\cos x)\ \stackrel{(2)}{\implies}\ |7-3\cos y|=2\sqrt{10}|\sin y|\iff$ $(7-3\cos y)^2=40\sin^2y\iff$ $49+9\cos^2y-42\cos y=40\sin^2y\iff$ $(7\cos y-3)^2=0\iff$

$\cos y=\frac 37\iff$ $\tan^2y=\frac {1-\cos^2y}{\cos^2y}=\frac {40}{9}\implies$ $\boxed{\tan^2y=\frac {40}9}\ (4)\ .$ In conclusion, from the sum of $(3)$ and $(4)$ obtain that $\boxed{\tan^2x+2\tan^2y=9}\ .$ Very nice problem!
Thank you.


P12 (Kunihiko Chikaya). Let the square $ABOC$ with $AB=1$ and the circle $w=\mathbb C(O,1)\ .$ For a mobile point $P\in w$ so that $BC$

separates $P$ and $O$ denote $\{P,Q\}=AP\cap w\ .$ Prove that the area $S$ of the triangle $POQ$ is $\max\ \iff\  m\left(\widehat{PAB}\right)=\frac {\pi}{12}\ .$


Proof. Denote the midpoint $M$ of $[PQ]$ and $m\left(\widehat{PAB}\right)=\phi\
 .$ Suppose w.l.o.g. that $\boxed{0<\phi <\frac {\pi}4}\ ,$ i.e. $\tan\phi =a\in (0,1)\ .$ Observe that $:\ OA=\sqrt 2$ and $m\left(\widehat{OAM}\right)=\frac {\pi}4-\phi\implies$

$\left\{\begin{array}{cccc}
AM=OA\cos\widehat{OAM}=\sqrt 2\cdot \cos\left(\frac {\pi}4-\phi\right) & \implies & \boxed{AM=\cos\phi +\sin\phi} & (1)\\\\
OM=OA\sin\widehat{OAM}=\sqrt 2\cdot \sin\left(\frac {\pi}4-\phi\right) & \implies & \boxed{OM=\cos\phi-\sin\phi} & (2)\end{array}\right\|\ .$ Therefore, $AP\cdot AQ=AB^2\ ,$ i.e. $\boxed{AP\cdot AQ=1}$ and $AP+AQ=2\cdot AM\ \stackrel{(1)}{=}\ 2(\cos\phi+\sin\phi )$

$\implies\boxed{AP+AQ=2(\cos\phi +\sin\phi )}\ (3)\ .$ Hence $(AP-AQ)^2=(AP+AQ)^2-4\cdot AP\cdot AQ=4(1+\sin 2\phi)-4=4\sin2\phi\implies$ $\boxed{PQ=2\sqrt {\sin2\phi}}\ (4)\ .$ Denote $\boxed{\cos \phi -\sin\phi =t}\ .$

Thus, $\boxed{\sin2\phi =1-t^2}\ ,$ where $t\in (0,1)\ .$ In conclusion, $\cancel 2S=PQ\cdot OM=\cancel 2(\cos\phi -\sin\phi)\sqrt {\sin 2\phi}=\cancel 2t\sqrt{1-t^2}\implies$ $\boxed{S^2=t^2\left(1-t^2\right)}\ (5)\ .$ Thus, $S$ is $\max\iff$ $t^2\left(1-t^2\right)$ is $\max$ with

$t^2+\left(1-t^2\right)=1$ (constant) $\implies$ $t^2=1-t^2=\frac 12\iff$ $\boxed{t=\frac {\sqrt 2}2}\iff$ $\sin 2\phi =1-t^2=1-\frac 12=\frac 12\iff \sin 2\phi =\frac 12\iff 2\phi =\frac {\pi}6\iff \boxed{\phi =\frac {\pi}{12}}\ ,\ a=\tan\phi =2-\sqrt 3\ ,\ S=\frac 12$



P13 (Mehmet Şahin, Turkey). Let $ABCD$ be a square with the circumcircle $w$ and a point $P\in \overarc{AD}\ .$ Prove that $2\cdot [ABCP]=AB^2\ .$

Proof 1. Denote $I\in BP\cap AC$ and $\left\{\begin{array}{ccc}
m\left(\widehat{PBA}\right) & = &\alpha\\\
m\left(\widehat{PBD}\right) & = & \beta\\\
m\left(\widehat{BIC}\right) & = & \phi\end{array}\right\|\ ,$ where $\alpha +\beta =\frac {\pi}4$ and $\sin\phi =\cos \beta\ .$ Hence $PB=BD\cos\beta =AC\sin\phi\implies$

$ \boxed{AC\sin\phi =PB}\ (*)\ \implies$ $2\cdot [ABCP]=PB\cdot (AC\sin\phi )\ \stackrel{(*)}{=}\ PB\cdot PB=PB^2\implies$ $ [ABCP]=\frac {PB^2}2\ .$

Proof 2 . $\left\{\begin{array}{c}
E\in PB\ ;\ AE\perp BP\\\\
F\in PB\ ;\ CF\perp BP\end{array}\right\|\implies$ $\triangle ABE\equiv\triangle BCF\implies$ $BE=CF,$ $AE=BF\implies$ $E$-right-angled $\triangle AEP, $ $F$-right-angled $CFP$ are isosceles: $EA=EP,$ $FC=FP\implies$

$\left\{\begin{array}{c}
BE=CF=FP\\\\
AE=BF=EP\end{array}\right\|\implies$ $ AE+CF=BF+FP=BP$ $\implies$ $\underline{PB^2}=PB\cdot PB=$ $PB\cdot (AE+CF)=$ $PB\cdot AE+PB\cdot CF=$ $2\cdot [ABP]+2\cdot [CBP]=$ $\underline{2\cdot [ABCP]}$ (S. Fulger).

Proof 3.



P14 (Carlos Hugo Olivera Diaz, Peru). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and the circumcircle $\Omega =\mathbb (O,R)\ .$

Denote $\left\{\begin{array}{ccccc}
Q\in BI\cap \Omega & ; & P\in CI\cap \Omega\\\\
M\in AB\cap w & ; & N\in AC\cap w\end{array}\right\|\ .$ Prove that $\boxed{M\in PQ\iff A=90^{\circ}\iff N\in PQ}\ .$


Proof. $M\in PQ\iff$ $\frac {MA}{MB}=\frac {QA}{QB}\iff$ $\frac {s-a}{s-b}=\frac {\sin\frac B2}{\sin\left( A+\frac B2\right)}\iff$ $\frac {s-a}{s-b}=\frac {2\cos\frac B2\sin\frac B2}{2\cos\frac B2\sin \left(A+\frac B2\right)}\iff$ $\frac {s-a}{s-b}=\frac {\sin B}{\sin A+\sin C}\iff\frac {s-a}{s-b}=\frac b{a+c}\ .$ In conclusion,

$\boxed{M\in PQ\iff\frac {s-a}{s-b}=\frac b{a+c}}\iff$ $\frac {s-a}{(s-a)+(s-b)}=\frac b{a+b+c}\iff$ $2s(s-a)=bc\iff$ $2s(s-a)=s(s-a)+(s-b)(s-c)\iff$ $s(s-a)=(s-b)(s-c)\iff$

$\tan^2\frac A2=\frac {(s-b)(s-c)}{s(s-a)}=1\iff A=90^{\circ}\ .$ Prove analogously that $N\in PQ\iff$ $\frac {NA}{NC}=\frac {PA}{PC}\iff$ $\frac {s-a}{s-c}=\frac {\sin \frac C2}{\sin\left(A+\frac C2\right)}=\frac c{a+b}\iff$ $\boxed{N\in PQ\iff \frac {s-a}{s-c}=\frac c{a+b}}$ a.s.o.



P15 (Leo Giugiuc & Gh. Duca). Let a regular polygon $A_1A_2\ldots A_{n-1}A_n$ with the circumcircle $w=\mathbb C(O,R)\ .$ Prove that for any $P\in w$ there is the identity $\sum_{k=1}^n PA_k^2=2nR^2\ .$

Proof. Can use the wellknown implication $\{M,N\}\subset w\implies MN=2R\sin\frac{\widehat{MON}}2$ and the trigonometrical identity $:\ \sum_{k=1}^n\cos x_k=\frac {\cos\frac {x_1+x_n}2\sin\frac {nr}2}{\sin\frac {nr}2}\ ,$ where $x_k=x_1+(k-1)r\ ,\ \forall\ k\in\overline{1,n}\
 .$


P16 (Adil Abdullayev, Baku). Prove $(\forall )\ \triangle ABC$ there is the following inequality $:\ \frac {r_a}{\cos^2\frac A2}+\frac {r_b}{\cos^2\frac B2}+\frac {r_c}{\cos^2\frac C2}\ge 6R$ (standard notations).

Proof. $\frac {r_a}{\cos^2\frac A2}=$ $\frac {2r_a\sin\frac A2}{\cos\frac A2\sin A}=$ $\frac {2r_a\tan\frac A2}{\sin A}=$ $\frac {2r_a^2}{s\cdot \sin A}\implies$ $\sum\frac {r_a}{\cos^2\frac A2}=\frac 2s\cdot\sum\frac {r_a^2}{\sin A}\ \stackrel{C.B.S}{\ge}\ \cdot\frac {2\left(\sum r_a\right)^2}{s\sum \sin A}=$ $\frac {2R(4R+r)^2}{s^2}\ge 6R$ because is wellknown the inequality $\boxed{s\sqrt 3\le 4R+r}\ .$


P17 (Sefket Arslanagic, Berlin). Prove that the inequality $\sqrt {a-1}+\sqrt {b-1}+\sqrt {c-1}\le \sqrt {abc+\min \{a,b,c\}}$ for any $\{a,b,c\}\subset (1,\infty )\ .$

Proof. Suppose w.l.o.g. $a\le b\le c$ and denote $\left\{\begin{array}{ccccc}
\sqrt {a-1}=x>0 & \implies & a=x^2+1>1\\\\
\sqrt {b-1}=y>0 & \implies & b=y^2+1>1\\\\
\sqrt {c-1}=z>0 & \implies & c=z^2+1>1\end{array}\right\|\ .$ Thus, our inequality becomes $\sqrt {a-1}+\sqrt {b-1}+\sqrt {c-1}\le \sqrt {abc+\min \{a,b,c\}}$ for any

$\{a,b,c\}\subset (1,\infty )\ ,$ i.e. $x+y+z\le \sqrt {\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)+x^2+1}\ (*)\ .$ Denote $\boxed{y+z=S\ \mathrm{and}\  yz=P}\ (1)\ .$ In conclusion, the inequality becomes $[x+(y+z)]^2\le$

$x^2+1+\left(y^2+1\right)\left(z^2+1\right)\cdot x^2+\left(y^2+1\right)\left(z^2+1\right)\ \stackrel{(1)}{\iff}$ $\cancel {x^2}+2Sx+\cancel{S^2}\le \cancel{x^2}+1+\left[S^2+(P-1)^2\right]\cdot x^2+$ $\cancel{S^2}+(P-1)^2\implies$ $\left[S^2+(P-1)^2\right]\cdot \underline x^2-2S\cdot \underline x+$

$\left[(P-1)^2+1\right]\ge 0$ what is true because $\Delta^{\prime}=$ $S^2-\left[S^2+(P-1)^2\right]\cdot\left[(P-1)^2+1\right]=-(P-1)^2\left[\left(S^2+1\right)+(P-1)^2\right]\le 0\ .$ We have equality iff $P=1\ ,$ i.e. $yz=1\ .$



click => P18 (Nelson Cayo Deza Velasquez, Lima-PERU).

Proof. Suppose w.l.o.g. that $:$ the big circle is $\alpha =\mathbb C(O,1)$ and touches $AD$ at $P\ ;$ the semicircle is $\beta =\mathbb  C(I,r)\ ,$ touches $\alpha$ at $T\ ,$ where $r\in (0,1)\ .$ Denote $PE=y$ and apply the Pythagoras' theorem

in $\triangle OPI\ :\ OI^2=PO^2+PI^2\iff$ $(r+1)^2=1^2+(y+r)^2\iff$ $\cancel{r^2}+2r+\cancel 1=\cancel 1+y^2+2ry+\cancel{r^2}\iff$ $2r=y^2+2ry\iff$ $2r(1-y)=y^2\iff$ $\boxed{\ 2r=\frac {y^2}{1-y}\ }\ (*)\ .$ Observe

that $:\ ED=PD-PE=1-y\implies$ $\boxed{\ ED=1-y\ }\ (1)\ ;$ $\boxed{\ EF=2r\ }\ (2)\ ;$ $AF=AE+EF=1+y+2x\ \stackrel{(*)}{=}\ 1+y+\frac {y^2}{1-y}=$ $\frac {(1+y)(1-y)+y^2}{1-y}=\frac {1-\cancel{y^2}+\cancel{y^2}}{1-y}=\frac 1{1-y}\implies$

$\boxed{\ AF=\frac 1{1-y}\ }\ (3)\ .$ In conclusion, $\sqrt {ED}+\sqrt {EF}\ \stackrel {1\wedge 2}{=}\ \sqrt {1-y}+\sqrt{2r}\ \stackrel{(*)}{=}\ \sqrt {1-y}+\frac y{\sqrt {1-y}}=\frac {(1-y)+y}{\sqrt {1-y}}=\frac 1{\sqrt {1-y}}\ \stackrel{(3)}{=}\ \sqrt {AF}\implies$ $\boxed{\sqrt {ED}+\sqrt {EF}=\sqrt{AF}}\ .$ Nice problem!



P19 (Kadir Altintas, Turkey). Let $\triangle ABC$ with the centroid $G$ and the orthocenter $H\ .$ Prove that $\boxed{\ GH\perp GA\iff b^2+c^2=2a^2\ }\ .$ (standard notations).

Proof 1. Denote the midpoint $M$ of the side $[BC]$ and the projection $D$ of the vertex $A$ on $BC\ .$ Observe that $GH\perp GA\iff$ $HDMG$ is cyclic, i.e. $AH\cdot AD=AG\cdot AM\iff$

$2R\cos A\cdot h_a=\frac {2m_a}3\cdot m_a\iff$ $2Rh_a\cdot \cos A=\frac {4m_a^2}6\ .$ I"ll use the well-known identities $\boxed{2Rh_a=bc}\ (*)\ ,\ b^2+c^2-a^2=2bc\cdot \cos A$ and $4m_a^2+a^2=2\left(b^2+c^2\right)\ .$

Hence $GH\perp GA\iff$ $6bc\cdot \cos A=4m_a^2\iff$ $3\left(b^2+c^2-a^2\right)=2\left(b^2+c^2\right)-a^2\iff$ $3\left(b^2+c^2\right)-3a^2=2\left(b^2+c^2\right)-a^2\iff$ $b^2+c^2=2a^2\ .$

Proof 2. I'll apply identities $\boxed{\ HG=2\cdot OG\ }$ and $\boxed{\ OG^2=R^2-\frac {a^2+b^2+c^2}9\ }\ .$ From the Pythagoras' theorem obtain that $\ :\ GH\perp GA\iff$ $GH^2+GA^2=AH^2\iff$

$4\cdot\left(\cancel{R^2}-\frac {a^2+b^2+c^2}9\right)+\frac {2\left(b^2+c^2\right)-a^2}9=\cancel{4R^2}-a^2\iff$ $4\left(a^2+b^2+c^2\right)-2\left(b^2+c^2\right)+a^2=9a^2\iff$ $4a^2+4\left(b^2+c^2\right) -2\left(b^2+c^2\right)+a^2=9a^2\iff$ $b^2+c^2=2a^2\ .$



P20 (Kadir Altintas, Turkey). Let $\triangle ABC$ with the centroid $G$ and the incenter $I$ for what denote $\left\{\begin{array}{ccc}
E & \in & IG\cap (AC)\\\\
F & \in & IG\cap (AB)\end{array}\right\|\ .$ Prove that $\boxed{IG\perp IA\iff \frac 1b+\frac 1c=\frac 6{a+b+c}}\ .$

Proof. Denote the midpoint $M$ of $[BC]$ and $D\in AI\cap BC\ .$ Observe that $IA\perp IG\iff AE=AF=m\ ,$ i.e. $\left\{\begin{array}{ccc}
FB & = & c-m\\\\
EC & = & b-m\end{array}\right\|\ .$ Apply the well-known Cristea's theorem to the points $:$

$\odot \begin{array}{cccccccccc}
\nearrow\ G & : & \frac {FB}{FA}\cdot MC+\frac {EC}{EA}\cdot MB=\frac {GM}{GA}\cdot BC & \iff & \frac {c-m}m+\frac {b-m}m=1 & \iff & (c-m)+(b-m)=m & \iff & \boxed{3m=b+c} & \searrow\\\\
\searrow\ I & : & \frac {FB}{FA}\cdot DC+\frac {EC}{EA}\cdot DB=\frac {ID}{IA}\cdot BC & \iff & \frac {c-m}m\cdot b+\frac {b-m}m\cdot c= a & \iff & b(c-m)+c(m-b)=am & \iff & \boxed{2bc=m(a+b+c)} & \nearrow\end{array}\bigodot\implies$

$3\cancel m\cdot 2bc=(b+c)\cdot \cancel m(a+b+c)\iff 6bc=(b+c)(a+b+c)\iff$ $\frac {b+c}{bc}=\frac 6{a+b+c}\iff$ $\frac 1b+\frac 1c=\frac 6{a+b+c}\ .$ Done. Nice problem !


An easy extension. Let an acute $\triangle ABC$ with the incenter $I$ and its interior point $P$ with the barycentrical coordinates $(x,y,z)\ ,$

$x+y+z=1$ w.r.t. $\triangle ABC$ for what denote $\left\{\begin{array}{ccc}
E & \in & IP\cap (AC)\\\\
F & \in & IP\cap (AB)\end{array}\right\|\ .$ Prove that $\boxed{IP\perp IA\iff \frac yb+\frac zc=\frac 2{a+b+c}}\ .$



P21 (for Mathskidd - elementary proof). Let $ABC$ be a triangle with the orthocentre $H$ and the circumcircle $w=\mathbb C(O,R)\ .$ Prove the identity $OH^2=9R^2-\left(a^2+b^2+c^2\right)$ (standard notations).

Proof 1. Let the midpoint $M$ of $[BC]$ and the diameter $[AS]$ of $w\ .$ $\left\{\begin{array}{cccc}
BH\perp AC\ ;\ SC\perp AC & \implies & SC\parallel BH\\\\
CH\perp AB\ ;\ SB\perp AB & \implies & SB\parallel CH\end{array}\right\|$ $\implies$ $BHCS$ is a parallelogram $\implies M\in HS$ and $HB=CS$ $\implies$

$HB^2=CS^2=AS^2-AC^2=4R^2-b^2\implies$ $HB^2=4R^2-b^2$ a.s.o. $\implies$ $\boxed{HA^2+a^2=HB^2+b^2=HC^2+c^2=4R^2}\ (1)\ .$ Median $HM/\triangle BHC\ :\ HS^2=4\cdot HM^2=$

$2\left(HB^2+HC^2\right)-BC^2\ \stackrel{(1)}{=}\ 2\left[\left(4R^2-b^2\right)+\left(4R^2-c^2\right)\right]-a^2$ $\implies$ $\boxed{HS^2=16R^2-2\left(b^2+c^2\right)-a^2}\ (2)\ .$ Median $HO/\triangle AHS\ :\ 4\cdot HO^2+AS^2=$ $2\left(AH^2+HS^2\right)\ \stackrel{(1\wedge 2)}{\implies}$

$4\cdot HO^2=$ $2\left[\left(4R^2-a^2\right)+\left(16R^2-2b^2-2c^2-a^2\right)\right]-4R^2=$ $36R^2-4\left(a^2+b^2+c^2\right)$ $\implies$ $4\cdot HO^2=36R^2-4\left(a^2+b^2+c^2\right)\implies$ $OH^2=9R^2-\left(a^2+b^2+c^2\right)\ .$

Proof 2. Observe that $m\left(\widehat{OAH}\right)=|B-C|\ .$ Hence can apply the generalized Pythagoras' theorem to $\triangle AOH\ :\ HO^2=AH^2+AO^2-2\cdot AH\cdot AO\cdot\cos\widehat{OAH}=\left(4R^2-a^2\right)+R^2-$

$4R^2\cos A\cos (B-C)=$ $5R^2-a^2+4R^2\cos (B+C)\cos (B-C)=$ $5R^2-a^2+2R^2\cos 2B\cos 2C=$ $5R^2-a^2+2R^2\left[\left(1-2\sin^2B\right)+\left(1-2\sin^2C\right)\right]=$ $5R^2-a^2+$

$4R^2\left(1-\sin^2B-\sin^2C\right)=$ $5R^2-a^2+4R^2-b^2-c^2\implies$ $HO^2=9R^2-\left(a^2+b^2+c^2\right)\ .$ I used the identities $\cos 2x=1-2\sin^2x$ and $\cos x+\cos y=2\cdot\cos\frac {x+y}2\cdot \cos\frac {x-y}2\ .$

Remark.

$\blacktriangleright\ 2R^2\cdot\sum\cos 2A=$ $2R^2\cdot\sum\left(1-2\sin^2A\right)=$ $6R^2-4R^2\cdot\sum\sin^2A=$ $6R^2-\sum (2R\sin A)^2=$ $6R^2-\sum a^2$ $\implies$ $\boxed{\sum a^2=6R^2-2R^2\cdot\sum\cos 2A}\ (1)\ .$

$\blacktriangleright\ \sum\cos 2A=$ $\cos 2A+(\cos 2B+\cos 2C)=\cos 2A+2\cos (B+C)\cos (B-C)=2\cos^2A-1-2\cos A\cos (B-C)=$

$-1-2\cos A[\cos (B-C)-\cos A]=-1-2\cos A[\cos (B-C)+\cos (B+C)]=-1-4\cos A\cos B\cos C\implies$ $\boxed{\sum\cos 2A=-1-4\prod\cos A}\ (2)\ .$

$\blacktriangleright\ HO^2=9R^2-\sum a^2\ \stackrel{(1)}{=}\ 9R^2-\left(6R^2-2R^2\cdot\sum\cos 2A\right)=$ $3R^2+2R^2\cdot\sum\cos 2A\ \stackrel{(2)}{=}\ 3R^2+2R^2\left(-1-4\prod\cos A\right)=$

$R^2-8R^2\cdot\prod\cos A=$ $R^2\left(1-8\cdot\prod\cos A\right)\implies$ $\boxed{HO^2=R^2\cdot\left(1-8\prod\cos A\right)}\ (3)\ .$ The power of $H$ w.r.t. $w$ is $p_w(H)=OH^2-R^2\ ,$ i.e. $\boxed{p_w(H)=-8R^2\prod\cos A}\ (4)\ .$



P21 (Boris COLAKOVIC). Prove that $(\forall )\ \triangle\ ABC\ \mathrm{there\ is\ the\  following\ inequality\ :}\ \frac 1a+\frac 1b+\frac 1c\le\frac {\sqrt 3}{2r}$ .

Proof. I"ll use only the remarkable inequality $\boxed{\ s\le\frac {3R\sqrt 3}2\ }\ (*)$ and the well-known inequality $\boxed{\ 3(bc+ca+ab)\le (a+b+c)^2\ }\ (1)\ .$

Therefore, $\sum\frac 1a=$ $\frac {ab+bc+ca}{abc}\ \stackrel{(1)}{\le}\ \frac {(a+b+c)^2}{3\cdot abc}=$ $\frac {4s^2}{3\cdot 4Rrs}=$ $\frac s{3Rr}\ \stackrel{(*)}{\le}\ \frac 1{\cancel{3R}r}\cdot \frac {\cancel{3R}\sqrt 3}2=\frac {\sqrt 3}{2r}\implies$ $\boxed{\ \frac 1a+\frac 1b+\frac 1c\le \frac {\sqrt 3}{2r}\ }\ .$

Remark. This inequality is equivalent with $\underline{\underline{\boxed{\ h_a+h_b+h_c\le s\sqrt 3\ }}}\ .$ Indeed, $\sum h_a\le s\sqrt 3\iff$ $\sum\frac {bc}{2R}\le s\sqrt 3\iff$ $\sum bc\le 2Rs\sqrt 3\iff$ $\frac {\sum bc}{abc}\le\frac {2Rs\sqrt 3}{4Rsr}\iff$

$\underline{\underline{\boxed{\ \frac 1a+\frac 1b+\frac 1c\le \frac {\sqrt 3}{2r}\ }}}\ .$ Prove easily that $\left\{\begin{array}{ccc}
r_a+r_b+r_c & = & 4R+r\\\\
r_ar_b+r_br_c+r_cr_a & = & s^2\\\\
(s-a)(s-b)(s-c) & = & sr^2\end{array}\right\|
\ .$ I"ll prove the inequality $s\sqrt 3\le 4R+r$ and the chain of the inequalities $\boxed{\ 3r\sqrt 3\le s\le \frac {3R\sqrt 3}2\ }\ :$

$\left\{\begin{array}{ccccc}
3s^2=3\sum r_br_c\le \left(r_a+r_b+r_c\right)^2=(4R+r)^2 & \iff & \boxed{s\sqrt 3\le 4R+r} & \iff & 9s\sqrt 3\le 9(4R+r)\\\\
3\cdot\sqrt[3]{\prod (s-a)}\le\sum (s-a)=s\iff 27sr^2\le s^3 & \iff & \boxed{3r\sqrt 3\le s} & \implies & 9r\le s\sqrt 3\end{array}\right\|$ $\bigoplus\implies$ $8s\sqrt 3\le 36R\iff 2s\sqrt 3\le 9R\iff \boxed{\ s\le \frac {3R\sqrt 3}2\ }\ .$
This post has been edited 577 times. Last edited by Virgil Nicula, Feb 27, 2019, 11:09 AM

454. Mathematical note: "trig. ineg."- GMB 6/1992, page 201.

by Virgil Nicula, May 17, 2017, 8:04 AM

P0. Ascertain $\mathrm{Im}(f)\ ,$ where $f:\left(0,\frac {\pi}2\right]\rightarrow \mathbb R\ ,\ f(x)=\frac {\sin x-x\cos x}{x-\sin x}$

Proof. $f\left(\frac {\pi}2\right)=\frac 2{\pi -2}$ and $f(0+0)=\lim_{x\searrow 0}\frac {\sin x-x\cos x}{x-\sin x}\ \stackrel{l'H}{=}\ \lim_{x\searrow 0}\frac {x^2}{1-\cos x}\cdot\frac {\sin x}x=2\ .$ If we'll prove that the function continuous $f$ is strict monotonous, evidently strict decreasing
because $0<\frac {\pi}2$ and $f(0+0)=2>\frac 2{\pi -2}=f\left(\frac {\pi}2\right)\ ,$ then from the Darboux's property get $\mathrm{Im}(f)=\left[\frac 2{\pi -2},2\right)\ .$ Indeed, $f'(x)\ \mathrm{.a.s.}\ x^2\sin x-$ $x(1-\cos x)-\sin x(1-\cos x)=$ $\sin x\cdot\left[x-\frac {1-\cos x}{2\sin x}\cdot\left(1-\sqrt{4\cos x+5}\right)\right]\cdot\left[x-\frac {1-\cos x}{2\sin x}\cdot \left(1+\sqrt{4\cos x+5}\right)\right]\implies$ $f'(x)\ \mathrm{.a.s.}\ g(x)\equiv x-\frac {1-\cos x}{2\sin x}\cdot \left(1+\sqrt{4\cos x+5}\right)\ .$ But $g'(x)\ \mathrm{.a.s.}\ (1-\cos x)\left[(1+2\cos x\sqrt{4\cos x+5}-\left(2\cos^2x+4\cos x+3\right)\right]\ \mathrm{.a.s.}\ (1+2\cos x)^2(4\cos x+5)$ $-\left(2\cos^2x+4\cos x+3\right)=-4\sin^4x<0\ .$
In conclusion, $f'(x)<0$ for any $0<x<\frac {\pi}2\implies$ the function $f$ is decreasing and $\mathrm{Im}(f)=\left[\frac 2{\pi -2},2\right)\ ,$ i.e. $\boxed{(\forall ) x\in\left(0,\frac {\pi}2\right]\ ,\ \frac 2{\pi -2}<\frac {\sin x-x\cos x}{x-\sin x}<2}\ (*)\ .$

Remark 1. I'll write the inequality $(*)$ thus: $\frac 32<\frac {1-\cos x}{\frac {\sin x}x-\cos x}\le \frac {\pi}2\ (1)\ .$ The inequality $\frac 2{\pi}<\left(1-\frac 2{\pi}\right)\cdot\cos x+\frac 2{\pi}<\frac {\sin x}x<\frac {2+\cos x}3<1$

is equivalent with the inequality $(*)$ and is stronger than the wellknown inequality $\boxed{\frac 2{\pi}<\frac {\sin x}x<1}\ .$

Remark 2. I used the equivalence relation over $\mathbb R\ : x\ \mathrm{.a.s.}\ y\ \iff\ x=y=0\ \vee\ xy>0\ \iff\ \mathrm{sign}(x)=\mathrm{sign}(y)\ \iff\ x\ \mathrm{and}\ y\ \mathrm{have\ the\ same\ position\ w.r.t.}\ 0\ .$

Geometrical interpretation. I'll look for the most far point $S(-\lambda,0)$ to the left side of the axis $Ox\ ,$ where $\lambda >0$ so that for any point $M(x)\in w$ where $0<x<\frac {\pi}2$ the length $l$ of the arc $l(\overarc{AM})<[AT]\ ,$ where $T(1,\tan x)$ and $S\in MT\ .$ For $\lambda =0$ obtain $x<\tan x$ for any $0<x<\frac {\pi}2\ .$ Let $N=\mathrm{pr}_{Ox}(M)\ ,$ i.e. $MN=\sin x$ and $ON=\cos x\ .$ From $\frac {MN}{TA}=\frac {SN}{SA}$ obtain $AT=\frac {1+\lambda}{\cos x+\lambda}\cdot\sin x\ .$ Therefore, $\overarc{MA}<TA\iff$ $x<\frac {1+\lambda}{\cos x+\lambda}\cdot\sin x$ for any $0<x<\frac {\pi}2\ ,$ i.e. $\lambda<\frac {\sin x-x\cos x}{x-\sin x}\ .$ With other words, the most far point $S(-\lambda,0)\ ,$ $\lambda\ge 0$ to the left side of the axis $Ox$ for which $\overarc{MA}<TA\ ,$ $(\forall) x\in \left(0,\frac {\pi}2\right)$ is $S\left(-\lambda_0,0\right)\ ,$ where $\lambda_0=\frac 2{\pi-2}\ .$


Applications. $\mathrm{Prove\ that\ :}\ 0<x<\frac {\pi}2\implies \frac 2{\pi}\cdot\tan \frac x2<\frac 1x-\frac 1{\tan x}<\frac 23\cdot \tan\frac x2\ ;\ \left\{\begin{array}{ccc}
2\tan x+3x\cos x> 5\sin x\\\\
3\tan x+2x\cos x>5x\end{array}\right\|\ ;\ \left\{\begin{array}{ccc}
\frac {\pi}2+\sqrt 2 & < & 3\\\\
\pi +2 & < & 3\sqrt 3\end{array}\right\|\ .$

$\boxed{\triangle\ ABC\ :\ \left\{\begin{array}{c} K\in (AC)\ ;\ L\in (BC)\ ;\ G\in (KL)\\\\
M\in AG\cap BC\ ;\ N\in CG\cap AB\end{array}\right\|\ \implies\ \left\{\begin{array}{cc}(1) & \overline{LGK}/\triangle AMC\iff\frac {\cancel{LM}}{LC}\cdot\frac {KC}{\cancel{KA}}\cdot\cancel{\frac {GA}{GM}}=1\\\\ (2) & \overline{AGM}/\triangle CLK\iff \frac {\cancel{AK}}{AC}\cdot\frac {\cancel{MC}}{\cancel{ML}}\cdot\frac {GL}{GK}=1\\\\ (3) & \overline{CGN}/\triangle ABM\iff\frac {CB}{\cancel{CM}}\cdot\cancel{\frac {GM}{GA}}\cdot\frac {NA}{NB}=1\end{array}\right\|\bigodot\implies \frac {CK}{CL}\cdot \frac {CB}{CA}\cdot \frac {GL}{GK}\cdot \frac {NA}{NB}=1\implies\frac {GK}{GL}=\frac {NA}{NB}\cdot \frac {CK}{CL}\cdot\frac {CB}{CA}}$
.
This post has been edited 68 times. Last edited by Virgil Nicula, Jul 3, 2017, 8:10 AM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a