438. Tangential quadrilateral. Zaslavsky's problem.
by Virgil Nicula, Dec 28, 2015, 8:39 AM
1. Can find here the Darij Grinberg's article "Circumscribed (tangential or inscriptable) quadrilaterals" (version 5 October 2012 PDF file). See and here.
2. Josefsson, Martin (2011), "More Characterizations of Tangential Quadrilaterals" (PDF), Forum Geometricorum 11: 65–82.
P0. Let a tangential quadrilateral
with incircle
for what denote
and
. Prove that
.
Proof. Suppose w.l.o.g.
, i.e.
. Let

and
. In conclusion,

Observe that
and
. Thus,

a.s.o. Therefore,
. In conclusion, using
and
obtain that required relation 
is equivalently with


, what is truly because
.
P1 (Miguel Ochoa Sanchez). Let a circumscribed
with the incircle
. Prove that
.
Proof.
Apply relation
for any 
.
.
Relatioms
,
and Pithot's theorem
semiperimeter of 
Remark. Let
be the points where
touches
,
,
,
respectively and denote
. The relation
becomes 

. Thus,

.
Remarks. IF
is an orthodiagonal convex quadrilateral inscribed in the circle [/u]
, THEN 
If denote the midpoint
of
and the projection
of
to
, then
a.s.o. analogously.
The midpoints of the its sides and the projections of
to the its sides belong to the circle with
the center in the midpoint of
and with the length of radius
(the circle of eight points).
.
.
. Denote
- distance of
to the line
.
- semiperimeter

P2 (Test selectie Bulgaria, 2003). Fie patrulaterul circumscris
cu incentrul
si proiectia
a lui
pe diagonala
Aratati ca 
Metoda 1 (Laurentiu Ploscaru). Fie punctele de tangență
ale cercului înscris la laturile
si
respectiv. Avem

precum și
Prin urmre
Considerăm inversiunea
de pol
și putere
Facem notația 
pentru orice punct
din plan. În mod evident
pentru
De asemenea, punctele
vor fi mijloacele laturilor
si
respectiv.
Observăm că
și
se transformă în dreptele
respective. Așadar
Problema ne cere să arătăm că
este bisectoarea interioară a unghiului
sau că
este cea exterioară. Acest lucru este tot una cu
Trecută prin inversiune, această relație devine

care după un trivial angle-chasing se reduce la
Dar
si
și
sunt mijloacele laturilor
si
Concluzia reiese imediat.
Metoda 2 (Stefan Tudose). Notez polara
a punctului
in raport cu
Pastrand notatiile punctelor de tangenta, fie
Cum
si
rezulta ca
de unde obtinem
coliniare. Cum
avem ca
Fie
si fie
Din teorema fluturelui, 
Sa mai observam ca
Cum punctele
si cercul
au ca axa de simetrie dreapta
conchidem ca
i.e. 
P3 (Zaslavsky). Let an equilateral
with the circumcirle
For a mobile point
denote
Prove that the area
is constant.
Proof 1. Let
and
Thus,

Now I"ll apply the remarkable relations of PP1 from here 
From relation
obtain that ![$:\ \frac 4{\sqrt3}\cdot [LMK]=\frac {bc}d\cdot\left(\frac {bd}{d-b}+\frac {cd}{d-c}\right)+\frac {bcd^2}{(d-b)(d-c)}=$](//latex.artofproblemsolving.com/8/b/9/8b9e93146a5239a51c5793a46ea8315257c6cc73.png)

![$[LMK]=\frac {a^2\sqrt 3}2\implies [LMK]=2\cdot [ABC]\ .$](//latex.artofproblemsolving.com/1/c/7/1c7cd0dea1b1fcd8b2cc8e92a44ae7e7cb72911b.png)
Proof 2. Suppose w.l.o.g.
and denote
Observe that 

Observe that
Therefore 




Hence

what is true.
Remark.
See and here.
Extension. Let
and
for what
Prove that ![$\boxed{\frac {[KLM]}{[ABC]}=\frac {2bc(ad+bc)}{\left(d^2-b^2\right)\left(a^2-c^2\right)}}\ (*)\ .$](//latex.artofproblemsolving.com/a/0/2/a0239a4c3fdc356733655a06f78a59ef5f1a5b03.png)
Particular case
In this case
![$[KLM]=2\cdot [ABC]\ .$](//latex.artofproblemsolving.com/0/7/8/0781c20b41932b56a7d89e4793d566f6bc3d30c2.png)
Proof 1. Let
and apply relations of PP1 from here
and

and 
where
is circumcircle of
and
Hence


![$\frac {[LMK]}{[ABC]}=\frac {(ad+bc)^2}{\left(a^2-c^2\right)\left(d^2-b^2\right)}-\frac ef\cdot\left(\frac {bd}{d^2-b^2}+\frac {ac}{a^2-c^2} \right)=$](//latex.artofproblemsolving.com/6/f/c/6fc2f7164d549ba57ce40dfa1234e1d5d00d0a22.png)

![$\boxed{\frac {[LMK]}{[ABC]}=\frac {2bc(ad+bc)}{\left(d^2-b^2\right)\left(a^2-c^2\right)}}\ (*)\ .$](//latex.artofproblemsolving.com/4/8/8/488249d86d9a3e7718c088d1ebb90469b709ad43.png)
Remark.
(M.O. Sanchez - Peru).
Proof 2. The relations
and
are well known. Observe that 
where
Thus,

Apply the problem P1
from here

Observe that
Thus, the relation 
becomes
i.e. ![$ \frac {[LMK]}{[ABC]}=\frac {2(bce)^2}{(df-be)(af-ce)(ad+bc)}=$](//latex.artofproblemsolving.com/2/6/1/2619d4e9637f4e78a7f0f52b96a2157d24033a4c.png)
![$\frac {2b^2c^2f^2(ad+bc)^2}{[df(ab+cd)-bf(ad+bc)]\cdot [af(ab+cd)-cf(ad+bc)]\cdot (ad+bc)}=$](//latex.artofproblemsolving.com/1/0/4/104ea00b1d7cb8b9daffe3f70dbf951fe035d41c.png)
![$\boxed{\frac {[LMK]}{[ABC]}=\frac {2bc(ad+bc)}{\left(d^2-b^2\right)\cdot \left(a^2-c^2\right)}}\ .$](//latex.artofproblemsolving.com/6/0/3/603822e777fcc16556dd7631037fc01c1aa81713.png)
Remark. Prove easily that
and 
2. Josefsson, Martin (2011), "More Characterizations of Tangential Quadrilaterals" (PDF), Forum Geometricorum 11: 65–82.
P0. Let a tangential quadrilateral





Proof. Suppose w.l.o.g.





and

















is equivalently with








P1 (Miguel Ochoa Sanchez). Let a circumscribed



Proof.








Relatioms






Remark. Let
























Remarks. IF





![$ [AB]$](http://latex.artofproblemsolving.com/d/7/a/d7a8027c238eec9cf67de0f7ec6cb1df4df49a61.png)






the center in the midpoint of











P2 (Test selectie Bulgaria, 2003). Fie patrulaterul circumscris




![$[AC].$](http://latex.artofproblemsolving.com/c/e/9/ce9b10d51f3ed832d68a5d0a9804d9f3a7ac4129.png)

Metoda 1 (Laurentiu Ploscaru). Fie punctele de tangență





precum și







pentru orice punct






Observăm că










care după un trivial angle-chasing se reduce la







Metoda 2 (Stefan Tudose). Notez polara













Sa mai observam ca







P3 (Zaslavsky). Let an equilateral




![$[KLM]$](http://latex.artofproblemsolving.com/a/3/5/a35d3fe48f86df6342dec8d36883cae3f7778bfd.png)
Proof 1. Let






![$\boxed{[ABC]=\frac {a^2\sqrt 3}4\ }\ (3)\ ;\ \boxed{[LMK]=\frac {\sqrt 3}4\cdot \left[DM\cdot (DL+DK)+DL\cdot DK\right]}\ (4)\ .$](http://latex.artofproblemsolving.com/8/5/d/85d5da63607db7ae0920e767b33aa14fcdbc66f5.png)



![$:\ \frac 4{\sqrt3}\cdot [LMK]=\frac {bc}d\cdot\left(\frac {bd}{d-b}+\frac {cd}{d-c}\right)+\frac {bcd^2}{(d-b)(d-c)}=$](http://latex.artofproblemsolving.com/8/b/9/8b9e93146a5239a51c5793a46ea8315257c6cc73.png)







![$\frac 4{\sqrt3}\cdot [LMK]=2a^2\implies$](http://latex.artofproblemsolving.com/2/7/9/279ba92ce5c09332f9aac5ab0d95261e50498c01.png)
![$[LMK]=\frac {a^2\sqrt 3}2\implies [LMK]=2\cdot [ABC]\ .$](http://latex.artofproblemsolving.com/1/c/7/1c7cd0dea1b1fcd8b2cc8e92a44ae7e7cb72911b.png)
Proof 2. Suppose w.l.o.g.













![$ \boxed{MA=\frac {a^2}{b+c}}\ (4)\ ;\ \boxed{[ABC]=\frac {a^2\sqrt 3}4\ }\ (5)\ .$](http://latex.artofproblemsolving.com/8/8/8/888eb520f381a01e6cf55b3c8e015ba3e66d91b1.png)
![$\boxed{[LMK]=[LAK]-[MAL]-[MAK]}\ (6)\ .$](http://latex.artofproblemsolving.com/d/1/2/d12267763420393c6e0a615aab74d244dec482bf.png)


























Hence
![$[LMK]=2\cdot [ABC]\ \stackrel{5\wedge 6}{\iff}\ LA\cdot KA\cdot\sin A-LA\cdot MA\cdot\sin\alpha -$](http://latex.artofproblemsolving.com/5/5/8/5587346d02a8b489b7d2acc1e043a3f97425e9ea.png)






Remark.

Extension. Let



![$\boxed{\frac {[KLM]}{[ABC]}=\frac {2bc(ad+bc)}{\left(d^2-b^2\right)\left(a^2-c^2\right)}}\ (*)\ .$](http://latex.artofproblemsolving.com/a/0/2/a0239a4c3fdc356733655a06f78a59ef5f1a5b03.png)
Particular case

![$\frac {[KLM]}{[ABC]}=\frac {2bc(a^2+bc)}{\left(a^2-b^2\right)\left(a^2-c^2\right)}=$](http://latex.artofproblemsolving.com/f/5/e/f5edeb47e14131a45a45f101d07adeddeab3d559.png)



![$[KLM]=2\cdot [ABC]\ .$](http://latex.artofproblemsolving.com/0/7/8/0781c20b41932b56a7d89e4793d566f6bc3d30c2.png)
Proof 1. Let










![$S=[ABC]\ .$](http://latex.artofproblemsolving.com/4/4/2/4425fc906cee3e28fbf07d7426f8e85fef08bc4c.png)
![$[LMK]=[LAK]-[LAM]-[KAM]=$](http://latex.artofproblemsolving.com/c/6/6/c665d8f28a7f8a9155c1fcf085f874d4e13ccebf.png)






![$\frac {ad}{4R}\left[ \frac {f(ad+bc)^2}{\left(a^2-c^2\right)\left(d^2-b^2\right)}-\frac {bde}{d^2-b^2}-\frac {ace}{a^2-c^2} \right]=$](http://latex.artofproblemsolving.com/c/8/1/c81449c86b42834a6015ceb88030f5d97237fba4.png)
![$\frac Sf\left[ \frac {f(ad+bc)^2}{\left(a^2-c^2\right)\left(d^2-b^2\right)}-\frac {bde}{d^2-b^2}-\frac {ace}{a^2-c^2} \right]\implies$](http://latex.artofproblemsolving.com/c/7/b/c7bca9c7b0daa037359ccb90705e017939150ce9.png)
![$\frac {[LMK]}{[ABC]}=\frac {(ad+bc)^2}{\left(a^2-c^2\right)\left(d^2-b^2\right)}-\frac ef\cdot\left(\frac {bd}{d^2-b^2}+\frac {ac}{a^2-c^2} \right)=$](http://latex.artofproblemsolving.com/6/f/c/6fc2f7164d549ba57ce40dfa1234e1d5d00d0a22.png)





![$\frac {(ad+bc)[(ad+bc)-(ad-bc)]}{\left(d^2-b^2\right)\left(a^2-c^2\right)}=$](http://latex.artofproblemsolving.com/b/f/0/bf053f3eaeed774fd610ee3281bd79b8449b9840.png)

![$\boxed{\frac {[LMK]}{[ABC]}=\frac {2bc(ad+bc)}{\left(d^2-b^2\right)\left(a^2-c^2\right)}}\ (*)\ .$](http://latex.artofproblemsolving.com/4/8/8/488249d86d9a3e7718c088d1ebb90469b709ad43.png)
Remark.
![$\frac {[LMK]}{[ABDC]}=$](http://latex.artofproblemsolving.com/3/2/7/327d609bdd377f2b0c43808f7b97692756764cc4.png)
![$\frac {[LMK]}{[ABC]}\cdot \frac {[ABC]}{[ABDC]}=$](http://latex.artofproblemsolving.com/1/9/2/192b0af1d032869c612c5f3c26078a928c63152e.png)


![$\boxed{\frac {[LMK]}{[ABDC]}=\frac {2abcd}{\left(d^2-b^2\right)\left(a^2-c^2\right)}}$](http://latex.artofproblemsolving.com/2/b/7/2b74078a29221551e0aa5d130cc01dfb6e862fc1.png)
Proof 2. The relations



where
![$S=[ABC]\ .$](http://latex.artofproblemsolving.com/4/4/2/4425fc906cee3e28fbf07d7426f8e85fef08bc4c.png)
![$[LMK]=[LDM]+[KDM]+[LDK]=$](http://latex.artofproblemsolving.com/3/6/a/36a1fece5f25e0936849ebe63c33889a1e64817d.png)


![$ 2\cdot [LMK]=$](http://latex.artofproblemsolving.com/0/7/6/0766fe431cac0aa786f957647399b79da994cac3.png)




![$\boxed{\ adf\cdot \frac {[LMK]}{[ABC]}=d\cdot DL\cdot DM+a\cdot DK\cdot DM+f\cdot DL\cdot DK\ }\ (2)\ .$](http://latex.artofproblemsolving.com/7/4/d/74dcc72aa6395037937b519cd0e15b4d148e203b.png)
from here
![$\ :\ \left\{\begin{array}{cccc}
\frac {MA}{ad}=\frac {MD}{bc}=\frac e{ad+bc} & \implies & \boxed{DM=\frac {bce}{ad+bc}} & (3)\\\\
\frac {DL}{be}=\frac {LC}{DF}=\frac c{df-be} & \implies & \boxed{DL=\frac {bce}{df-be}} & (4)\\\\
\frac {DK}{ce}=\frac {KB}{af}=\frac b{af-ce} & \implies & \boxed{DK=\frac {bce}{af-ce}} & (5)\end{array}\right\|\ \stackrel{(2)}{\implies}\ \frac {adf}{(bce)^2}\cdot \frac {[LMK]}{[ABC]}=$](http://latex.artofproblemsolving.com/4/4/5/4457aa1969de13aa620a9576e3a3ae69944504fd.png)

Observe that


becomes
![$\frac {adf}{(bce)^2}\cdot \frac {[LMK]}{[ABC]}=$](http://latex.artofproblemsolving.com/e/9/b/e9bad34eb7f7bc7491f2238ef7957e4a84b7a83f.png)


![$ \frac {[LMK]}{[ABC]}=\frac {2(bce)^2}{(df-be)(af-ce)(ad+bc)}=$](http://latex.artofproblemsolving.com/2/6/1/2619d4e9637f4e78a7f0f52b96a2157d24033a4c.png)
![$\frac {2b^2c^2e^2(ab+cd)^2}{[df(ab+cd)-be(ab+cd)]\cdot [af(ab+cd)-ce(ab+cd)]\cdot (ad+bc)}=$](http://latex.artofproblemsolving.com/f/c/6/fc60f1d9c00dcdf6853872aa4dbe7236d22573d6.png)
![$\frac {2b^2c^2f^2(ad+bc)^2}{[df(ab+cd)-bf(ad+bc)]\cdot [af(ab+cd)-cf(ad+bc)]\cdot (ad+bc)}=$](http://latex.artofproblemsolving.com/1/0/4/104ea00b1d7cb8b9daffe3f70dbf951fe035d41c.png)
![$\frac {2b^2c^2(ad+bc)}{[d(ab+cd)-b(ad+bc)]\cdot [a(ab+cd)-c(ad+bc)]}=$](http://latex.artofproblemsolving.com/3/d/d/3dd6376eb665f657bd237fda37dae802c416595d.png)

![$\boxed{\frac {[LMK]}{[ABC]}=\frac {2bc(ad+bc)}{\left(d^2-b^2\right)\cdot \left(a^2-c^2\right)}}\ .$](http://latex.artofproblemsolving.com/6/0/3/603822e777fcc16556dd7631037fc01c1aa81713.png)
Remark. Prove easily that


This post has been edited 383 times. Last edited by Virgil Nicula, Aug 31, 2016, 5:48 PM