438. Tangential quadrilateral. Zaslavsky's problem.

by Virgil Nicula, Dec 28, 2015, 8:39 AM

1. Can find here the Darij Grinberg's article "Circumscribed (tangential or inscriptable) quadrilaterals" (version 5 October 2012 PDF file). See and here.

2. Josefsson, Martin (2011), "More Characterizations of Tangential Quadrilaterals" (PDF), Forum Geometricorum 11: 65–82.


P0. Let a tangential quadrilateral $ABCD$ with incircle $w=\mathbb C(I,r)$ for what denote $\left\{\begin{array}{ccc}
M\in AB\cap w & ; &  N\in BC\cap w\\\
P\in CD\cap w & ; & R\in DA\cap w\end{array}\right\|$ and

$\left\{\begin{array}{ccc}
AM=AQ=a & ; & BN=BM=b\\\
CP=CN=c & ; & DQ=DP=d\end{array}\right\|$ . Prove that $90^{\circ}\in \{A,B,C,D\}\ \ \vee\ \ \boxed{\begin{array}{cccc}
r^2(a+b+c+d) & = & ac(b+d)+bd(a+c) & (*)\\\\
IA\cdot IC+IB\cdot ID & = & \sqrt {AB\cdot BC\cdot CD\cdot DA} & (**)\end{array}}$ .


Proof. Suppose w.l.o.g. $90^{\circ}\not\in \{A,B,C,D\}$ , i.e. $r\not\in\{a,b,c,d\}$ . Let $\left\{\begin{array}{ccc}
m\left(\widehat{IAM}\right)=m\left(\widehat{IAQ}\right)=\alpha & ; & m\left(\widehat{IBN}\right)=m\left(\widehat{IBM}\right)=\beta\\\\
m\left(\widehat{ICP}\right)=m\left(\widehat{ICN}\right)=\gamma & ; & m\left(\widehat{IDQ}\right)=m\left(\widehat{IDP}\right)=\delta\end{array}\right\|$ $\implies$ $\alpha +\beta +\gamma +\delta =180^{\circ}$

and $\left\{\begin{array}{ccc}
\tan \alpha = \frac ra & ; & \tan\beta =\frac rb\\\\
\tan \gamma = \frac rc & ; & \tan\delta =\frac rd\end{array}\right\|$ . In conclusion, $(\alpha +\beta)+(\gamma +\delta )=180^{\circ}\iff$ $\tan (\alpha +\beta)+\tan (\gamma +\delta )=0^{\circ}\iff$ $\frac {\frac ra+\frac rb}{1-\frac ra\cdot\frac rb}+\frac {\frac rc+\frac rd}{1-\frac rc\cdot\frac rd}=0\iff$

$\frac{r(a+b)}{ab-r^2} +\frac {r(c+d)}{cd-r^2}=0\iff$ $(a+b)\left(cd-r^2\right)+(c+d)\left(cd-r^2\right)=0\iff$ $\boxed{r^2(a+b+c+d)=ac(b+d)+bd(a+c)}\ .$ Observe that

$\boxed{\begin{array}{ccc}
\sin (x+y) & = & \sin (z+t)\\\\
\sin (y+z) & = & \sin (x+t)\end{array}}\ (1)$ and $\boxed{\begin{array}{ccccccc}
IA\cdot \sin x & = & IB\cdot \sin y & = & IC\cdot \sin z & = & IC\cdot\sin t\\\\
AM\cdot \tan x & = & BN\cdot\tan y & = & CP\cdot\tan z & = & DQ\cdot\tan t\end{array}}\ (2)$ . Thus, $AB=MA+MB=$ $AM+BN=$

$r(\cot x+\cot y)\implies$ $AB=\frac {r\sin (x+y)}{\sin x\sin y}$ a.s.o. Therefore, $\boxed{\begin{array}{ccc}
AB=\frac {r\sin (x+y)}{\sin x\sin y} & ; & BC=\frac {r\sin (y+z)}{\sin y\sin z}\\\\
CD=\frac {r\sin (z+t)}{\sin z\sin t} & ; & DA=\frac {r\sin (t+x)}{\sin t\sin x}\end{array}}\ (3)$ . In conclusion, using $(2)$ and $(3)$ obtain that required relation $(**)$

is equivalently with $\frac {r^2}{\sin x\sin z}+\frac {r^2}{\sin y\sin t}=$ $\sqrt{\frac {r\sin (x+y)}{\sin x\sin y}\cdot \frac {r\sin (y+z)}{\sin y\sin z}\cdot \frac {r\sin (z+t)}{\sin z\sin t}\cdot \frac {r\sin (t+x)}{\sin t\sin x}}\ \stackrel{(1)}{\iff}\ \sin y\sin t+$ $\sin x\sin z=\sin (x+y)\sin (y+z)\iff$

$\cos (y-t)-\underline{\cos (y+t)}+\underline{\underline{\cos (x-z)}}-\underline{\cos (x+z)}=\underline{\underline{\cos (x-z)}}-\cos (x+2y+z)\iff$ $\cos (y-t)+\cos (x+2y+z)=0\iff$

$\cos\frac {(y-t)+(x+2y+z)}2\cos\frac {(x+2y+z)-(y-t)}2=0\iff$ $\cos\frac {x+3y+z-t}2\cos\frac {x+y+z+t}2=0$ , what is truly because $x+y+z+t=180^{\circ}$ .


P1 (Miguel Ochoa Sanchez). Let a circumscribed $ABCD$ with the incircle $w=\mathbb C(O,r)$ . Prove that $\boxed{\frac {OA^2+OB^2}{AB}+\frac {OC^2+OD^2}{CD}\ =\ s\ =\ \frac {OA^2+OD^2}{AD}+\frac {OB^2+OC^2}{BC}}$ .

Proof. $\widehat{AOB}+\widehat{COD}=180^{\circ}=\widehat{BOC}+\widehat{DOA}\implies$ $\cot\widehat{AOB}+\cot\widehat{COD}=0=\cot\widehat{BOC}+\cot\widehat{DOA}\ (*).$ Apply relation $\boxed{4S\cot A=b^2+c^2-a^2}$ for any $\triangle ABC\ :$

$\left|\begin{array}{c}
\triangle AOB\ :\ 2r\cdot AB\cot\widehat{AOB}=OA^2+OB^2-AB^2\implies\frac {OA^2+OB^2}{AB}=AB+2r\cot\widehat{AOB}\\\\
\triangle COD\ :\ 2r\cdot CD\cot\widehat{COD}=OC^2+OD^2-CD^2\implies\frac {OC^2+OD^2}{CD}=CD+2r\cot\widehat{COD}\end{array}\right|\ \bigoplus$ $\stackrel{(*)}{\implies}\ \frac {OA^2+OB^2}{AB}\ +\ \frac {OC^2+OD^2}{CD}\ =\ AB+CD\ \ \ \ \ \ (1)$ .

$\left|\begin{array}{c}
\triangle BOC\ :\ 2r\cdot BC\cot\widehat{BOC}=OB^2+OC^2-BC^2\implies\frac {OB^2+OC^2}{BC}=BC+2r\cot\widehat{BOC}\\\\
\triangle DOA\ :\ 2r\cdot DA\cot\widehat{DOA}=OD^2+OA^2-DA^2\implies\frac {OD^2+OA^2}{DA}=DA+2r\cot\widehat{DOA}\end{array}\right|\ \bigoplus$ $\stackrel{(*)}{\implies}\ \frac {OB^2+OC^2}{BC}\ +\ \frac {OD^2+OA^2}{DA}\ =\ BC+DA\ \ \ \ \ \ \ (2)$ .

Relatioms $(1)$ , $(2)$ and Pithot's theorem $AB+CD=s=AD+BC$ $\implies$ $\frac {OA^2+OB^2}{AB}+\frac {OC^2+OD^2}{CD}=s=\frac {OA^2+OD^2}{AD}+\frac {OB^2+OC^2}{BC}\ (s-$ semiperimeter of $ABCD)$

Remark. Let $(K,L,M,N)$ be the points where $w$ touches $AB$ , $BC$ , $CD$ , $DA$ respectively and denote $\left\{\begin{array}{ccc}
AK=AN=a & ; & BL=BK=b\\\\
CM=CL=c & ; & DN=DM=d\end{array}\right\|$ . The relation $(1)$ becomes $:$

$\frac {\left(r^2+a^2\right)+\left(r^2+b^2\right)}{a+b}+\frac {\left(r^2+c^2\right)+\left(r^2+d^2\right)}{c+d}=(a+b)+(c+d)\iff$ $\frac {r^2-ab}{a+b}+\frac {r^2-cd}{c+d}=0\iff$ $\cot\widehat{AOB}+\cot\widehat{COD}=0\iff$ $\boxed{r^2=\frac {ab(c+d)+cd(a+b)}{a+b+c+d}}$

$\left\{\begin{array}{ccc}
m\left(\widehat{AOK}\right)=m\left(\widehat{AON}\right)=x\ ,\ \tan x=\frac ar  & ; & m\left(\widehat{BOL}\right)=m\left(\widehat{BOK}\right)=y\ ,\ \tan y=\frac br\\\\
m\left(\widehat{COM}\right)=m\left(\widehat{COL}\right)=z\ ,\ \tan z=\frac cr & ; & m\left(\widehat{DON}\right)=m\left(\widehat{DOM}\right)=t\ ,\ \tan t=\frac dr\end{array}\right\|$ . Thus, $\frac {r^2-ab}{a+b}+\frac {r^2-cd}{c+d}=0$ $\iff$ $\frac {1-\frac ar\cdot\frac br}{\frac ar+\frac br}+\frac {1-\frac cr\cdot\frac dr}{\frac cr+\frac dr}=0$ $\iff$

$\frac {1-\tan x\cdot\tan y}{\tan x+\tan y}+$ $\frac {1-\tan z\cdot\tan t}{\tan z+\tan t}=0$ $\iff$ $\frac 1{\tan (x+y)}+\frac 1{\tan (z+t)}=0\iff$ $\cot (x+y)+\cot (z+t)=$ $0\ \stackrel{(x+y)+(z+t)=180^{\circ}}{\iff}\ \cot\widehat{AOB}+\cot\widehat{COD}=0$.


Remarks. IF $ ABCD$ is an orthodiagonal convex quadrilateral inscribed in the circle [/u] $ w = C(O,r)$ , THEN $:$

$ 0.\ \Longrightarrow$ If denote the midpoint $ M$ of $ [AB]$ and the projection $ X$ of $ P$ to $ BC$ , then $ P\in MX$ a.s.o. analogously.

$ 1.\ \Longrightarrow$ The midpoints of the its sides and the projections of $ P\in AC\cap BD$ to the its sides belong to the circle with

the center in the midpoint of $OP$ and with the length of radius $ \boxed {\ R = \sqrt {2r^2 - OP^2}\ }$ (the circle of eight points).

$ 2.\ \Longrightarrow\ \sum PA^2 = \boxed {\ AB^2 + CD^2 = AD^2 + BC^2 = 4r^2\ }$ .

$ 3.\ \Longrightarrow\ \boxed {\ AC^2 + BD^2 = 4R^2\ } = 4\cdot \left(2r^2 - OP^2\right)$ .

$ 4.\ \Longrightarrow\ \sum PA = \frac {(AB + CD)(AD + BC)}{2r}$ . Denote $ \delta_d(X)$ - distance of $ X$ to the line $ d$ .

$ 5.\ \Longrightarrow\ \boxed {\ \delta_{AB}(O) + \delta_{BC}(O) + \delta_{CD}(O) + \delta_{DA}(O) = s\ }\ (s$ - semiperimeter$)\ .$

$ 6.\ \implies PA + PB + PC + PD = \boxed {\ \frac {(AB + CD)(AD + BC)}{2r}\ \le\ 4r\ }\ .$



P2 (Test selectie Bulgaria, 2003). Fie patrulaterul circumscris $ABCD$ cu incentrul $I$ si proiectia $P$ a lui $I$ pe diagonala $[AC].$ Aratati ca $\widehat{APB}\equiv\widehat{APD}.$

Metoda 1 (Laurentiu Ploscaru). Fie punctele de tangență $E,F,G,H$ ale cercului înscris la laturile $AB,BC,CD$ si $DA$ respectiv. Avem $m(\widehat{IPC})=m(\widehat{IFC})=$ $m(\widehat{IGC})=90^\circ ,$

precum și $m(\widehat{IPA})=m(\widehat{IEA})=$ $m(\widehat{IHA})=90^\circ .$ Prin urmre $\odot(AEH)\cap \odot(CFG)=\{O,P\}.$ Considerăm inversiunea $\mathcal{I}$ de pol $I$ și putere $IE^2.$ Facem notația $X^\prime =\mathcal{I(X)}$

pentru orice punct $X$ din plan. În mod evident $X^\prime=X$ pentru $X\in \{E,F,G,H\}.$ De asemenea, punctele $A^\prime , B^\prime , C^\prime , D^\prime$ vor fi mijloacele laturilor $HE,EF,FG$ si $GH$ respectiv.

Observăm că $\odot(AEH)$ și $\odot(CFG)$ se transformă în dreptele $EH,FG$ respective. Așadar $P^\prime=EF\cap FG.$ Problema ne cere să arătăm că $(PA$ este bisectoarea interioară a unghiului

$\widehat{BPD}$ sau că $(PI$ este cea exterioară. Acest lucru este tot una cu $m(\widehat{BPI})+m(\widehat{DPI})=180^\circ.$ Trecută prin inversiune, această relație devine $m(\widehat{P^\prime B^\prime I})+$ $m(\widehat{P^\prime D^\prime I})=180^\circ$

care după un trivial angle-chasing se reduce la $m(\widehat{P^\prime B^\prime F})=$ $m(\widehat{P^\prime D^\prime H}).$ Dar $\triangle P^\prime HG\sim \triangle P^\prime FE$ si $B^\prime$ și $D^\prime$ sunt mijloacele laturilor $EF$ si $GH.$ Concluzia reiese imediat.


Metoda 2 (Stefan Tudose). Notez polara $l_{\alpha}$ a punctului $\alpha$ in raport cu $(I).$ Pastrand notatiile punctelor de tangenta, fie $EH\cap FG=\{T\}.$ Cum $l_A=EH$ si $l_C=FG,$ rezulta ca

$l_T=AC,$ de unde obtinem $T-I-P$ coliniare. Cum $P\in AC=l_T,$ avem ca $T\in l_P.$ Fie $HG\cap l_P=\{R\}$ si fie $EF\cap l_P=\{S\}.$ Din teorema fluturelui, $TR=TS.$

Sa mai observam ca $l_R=PD\ ,$ $l_S=PB.$ Cum punctele $R,S$ si cercul $(I)$ au ca axa de simetrie dreapta $TI,$ conchidem ca $\angle(l_T,l_R)=\angle(l_T,l_S),$ i.e. $\widehat{APB}=\widehat{APD}.$



P3 (Zaslavsky). Let an equilateral $\triangle ABC$ with the circumcirle $w=\mathbb C(O,R).$ For a mobile point $D\in w$ denote $\left\{\begin{array}{ccc}
K & \in & AC\cap BD\\\\
L & \in & AB\cap CD\\\\
M & \in & AD\cap BC\end{array}\right\|.$ Prove that the area $[KLM]$ is constant.

Proof 1. Let $\left\{\begin{array}{ccc}
AB=a & ; & DB=b\\\\
DC=c & ; & DA=d\end{array}\right\|$ and $D\in\overarc{BC}.$ Thus, $:\ \boxed{b+c=d}\ (1)\ ;$ $m\left(\widehat{BDC}\right)=120^{\circ}\implies $ $\boxed{a^2=b^2+bc+c^2}\implies$ $\boxed{\begin{array}{ccc}
a^2-b^2 & = & c(b+c)=cd\\\\
a^2-c^2 & = & b(b+c)=bd\end{array}}\ (2)\ ;$

$\boxed{[ABC]=\frac {a^2\sqrt 3}4\ }\ (3)\ ;\ \boxed{[LMK]=\frac {\sqrt 3}4\cdot \left[DM\cdot (DL+DK)+DL\cdot DK\right]}\ (4)\ .$ Now I"ll apply the remarkable relations of PP1
from here $:$

$:\ \left\{\begin{array}{cccc}
\frac {MD}{bc}=\frac {MA}{a^2}=\frac d{a^2+bc}=\frac d{(b+c)^2}=\frac 1d & \implies & \boxed{MD=\frac {bc}d} & (5)\\\\
\frac {LC}{a^2}=\frac {LD}{bd}=\frac {CD}{a^2-b(b+c)}=\frac c{cd-bc}=\frac 1{d-b} & \implies & \boxed{LD=\frac {bd}{d-b}} & (6)\\\\
\frac {KB}{a^2}=\frac {KD}{cd}=\frac {BD}{a^2-c(b+c)}=\frac b{bd-bc}=\frac 1{dcb} & \implies & \boxed{KD=\frac {cd}{d-c}} & (7)\end{array}\right\| .$ From relation $(4)$ obtain that $:\ \frac 4{\sqrt3}\cdot [LMK]=\frac {bc}d\cdot\left(\frac {bd}{d-b}+\frac {cd}{d-c}\right)+\frac {bcd^2}{(d-b)(d-c)}=$

$bc\cdot\left(\frac {b}{d-b}+\frac {c}{d-c}\right)+\frac {bcd^2}{(d-b)(d-c)}=$ $bc\cdot\frac{(b+c)d-2bc}{(d-b)(d-c)}+\frac {bcd^2}{(d-b)(d-c)}=$ $\frac {bc\left(b^2+c^2\right)+bcd^2}{d^2-d(b+c)+bc}=$ $\frac {bc\left(b^2+c^2\right)+bcd^2}{bc}=$

$b^2+c^2+d^2=$ $b^2+c^2+(b+c)^2=$ $2\cdot \left(b^2+bc+c^2\right)=2a^2\implies$ $\frac 4{\sqrt3}\cdot [LMK]=2a^2\implies$ $[LMK]=\frac {a^2\sqrt 3}2\implies [LMK]=2\cdot  [ABC]\ .$


Proof 2. Suppose w.l.o.g. $D\in\overarc{BC}$ and denote $: \left\{\begin{array}{ccc}
AB=a & ; & DB=b\\\\
DC=c & ; & DA=d\end{array}\right\|\ ;\ \left\{\begin{array}{ccc}
BL=x & ; & DL=u\\\\
CK=y & ; & DK=v\end{array}\right\| ;\ \left\{\begin{array}{ccc}
m\left(\widehat{DAB}\right) & = & \alpha\\\\
m\left(\widehat{DAC}\right) & = & \beta\end{array}\right\|\ .$ Observe that $:\ \boxed{b+c=d}\ (1)\ ;$

$m\left(\widehat{BDC}\right)=120^{\circ}\implies a^2=b^2+bc+c^2\implies$ $\boxed{\begin{array}{ccc}
a^2-b^2 & = & c(b+c)\\\\
a^2-c^2 & = & b(b+c)\end{array}}\ (2)\ ;\ \frac b{\sin\alpha}=\frac c{\sin\beta}=2R=\frac {2a}{\sqrt 3}$ $\implies$ $\boxed{\begin{array}{ccc}
\sin\alpha & = & \frac {b\sqrt 3}{2a}\\\\
\sin\beta & = & \frac {c\sqrt 3}{2a}\end{array}}\ (3)\ ;\ \frac {MA}{MD}=$ $\frac {AB\cdot AC}{DB\cdot DC}\implies $

$\frac {MA}{a^2}=$ $\frac {MD}{bc}=$ $\frac d{a^2+bc}=$ $\frac {b+c}{(b+c)^2}=$ $\frac 1{b+c}\implies$ $ \boxed{MA=\frac {a^2}{b+c}}\ (4)\ ;\ \boxed{[ABC]=\frac {a^2\sqrt 3}4\ }\ (5)\ .$ Observe that $\boxed{[LMK]=[LAK]-[MAL]-[MAK]}\ (6)\ .$Therefore $:$

$\blacktriangleright\ \triangle LBD\sim\triangle LAC\iff$ $\frac {LB}{LA}=\frac {LD}{LC}=$ $\frac {BD}{AC}\iff$ $\frac x{u+c}=\frac u{x+a}=\frac ba\iff$ $\left\{\begin{array}{cccc}
ax-bu & = & bc\\\\
au-bx & = & ab\end{array}\right|$ $\begin{array}{ccc}
\odot & a & \searrow\\\\
\odot & b & \nearrow\end{array}\bigoplus\implies $

$(a^2-b^2)x=ab(b+c)\ \stackrel{2}{\implies}\ c(b+c)x=ab(b+c)\implies$ $ x=\frac {ab}c$ $\implies$ $AL=AB+BL=a+\frac {ab}c$ $\implies$ $\boxed{AL=\frac {a(b+c)}c=\frac {ad}c}\ (7)\ .$

$\blacktriangleright\ \triangle KCD\sim\triangle KBA\iff$ $\frac {KC}{KB}=\frac {KD}{KA}=$ $\frac {CD}{BA}\iff$ $\frac y{v+b}=\frac v{y+a}=\frac ca\iff$ $\left\{\begin{array}{cccc}
ay-cv & = & bc\\\\
av-cy & = & ac\end{array}\right|$ $\begin{array}{ccc}
\odot & a & \searrow\\\\
\odot & c & \nearrow\end{array}\bigoplus$ $\implies $

$(a^2-c^2)y=ac(b+c)\ \stackrel{2}{\implies}$ $b(b+c)y=ac(b+c)\implies y=\frac{ac}b$ $\implies$ $AK=AB+BL=a+\frac{ac}{b}$ $\implies$ $ \boxed{AK=\frac {a(b+c)}{b}=\frac {ad}b}\ (8)\ .$

Hence $[LMK]=2\cdot [ABC]\ \stackrel{5\wedge 6}{\iff}\ LA\cdot KA\cdot\sin A-LA\cdot MA\cdot\sin\alpha -$ $KA\cdot MA\cdot\sin\beta =$ $a^2\sqrt 3\ \stackrel{3\wedge 4\wedge 7\wedge 8}{\iff}\ \frac {a(b+c)}c\cdot \frac {a(b+c)}b\cdot\frac{\sqrt 3}2-$

$\frac {a(b+c)}c\cdot \frac {a^2}{b+c}\cdot\frac {b\sqrt 3}{2a} -$ $\frac {a(b+c)}b\cdot \frac {a^2}{b+c}\cdot\frac {c\sqrt 3}{2a}=a^2\sqrt 3\iff$ $\frac {b+c}c\cdot \frac {b+c}b-\frac bc -\frac cb=2\iff$ $(b+c)^2-b^2-c^2=2bc\ ,$ what is true.

Remark. $\odot\begin{array}{ccccccccc}
\nearrow & \frac {LA}{LB}=\frac {DA}{DB}\cdot\frac {\sin\widehat{LDA}}{\sin\widehat{LDB}}=\frac{DA}{DB}=\frac db & \implies & \frac {LA}d=\frac {LB}b=\frac {AB}{d-b}=\frac ac & \implies & \boxed{LA=\frac {ad}c} & \wedge & \boxed{LB=\frac {ab}c} & \searrow\\\\

\searrow & \frac {KA}{KC}=\frac {DA}{DC}\cdot\frac {\sin\widehat{KDA}}{\sin\widehat{KDC}}=\frac{DA}{DC}=\frac dc & \implies & \frac {KA}d=\frac {KC}c=\frac {AC}{d-c}=\frac ab & \implies & \boxed{KA=\frac {ad}b} & \wedge & \boxed{KC=\frac {ac}b} & \nearrow\end{array}\odot\ .$ See and here.

Extension. Let $\triangle ABC$ and $D\in \overarc{BC}\subset\mathbb  C(O,R)$ for what $\left\{\begin{array}{ccc}
K\in AC\cap BD\ ;  & L\in AB\cap CD\ ; & M\in AD\cap BC\\\\
AB=a\ ; & BD=b\ ; & CD=c\\\\
AC=d\ ; & AD=e\ ; & BC=f\end{array}\right\|\ .$ Prove that $\boxed{\frac {[KLM]}{[ABC]}=\frac {2bc(ad+bc)}{\left(d^2-b^2\right)\left(a^2-c^2\right)}}\ (*)\ .$

Particular case $\left\{\begin{array}{ccc}     
\triangle ABC & : &  a=d=f\\\\
e=b+c & ; & a^2=b^2+c^2+bc\end{array}\right\|.$ In this case $\frac {[KLM]}{[ABC]}=\frac {2bc(a^2+bc)}{\left(a^2-b^2\right)\left(a^2-c^2\right)}=$ $\frac {2bc(b+c)^2}{\left(c^2+bc\right)\left(b^2+bc\right)}=$ $\frac {2bc(b+c)^2}{bc(b+c)^2}=2$ $\implies$ $[KLM]=2\cdot [ABC]\ .$


Proof 1. Let $\left\{\begin{array}{ccc}
m\left(\widehat{DAB}\right) & = & \alpha\\\\
m\left(\widehat{DAC}\right) & = & \beta\end{array}\right\|$ and apply relations of PP1 from here $:\ \boxed{ef=ac+bd}\ ;\ \boxed{\frac ef=\frac {ad+bc}{ab+cd}}\ (1)$ and $\frac {MA}{ad}=\frac {MD}{bc}=$ $\frac e{ad+bc}\implies$ $\boxed{MA=\frac {ade}{ad+bc}}\ (2)\ ;$

$\odot\begin{array}{cccccccc}
\nearrow & \frac {LA}{de}=\frac {LB}{bf}=\frac a{de-bf} & \implies & LA=\frac {ade}{de-bf}=\frac {ad}{d-b\cdot\frac fe}=\frac {ad}{d-b\cdot\frac  {ab+cd}{ad+bc}}=\frac {d(ad+bc)}{d^2-b^2}\implies\boxed{LA=\frac {d(ad+bc)}{d^2-b^2}} & (3) & \searrow\\\\
\searrow & \frac {KA}{ae}=\frac {KC}{cf}=\frac d{ae-cf} & \implies & KA=\frac {ade}{ae-cf}=\frac {ad}{a-c\cdot\frac fe}=\frac {ad}{a-c\cdot\frac  {ab+cd}{ad+bc}}=\frac {a(ad+bc)}{a^2-c^2}\implies\boxed{KA=\frac {a(ad+bc)}{a^2-c^2}} & (4) & \nearrow\end{array}\odot\ ;\ \boxed{\frac {ad}{4R}=\frac Sf}\ (5)$ and $\boxed{\sin A=\frac {2S}{bc}}\ (6)\ ,$

$\boxed{\begin{array}{ccc}
\sin\alpha & = & \frac b{2R}\\\\
\sin\beta  & = & \frac c{2R}\end{array}}\ (7)\ ,$ where $w=\mathrm C(O,R)$ is circumcircle of $\triangle ABC$ and $S=[ABC]\ .$ Hence $[LMK]=[LAK]-[LAM]-[KAM]=$ $\frac 12\cdot LA\cdot KA\cdot\sin A-$

$\frac 12\cdot LA\cdot MA\cdot\sin\alpha -$ $\frac 12\cdot KA\cdot MA\cdot\sin\beta\ \stackrel{2\div 7}{=}\ \frac 12\cdot $ $\frac {d(ad+bc)}{d^2-b^2}\cdot\frac {a(ad+bc)}{a^2-c^2}\cdot\frac {f}{2R}-$ $\frac 12\cdot \frac {d(ad+bc)}{d^2-b^2}\cdot\frac {ade}{ad+bc}\cdot\frac b{2R} -$ $\frac 12\cdot\frac {a(ad+bc)}{a^2-c^2}\cdot\frac {ade}{ad+bc}\cdot\frac c{2R}=$

$\frac {ad}{4R}\left[ \frac {f(ad+bc)^2}{\left(a^2-c^2\right)\left(d^2-b^2\right)}-\frac {bde}{d^2-b^2}-\frac {ace}{a^2-c^2} \right]=$ $\frac Sf\left[ \frac {f(ad+bc)^2}{\left(a^2-c^2\right)\left(d^2-b^2\right)}-\frac {bde}{d^2-b^2}-\frac {ace}{a^2-c^2} \right]\implies$ $\frac {[LMK]}{[ABC]}=\frac {(ad+bc)^2}{\left(a^2-c^2\right)\left(d^2-b^2\right)}-\frac ef\cdot\left(\frac {bd}{d^2-b^2}+\frac {ac}{a^2-c^2} \right)=$

$\frac {(ad+bc)^2}{\left(a^2-c^2\right)\left(d^2-b^2\right)}-$ $\frac {ad+bc}{ab+cd}\cdot\left(\frac {bd}{d^2-b^2}+\frac {ac}{a^2-c^2} \right)=$ $\frac {(ad+bc)^2}{\left(a^2-c^2\right)\left(d^2-b^2\right)}-$ $\frac {ad+bc}{ab+cd}\cdot\frac {(ab+cd)(ad-bc)}{\left(d^2-b^2\right)\left(a^2-c^2\right)}=$ $\frac {(ad+bc)^2}{\left(a^2-c^2\right)\left(d^2-b^2\right)}-\frac {(ad+bc)(ad-bc)}{\left(d^2-b^2\right)\left(a^2-c^2\right)}=$

$\frac {(ad+bc)[(ad+bc)-(ad-bc)]}{\left(d^2-b^2\right)\left(a^2-c^2\right)}=$ $\frac {2bc(ad+bc)}{\left(d^2-b^2\right)\left(a^2-c^2\right)}\implies$ $\boxed{\frac {[LMK]}{[ABC]}=\frac {2bc(ad+bc)}{\left(d^2-b^2\right)\left(a^2-c^2\right)}}\ (*)\ .$

Remark. $\frac {[LMK]}{[ABDC]}=$ $\frac {[LMK]}{[ABC]}\cdot \frac {[ABC]}{[ABDC]}=$ $\frac {2bc(ad+bc)}{\left(d^2-b^2\right)\left(a^2-c^2\right)}\cdot \frac {AM}{AD}=$ $\frac {2bc(ad+bc)}{\left(d^2-b^2\right)\left(a^2-c^2\right)}\cdot\frac {ad}{ad+bc}\implies$ $\boxed{\frac {[LMK]}{[ABDC]}=\frac {2abcd}{\left(d^2-b^2\right)\left(a^2-c^2\right)}}$ (M.O. Sanchez - Peru).


Proof 2. The relations $\boxed{\ ac+bd=ef\ }$ and $\boxed{\ \frac ef=\frac{ad+bc}{ab+cd}\ }$ are well known. Observe that $\left\{\begin{array}{ccc}
m\left(\widehat{LDM}\right) =A+C & \implies & \sin\widehat{LDM}=\sin B=\frac {2S}{af}\\\\
m\left(\widehat{KDM} \right)=A+B & \implies & \sin\widehat{KDM}=\sin C=\frac {2S}{df}\\\\
m\left(\widehat{LDK}\right) =180^{\circ}-A & \implies & \sin\widehat{LDK}=\sin A=\frac {2S}{ad}\end{array}\right\|\ (1)\ ,$

where $S=[ABC]\ .$ Thus, $[LMK]=[LDM]+[KDM]+[LDK]=$ $\frac 12\cdot DL\cdot DM\cdot\sin\widehat{LDM} +$ $\frac 12\cdot DK\cdot DM\cdot\sin\widehat{KDM}+\frac 12\cdot DL\cdot DK\cdot\sin\widehat{LDK}\ \stackrel{(1)}{\implies}$

$ 2\cdot [LMK]=$ $DL\cdot DM\cdot\frac {2S}{af} +$ $DK\cdot DM\cdot\frac {2S}{df}+$ $DL\cdot DK\cdot\frac {2S}{ad}$ $\implies$ $\boxed{\ adf\cdot \frac {[LMK]}{[ABC]}=d\cdot DL\cdot DM+a\cdot DK\cdot DM+f\cdot DL\cdot DK\ }\ (2)\ .$ Apply the problem P1

from
here $\ :\ \left\{\begin{array}{cccc}
\frac {MA}{ad}=\frac {MD}{bc}=\frac e{ad+bc} & \implies & \boxed{DM=\frac {bce}{ad+bc}} & (3)\\\\
\frac {DL}{be}=\frac {LC}{DF}=\frac c{df-be} & \implies & \boxed{DL=\frac {bce}{df-be}} & (4)\\\\
\frac {DK}{ce}=\frac {KB}{af}=\frac b{af-ce} & \implies & \boxed{DK=\frac {bce}{af-ce}} & (5)\end{array}\right\|\ \stackrel{(2)}{\implies}\ \frac {adf}{(bce)^2}\cdot \frac {[LMK]}{[ABC]}=$ $\left(\frac d{df-be}+\frac a{af-ce}\right)\cdot\frac 1{ad+bc}+\frac f{(df-be)(af-ce)}\ (6)\ .$

Observe that $d(af-ce)+a(df-be)=2adf-e(ab+cd)=2adf-f(bc+ad)\implies d(af-ce)+a(df-be)=f(ad-bc)\ .$ Thus, the relation $(6)$

becomes $\frac {adf}{(bce)^2}\cdot \frac {[LMK]}{[ABC]}=$ $\frac {f(ad-bc)+f(ad+bc)}{(df-be)((af-ce)(ad+bc)}=$ $\frac {2adf}{(df-be)(af-ce)(ad+bc)}\ ,$ i.e. $ \frac {[LMK]}{[ABC]}=\frac {2(bce)^2}{(df-be)(af-ce)(ad+bc)}=$

$\frac {2b^2c^2e^2(ab+cd)^2}{[df(ab+cd)-be(ab+cd)]\cdot [af(ab+cd)-ce(ab+cd)]\cdot (ad+bc)}=$ $\frac {2b^2c^2f^2(ad+bc)^2}{[df(ab+cd)-bf(ad+bc)]\cdot [af(ab+cd)-cf(ad+bc)]\cdot (ad+bc)}=$

$\frac {2b^2c^2(ad+bc)}{[d(ab+cd)-b(ad+bc)]\cdot [a(ab+cd)-c(ad+bc)]}=$ $\frac {2b^2c^2(ad+bc)}{c\left(d^2-b^2\right)\cdot b\left(a^2-c^2\right)}=\frac {2bc(ad+bc)}{\left(d^2-b^2\right)\cdot \left(a^2-c^2\right)}\implies$ $\boxed{\frac {[LMK]}{[ABC]}=\frac {2bc(ad+bc)}{\left(d^2-b^2\right)\cdot \left(a^2-c^2\right)}}\ .$

Remark. Prove easily that $\left\{\begin{array}{ccccc}
\frac {AL}d & = & \frac {DL}b & = & \frac {ad+bc}{d^2-b^2}\\\\
\frac {AK}a & = & \frac {DK}c & = & \frac {ad+bc}{a^2-c^2}\end{array}\right\|$ and $\left\{\begin{array}{ccccc}
\frac {BL}b & = & \frac {CL}d & = & \frac {ab+cd}{d^2-b^2}\\\\
\frac {CK}c & = & \frac {BK}a & = & \frac {ab+cd}{a^2-c^2}\end{array}\right\|\ .$
This post has been edited 383 times. Last edited by Virgil Nicula, Aug 31, 2016, 5:48 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a