393. Some problems with circles.

by Virgil Nicula, Apr 3, 2014, 5:26 PM

PP1 (Ruben Dario). Let $w=\mathbb C(O,R)$ be a circle with diameter $[AB]$ and $w_1=\mathbb C(C,r)\ ,\ w_2=\mathbb C(S,s)$ which are interior tangent to $w$ in $A$ , $Y$ respectively and which

are exterior tangent one to other in $X$ so that $C\in (AO)\ ,\ r<R<2r$ , $AB$ doesn't separate $X\ ,\ Y$ and $w_2$ is tangent in $T\in (OB)$ to $AB$ . Find $[TB]=f(R,r)$ .


Proof. Let the diameter $[AD]$ of $w_1$ and $DT=x$ . Thus, $\left\{\begin{array}{ccccc}
CO=R-r & ; & OD=2r-R & ; & TO=2r-R+x\\\\
SC=r+s & ; & TC=r+x & ; & SO=R-s\end{array}\right\|$ and apply the Pytagoras' theorem to $T$-rightangled $:$

$\odot\begin{array}{ccccccc}
\nearrow\ \triangle TCS\ : & CS^2=TS^2+TC^2 & \iff & (r+s)^2=s^2+(r+x)^2 & \iff & \boxed{s=\frac {x(2r+x)}{2r}}\ \ \ (*) & \searrow\\\\
\searrow\ \triangle TOR\ : & OS^2=TS^2+TO^2 & \iff & (R-s)^2=s^2+(2r-R+x)^2 & \iff & (x+2r)^2-2R(2r+x)+2Rs=0 & \nearrow\end{array}\odot$ $\stackrel{(*)}{\implies}$ $(x+2r)^2-2R(x+2r)+$

$R\cdot \frac {x(x+2r)}{r}=0\implies$ $r(x+2r)-2Rr+Rx=0$ $\implies\ \odot\begin{array}{ccc}
\nearrow & x=\frac {2r(R-r)}{R+r} & \searrow\\\\
\searrow & s=\frac {4Rr(R-r)}{(R+r)^2} & \nearrow\end{array}\odot\implies$ $TB=2(R-r)-x\implies$ $\boxed{TB=\frac {2R(R-r)}{R+r}}$ .

Remark. Denote $\left\{\begin{array}{c}
\alpha =m\left(\widehat{SAT}\right)\\\\
\beta =m\left(\widehat{XAT}\right)\end{array}\right\|$ . Thus, $m\left(\widehat{SCT}\right)=2\beta$ and prove easily that $\left\{\begin{array}{ccc}
\tan\alpha =\frac {ST}{AT}=\frac s{x+2r} & \implies & \boxed{\tan\alpha =\frac {R-r}{R+r}}\\\\
\tan 2\beta =\frac {ST}{CT}=\frac s{x+r} & \implies & \tan 2\beta =\frac {4R(R-r)}{(R+r)(3R-r)}\end{array}\right\|$ .

Denote $t=\tan\beta$ . Thus, $\tan 2\beta =\frac {2t}{1-t^2}\implies$ $\frac {4R(R-r)}{(R+r)(3R-r)}=\frac {2t}{1-t^2}\implies$ $2R(R-r)t^2+(R+r)(3R-r)t-2R(R-r)=0$ with the discriminant

$\Delta =\left(3R^2+2Rr-r\right)^2+\left(4R^2-4Rr\right)^2\implies$ $\Delta =\left(5R^2-2Rr+r^2\right)^2$ . Therefore, $t=\tan\beta=\frac {-\left(3R^2+2Rr-r^2\right)+\left(5R^2-2Rr+r^2\right)}{4R(R-r)}\implies \boxed{\tan\beta =\frac {R-r}{2R}}$

and $m\left(\widehat{SAX}\right)=\alpha -\beta\implies$ $\tan\widehat{SAX}=\frac {\frac {R-r}{R+r}-\frac {R-r}{2R}}{1+\frac {(R-r)^2}{2R(R+r)}}\implies$ $\boxed{\tan\widehat{SAX}=\frac {(R-r)^2}{3R^2+r^2}}$ . If $P\in w_1$ and $Q\in w_2$ so that $PQ$ is the common exterior tangent of $w_1$ and $w_2$ ,

then $PQ=2\sqrt{rs}\implies$ $\boxed{PQ=\frac {4r\sqrt{R(R-r)}}{R+r}}$ and the ratio $\frac {PQ}{TB}=\frac {2r}{\sqrt{R(R-r)}}$ .

Particular case. For $R:=2r$ obtain that $\boxed{PQ=TB\sqrt 2}$ and $\boxed{\tan\widehat{SAX}=\frac 1{13}}$ .



PP2 (Edson Curahua Ortega). Let an isosceles trapezoid $ABCD$ with $AD\parallel BC\ ,\ AD>BC\ ,\ AB=CD$ and incircle $w=C(I,r)$ . Denote the midpoint $M$ of $[AD]$ .

For $Q\in (MD)$ let $R\in (CD)$ so that $QR$ is tangent to $w$ . Denote $P\in AB\cap QR$ and $S\in BC\cap QR$ . Prove that the division $(P,R;Q,S)$ is harmonically.


Proof 1 (metric). Denote $\{N,U,V\}\subset w$ so that $U\in AB\ ,\ N\in BC\ , V\in CD$ and $\left\{\begin{array}{c}
MA=MD=UA=VD=a\\\\
NB=NC=UB=VC=b\end{array}\right\|$ . For $T\in QR\cap w$ denote $\left\{\begin{array}{c}
QM=QT=x\\\\
RV=RT=y\end{array}\right\|$ .

Apply the generalized Pythagoras' theorem in $\triangle DRQ\ :\ RQ^2=DQ^2+DR^2-DQ\cdot DR\cdot\cos \widehat{RDQ}\iff$ $(x+y)^2=(a-x)^2+(a-y)^2-2(a-x)(a-y)\cdot\frac {a-b}{a+b}$

$\iff$ $\boxed{\ b(x+y)+xy=ab\ }\ (*)$ . Therefore, $\left\{\begin{array}{ccc}
\frac {RQ}{RS}=\frac {a-y}{b+y}\stackrel{(*)}{=}\frac xb=\frac {a-x}{CS} & \implies & \frac {RQ}{RS}=\frac xb\ ;\ CS=\frac {b(a-x)}x\\\\
\frac {PQ}{PS}=\frac {AQ}{BS}=\frac {a+x}{2b+\frac {b(a-x)}x} & \implies & \frac {PQ}{PS}=\frac {a+x}{b\left(2+\frac {a-x}{x}\right)}=\frac xb\end{array}\right\|$ $\implies$ $\frac {RQ}{RS}=\frac {PQ}{PS}=\frac xb$ , i.e. the division $(P,R;Q,S)$

is harmonically. Observe that $IQ\perp IS\implies$ $[IQ$ is the bisector of $\widehat{PIR}$ .

Remark. From $BS=\frac {b(x+a)}{x}\ ,\ RD=a-y=\frac {x(a+b)}{x+b}$ and $\sin\widehat{RDQ}=\frac {2\sqrt{ab}}{a+b}$ obtain that the area $[BRQ]=[BQS]-[BRS]=$

$\frac 12\cdot BS\cdot\left[\delta_{BS}(Q)-\delta_{BS}(R)\right]=$ $\frac 12\cdot BS\cdot\delta_{AD}(R)=$ $\frac 12\cdot BS\cdot RD\cdot\sin\widehat{RDQ}=$ $\frac 12\cdot\frac {b(x+a)}{x}\cdot\frac {x(a+b)}{x+b}\cdot\frac {2\sqrt {ab}}{a+b}\implies$ $\boxed{\ [BRQ]=\frac {b(x+a)\sqrt{ab}}{x+b}\ }$ .

In the particular case $RQ=\frac {a+b}{2}\implies\odot\begin{array}{cc}
\nearrow & x=b\\\\
\searrow & y=\frac {a-b}2\end{array}\ ,$ $[BRQ]=$ $\frac {(a+b)\sqrt {ab}}{2}=\frac {[ABCD]}4$ .

Proof 2 (proiective).



PP3 (Julio Orihuela). Let $ABC$ be an $A$-right-angled triangle with the incircle $w=\mathbb C(I,r)$ and denote $E\in AC\cap BI$ . Consider the circle

$\rho$ with the center $E$ and the radius $[EA]$ . Let $X\in (BA)\ ,\ Y\in (BC)$ be two points so that $XY$ is tangent to $\rho$ . Prove that $XY=2r$ .


Proof. $\left\{\begin{array}{cc}
EA=\frac {bc}{a+c} & (1)\\\\
\boxed{2r=b+c-a} & (2)\end{array}\right\|$ and $XY\parallel AC\implies$ $\frac {XY}{b}=\frac {XY}{AC}=\frac {BX}{BA}=$ $\frac {BA-XA}{BA}=$ $1-\frac {EA}{BA}\ \stackrel{(1)}{=}\ 1$ $-\frac b{a+c}=1-\frac {a-c}{b}=$ $\frac {b+c-a}{b}\ \stackrel{(2)}{=}\ \frac {2r}b\implies XY=2r$


PP4 Let $ABC$ be a triangle and let $M\in (BC)$ be a point for which $MB=m\cdot MC$ . The second tangent from the point $M$

to the incircle of $\triangle ABC$ touches it at the point $T$ . Denote the intersection $X\in AT\cap BC$. Prove that $\frac{XB}{XC}=\frac{p-c}{p-b}\cdot m^{2}$.


Proof. Let the incircle $w$ of $\triangle ABC$ and $\left\{\begin{array}{c}D\in BC\cap w\\\ E\in AC\cap w\end{array}\right\|$ . Suppose w.l.o.g. $M\in (DC)$ and let $V\in AC\cap MT$ Thus, $\left\{\begin{array}{c}MT=MD\\\ VT=VE\end{array}\right\|$ . Therefore,

$MD=MB-BD=\frac{ma}{1+m}-(p-b)$ $\Longleftrightarrow$ $\boxed{DM=\frac{m(p-c)-(p-b)}{1+m}}\ \ (1)$ . Apply the Brianchon's theorem to $ABMV$ i.e. there is $S\in AM\cap BV\cap DE$.

$1\blacktriangleright$ Apply Menelaus' theorem to $\overline{DSE}$ in $\triangle AMC\ :\ \frac{DM}{DC}$ $\cdot\frac{EC}{EA}\cdot\frac{SA}{SM}=1$ $\Longleftrightarrow$ $\frac{m(p-c)-(p-b)}{(1+m)(p-c)}\cdot\frac{p-c}{p-a}\cdot\frac{SA}{SM}=1$ $\Longleftrightarrow$ $\boxed{\frac{SA}{SM}=\frac{(1+m)(p-a)}{m(p-c)-(p-b)}}\ \ (2)$.

$2\blacktriangleright$ Apply the Menelaus' theorem to the transversal $\overline{BSV}$ in $\triangle AMC\ :\ \frac{BM}{BC}$ $\cdot\frac{VC}{VA}\cdot\frac{SA}{SM}=1$ $\Longleftrightarrow$ $\frac{m}{1+m}\cdot\frac{VC}{VA}\cdot\frac{(1+m)(p-a)}{m(p-c)-(p-b)}=1$ $\Longleftrightarrow$

$\boxed{\frac{VA}{m(p-a)}=\frac{VC}{m(p-c)-(p-b)}=\frac{b}{mb-(p-b)}}\ \ (3)$ . Observe that $EV=AV-AE=\frac{m(p-a)b}{mb-(p-b)}-(p-a)$ $\Longleftrightarrow$ $\boxed{EV=\frac{(p-a)(p-b)}{mb-(p-b)}}\ \ (4)$ .

$3\blacktriangleright$ Apply the Menelaus' theorem to the transversal $\overline{ATX}$ in $\triangle MVC\ :\ \frac{AV}{AC}$ $\cdot\frac{XC}{XM}\cdot\frac{TM}{TV}=1$ $\Longleftrightarrow$ $\frac{m(p-a)}{mb-(p-b)}\cdot\frac{XC}{XM}\cdot\frac{MD}{VE}=1$ $\Longleftrightarrow$

$\frac{m(p-a)}{mb-(p-b)}\cdot\frac{XC}{XM}\cdot\frac{m(p-c)-(p-b)}{1+m}\cdot\frac{mb-(p-b)}{(p-a)(p-b)}=1$ $\Longleftrightarrow$ $\boxed{\frac{XM}{m\left[m(p-c)-(p-b)\right]}=\frac{XC}{(1+m)(p-b)}=\frac{a}{(1+m)\left[m^{2}(p-c)+(p-b)\right]}}\ \ (5)$ .

Therefore, $XC=\frac{a(p-b)}{m^{2}(p-c)+(p-b)}$ $\implies$ $XB=BC-XC=\frac{m^{2}(p-c)a}{m^{2}(p-c)+(p-b)}$ $\implies$ $\boxed{\frac{XB}{XC}=\frac{p-c}{p-b}\cdot m^{2}}$.


Application. In a scalene $\triangle ABC$ the rays $[AD\ ,\ [BE\ ,\ [CF$ are the angle bisectors $(D \in BC\ ,\ E \in AC\ ,\ F \in AB)$ . Points $K_{a}\ ,\ K_{b}\ ,\ K_{c}$

on the incircle of $\triangle ABC$ are so that $DK_{a}\ ,\ EK_{b}\ ,\ FK_{c}$ are tangent to the incircle and $K_{a}\not\in BC\ ,\ K_{b}\not\in AC\ ,\ K_{c}\not\in AB$ . Let $A_{1}\ ,\ B_{1}\ ,\ C_{1}$

be the midpoints of sides $BC\ ,\ CA\ ,\ AB$ respectively. Prove that the lines $A_{1}K_{a}\ ,\ B_{1}K_{b}\ ,\ C_{1}K_{c}$ intersect on the incircle of the triangle $ABC$ .



PP5 (Balkan MO 1995). The circles $ \mathcal C_1(O_1, r_1)$ and $ \mathcal C_2(O_2, r_2)$ , $ r_2 > r_1$ , intersect at $ A$ and $ B$ such that

$ AO_1\perp AO_2$ . The line $ O_1O_2$ meets $ \mathcal C_1$ at $ C$ and $ D$, and $ \mathcal C_2$ at $ E$ and $ F$ (in the order $ C$, $ E$, $ D$, $ F$). The line

$ BE$ meets $ \mathcal C_1$ at $ K$ and $ AC$ at $ M$ . The line $ BD$ meets $ \mathcal C_2$ at $ L$ and $ AF$ at $ N$ . Prove that $ \frac { r_2}{r_1} = \frac {KE}{KM} \cdot \frac {LN}{LD}$ .


Proof. This problem is a nice application of the harmonical division. See the lemma from here.

$ 1\blacktriangleright$ The division $ (C,E,D,F)$ is harmonically ;

$2\blacktriangleright$ The angles $ \widehat {KAC}$ , $ \widehat {CAE}$ , $ \widehat{EAD}$ , $ \widehat {DAF}$ , $ \widehat {FAL}$ hava same measure, $ 45^{\circ}$ .

$ 3\blacktriangleright$ $ A\in KF\cap LC\ ;$

$4\blacktriangleright$ $ MN\parallel CF\ ;$

$5\blacktriangleright$ $ \frac {MK}{ME} = \frac {NL}{ND} = \frac {r_1}{r_2}$ (see Camaronsou's) $\mathrm {\ \ OR\ \ }$ $MN\parallel CF$ $ \implies$ $ \left\{\begin{array}{cc} \triangle KEF\ : & \frac {KE}{KM} = \frac {EF}{MN} \\
 \\
\triangle LDC\ : & \frac {LN}{LD} = \frac {MN}{CD}\end{array}\right\|$ $ \implies$ $ \frac {KE}{KM}\cdot\frac {LN}{LD} = \frac {EF}{CD} = \frac {r_2}{r_1}$ .



PP6. Let $\triangle ABC$ with the incenter $I\ ,\ b\ne c$ and $\left\{\begin{array}{c}
D\in AI\cap BC\\\\
E\in BI\cap CA\\\\
F\in CI\cap AB\end{array}\right\|$ . Prove that $DE=DF\implies \boxed{\frac a{b+c}=\frac b{a+c}+\frac c{a+b}}$ and $A\ >\ 90^{\circ}$ .

Proof 1. $DF=DE\ \wedge\ b\ne c\iff$ $\widehat{BFD}\equiv\widehat{AED}\iff$ $AEDF$ is cyclic. Let circumcircle $w$ of $AEDF$ and $\{D,X\}=BC\cap w$ . Suppose w.l.o.g. $X\in (DC)$ , $DX=x$ .

Apply the powers of $B$ and $C$ w.r.t. $w\ :\ \left\{\begin{array}{ccccc}
BF\cdot BA=BD\cdot BX & \implies & \frac {ca}{a+b}\cdot c=\frac {ca}{b+c}\cdot\left(\frac {ca}{b+c}+x\right) & \implies & \frac c{a+b}=\frac {ac}{(b+c)^2}+\frac x{b+c}\\\\
CE\cdot CA=CD\cdot CX & \implies & \frac {ba}{a+c}\cdot b=\frac {ba}{b+c}\cdot \left(\frac {ba}{b+c}-x\right) & \implies & \frac b{a+c}=\frac {ab}{(b+c)^2}-\frac x{b+c}\end{array}\right\|$ $\bigoplus\implies$ $\frac b{a+c}+\frac c{a+b}=\frac a{b+c}$ .

Proof 2. $DF=DE\ \wedge\ b\ne c\iff$ $\widehat{BFD}\equiv\widehat{AED}\iff$ $AEDF$ is cyclically $\iff DE\cdot (AE+AF)=AD\cdot EF\iff$ $AE+AF=AD\cdot\frac {EF}{DE}\iff$

$bc\cdot\left(\frac 1{a+c}+\frac 1{a+b}\right)=$ $\frac {2bc\cdot\cos\frac A2}{b+c}\cdot 2\cos\frac A2\iff$ $bc\left[2a+(b+c)\right](b+c)=(a+b)(a+c)\left[(b+c)^2-a^2\right]\iff$ $2abc(b+c)+bc(b+c)^2=$

$a^2(b+c)^2+a(b+c)^3+bc(b+c)^2-a^2(a+b)(a+c)\iff$ $2bc(b+c)=a(b+c)^2+(b+c)^3-a(a+b)(a+c)\iff$ $a(a+b)(a+c)=$

$(b+c)\left[a(b+c)+\left(b^2+c^2\right)\right]\iff$ $a(a+b)(a+c)=(b+c)\left[b(a+b)+c(a+c)\right]\iff$ $\frac a{b+c}=\frac b{a+c}+\frac c{a+b}$ .

Proof 3 (Leo Giugiuc). Denote $\left\{\begin{array}{ccccc}
x=\frac a{b+c} & \implies & DB=cx & \wedge & DC=bx\\\\
y=\frac b{c+a} & \implies & EC=ay & \wedge & EA=cy\\\\
z=\frac c{a+b} & \implies & FA=bz & \wedge & FB=az\end{array}\right\|$ . Apply the theorem of Cosines to the triangles $DBF$ and $DCE\ :$

$\left\{\begin{array}{cccc}
\triangle DBF\ : & DF^2=a^2z^2+c^2x^2-2acxz\cos B & \implies & DF^2=a^2z^2+c^2x^2-xz\left(a^2+c^2-b^2\right)\\\\
\triangle DCE\ : & DE^2=a^2y^2+b^2x^2-2abxy\cos C & \implies & DE^2=a^2y^2+b^2x^2-xy\left(a^2+b^2-c^2\right)\end{array}\right\|$ . In conclusion, $DF=DE\iff$

$a^2z^2+c^2x^2-xz\left(a^2+c^2-b^2\right)=a^2y^2+b^2x^2-xy\left(a^2+b^2-c^2\right)\iff$ $a^2\left(y^2-z^2\right)-a^2x(y-z)+x^2\left(b^2-c^2\right)-x(y+z)\left(b^2-c^2\right)=0\iff$

$a^2(y-z)(y+z-x)+x\left(b^2-c^2\right)(x-y-z)=0\iff$ $(y+z-x)\left[a^2(y-z)-x\left(b^2-c^2\right)\right]=0$ . Observe that $a^2(y-z)-x\left(b^2-c^2\right)=$

$\frac {a^2(b-c)(a+b+c)}{(a+c)(a+b)}-\frac a{b+c}\cdot\left(b^2-c^2\right)=$ $\frac {a^2(b-c)(a+b+c)}{(a+c)(a+b)}-a(b-c)=$ $\frac {a(b-c)}{(a+b)(a+c)}\cdot\left[a(a+b+c)-(a+b)(a+c)\right]=$ $-\frac {abc(b-c)}{(a+c)(a+b)}\ne 0$ .

Hence $y+z-x=0$ , i.e. $x=y+z\iff$ $\frac a{b+c}=\frac b{a+c}+\frac c{a+b}$ .


Proof 4. $\boxed{b\ne c\iff bz\ne cy}\ (*)$ . Let $\left\{\begin{array}{c}
y=\frac b{a+c}\\\\
z=\frac c{a+b}\end{array}\right\|$ . Theorem of Cosines to $\odot\begin{array}{cccc}
\nearrow & DF/\triangle ADF\ : & DF^2=AD^2+b^2z^2-2bz\cdot AD\cdot \cos\frac A2 & \searrow\\\\
\searrow & DE/\triangle ADE\ : & DE^2=AD^2+c^2y^2-2cy\cdot AD\cdot \cos\frac A2 & \nearrow\end{array}\odot\stackrel{(DE=DF)}{\implies}$

$b^2z^2-2bz\cdot AD\cdot \cos\frac A2=c^2y^2-2cy\cdot AD\cdot \cos\frac A2\stackrel{(*)}{\implies}$ $bz+cy=2\cdot AD\cos\frac A2\implies$ $bc\cdot\left(\frac 1{a+c}+\frac 1{a+b}\right)=\frac {4bc\cos^2\frac A2}{b+c}\implies$

$bc(2a+b+c)(b+c)=(a+b)(a+c)\left[(b+c)^2-a^2\right]$ $\implies$ $2abc(b+c)+bc(b+c)^2=(a+b)(a+c)(b+c)^2-a^2(a+b)(a+c)\implies$

$2abc(b+c)+bc(b+c)^2=a^2(b+c)^2+a(b+c)^3+bc(b+c)^2-a^2(a+b)(a+c)\implies$ $2bc(b+c)=a(b+c)^2+(b+c)^3-a(a+b)(a+c)\implies$

$a(a+b)(a+c)=a(b+c)^2+b^3+c^3+bc(b+c)=(b+c)\left[b(a+b)+c(a+c)\right]\implies$ $\frac a{b+c}=\frac b{a+c}+\frac c{a+b}$ .

Proof 5. Denote $\left\{\begin{array}{cc}
DB=u\\\\
DC=v\end{array}\right\|$ . Is well-known that $\frac uc=\frac vb=\frac a{b+c}$ and $\left\{\begin{array}{c}
BF=\frac {ac}{a+b}\\\\
CE=\frac {ab}{a+c}\end{array}\right\|$ . Apply the Stewart's relation to the cevians $[ED\ ,\ [FD$ in the triangles $BEC\ ,\ BFC$

respectively $:\ \left\{\begin{array}{ccc}
a\cdot ED^2+auv & = & v\cdot EB^2+u\cdot EC^2\\\\
a\cdot FD^2+auv & = & u\cdot FC^2+v\cdot FB^2\end{array}\right\|\implies$ $v\cdot EB^2+u\cdot EC^2=u\cdot FC^2+v\cdot FB^2\implies$ $b\cdot EB^2+c\cdot EC^2=c\cdot FC^2+b\cdot FB^2\implies$

$b\left[ac-\frac {ab^2c}{(a+c)^2}\right]+c\cdot\left(\frac {ab}{a+c}\right)^2=$ $c\left[ ab-\frac {abc^2}{(a+b)^2} \right]+b\cdot\left(\frac {ac}{a+b}\right)^2\implies$ $\frac {b(a-b)}{(a+c)^2}=\frac {c(a-c)}{(a+b)^2}\implies$ $b\left(a^2-b^2\right)(a+b)=c\left(a^2-c^2\right)(a+c)\implies$

$a^3(b-c)+a^2\left(b^2-c^2\right)=a\left(b^3-c^3\right)+\left(b^4-c^4\right)\stackrel{(b\ne c)}{\implies}$ $a^3+a^2(b+c)=a\left[(b+c)^2-bc\right]+(b+c)\left(b^2+c^2\right)\implies$

$a\left[a^2+a(b+c)+bc\right]=a(b+c)^2+(b+c)\left(b^2+c^2\right)\implies$ $a(a+b)(a+c)=(b+c)\left[a(b+c)+\left(b^2+c^2\right)\right]\implies$

$a(a+b)(a+c)=(b+c)\left[b(a+b)+c(a+c)\right]\implies$ $\frac a{b+c}=\frac b{a+c}+\frac c{a+b}$ . Observe that $\frac a{b+c}=\frac b{a+c}+$

$\frac c{a+b}\ \odot\begin{array}{ccccccc}
\nearrow & \frac b{a+c}<\frac a{b+c} & \implies & (a-b)(a+b+c)>0 & \implies & b<a & \searrow\\\\
\searrow & \frac c{a+b}<\frac a{b+c} & \implies & (a-c)(a+b+c)>0 & \implies & c<a & \nearrow\end{array}\odot$ and $\frac b{a+c}=\frac a{b+c}-\frac c{a+b}=\frac {(a-c)(a+b+c)}{b(a+b+c)+ac}<$

$\frac {(a-c)(a+b+c)}{b(a+b+c)}<$ $\frac {a-c}{b}\implies$ $\frac b{a+c}<\frac {a-c}b\implies b^2<a^2-c^2\implies b^2+c^2<a^2\implies \cos A<0\implies A>90^{\circ}$ .


Extension 1. Let $\triangle ABC$ with incenter $I\ ,\ b\ne c$ and $P\in (AI$ so that $\left\{\begin{array}{c}
D\in AI\cap BC\\\\
E\in BP\cap CA\\\\
F\in CP\cap AB\end{array}\right\|\ \wedge\ \left\{\begin{array}{c}
EA=m\cdot EC\\\\
FA=n\cdot FB\end{array}\right\|$ . Prove $AFDE$ is cyclic $\implies \boxed{\frac {a^2}{b+c}=\frac b{m+1}+\frac c{n+1}}$ .

Proof . Denote the circumcircle $w$ of $AEDF$ and $\{D,X\}=BC\cap w$ . Suppose w.l.o.g. $X\in (DC)$ and $DX=x$ . Apply the powers of the points $B$ and $C$ w.r.t.

the circle $w\ :\ \left\{\begin{array}{ccccc}
BF\cdot BA=BD\cdot BX & \implies & \frac {c}{n+1}\cdot c=\frac {ca}{b+c}\cdot\left(\frac {ca}{b+c}+x\right) & \implies & \frac {c}{n+1}=\frac {a^2c}{(b+c)^2}+\frac {ax}{b+c}\\\\
CE\cdot CA=CD\cdot CX & \implies & \frac {b}{m+1}\cdot b=\frac {ab}{b+c}\cdot \left(\frac {ab}{b+c}-x\right) & \implies & \frac b{m+1}=\frac {a^2b}{(b+c)^2}-\frac {ax}{b+c}\end{array}\right\|$ $\bigoplus\implies$ $\frac b{m+1}+\frac c{n+1}=\frac {a^2}{b+c}$ .


Extension 2. Let $\triangle ABC$ with $\left\{\begin{array}{cc}
F\in (AB)\ ; & \frac {FA}{FB}=n\\\\
E\in (AC)\ : & \frac {EA}{EC}=m\end{array}\right\|$ and $P\in BE\cap CF\ ,\ D\in BC\cap AP$ . Prove $AFDE$ is cyclic $\implies \boxed{\frac {a^2}{m+n}=\frac {b^2}{n(m+1)}+\frac {c^2}{m(n+1)}}$ .

Proof . Denote $\left\{\begin{array}{c}
DB=u\\\\
DC=v\end{array}\right\|$ , where $u+v=a$ . Apply the Ceva's theorem to $P/\triangle ABC\ :\ \frac {DB}{DC}$ $\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=1\iff$ $\boxed{un=vm\ \wedge\ \frac um=\frac vn=\frac a{m+n}}\ (*)$ .

Let $w$ be the circumcircle of $AEDF$ and $\{D,X\}=BC\cap w$ . Suppose w.l.o.g. $X\in (DC)$ and $DX=x$ . Apply the powers of the points $B$ and $C$ w.r.t. the circle $w\ :$

$\left\{\begin{array}{ccccc}
BF\cdot BA=BD\cdot BX & \implies & \frac {c^2}{n+1}=u(u+x)\ \odot\ n & \implies & \frac {c^2n}{n+1}=un(u+x)\\\\
CE\cdot CA=CD\cdot CX & \implies & \frac {b^2}{m+1}=v(v-x)\ \odot\ m & \implies & \frac {b^2m}{m+1}=vm(v-x)\end{array}\right\|$ $\bigoplus\stackrel{(*)}{\implies}$ $\frac {mb^2}{m+1}+\frac {nc^2}{n+1}=una=\frac {mna^2}{m+n}\implies$

$\frac {a^2}{m+n}=\frac {b^2}{n(m+1)}+\frac {c^2}{m(n+1)}$ .



PP7. Let $ABC$ be an equilateral triangle with the incircle $w=\mathbb C(I,r)$ . Denote the tangent points $E\in AC\cap w$ and $F\in AB\cap w$ . Let $M\in w$ so that

$EF$ doesn't separate the points $M$ and $A$ . Denote $\left\{\begin{array}{ccc}
X\in EF\ , & MX\perp EF\ ; & MX=x\\\\
Y\in AC\ , & MY\perp AC\ ; & MY=y\\\\
Z\in AB\ , & MZ\perp AB\ ; & MZ=z\end{array}\right\|$ . Prove that $\boxed{x^2=yz}$ and $\boxed{2(x+y+z)=3r=h}$ .


Proof. $\left\{\begin{array}{c}
\widehat{MFA}\equiv \widehat{MEF}\\\\
\widehat{MFE}\equiv \widehat{MEA}\end{array}\right\|\implies$ $\left\{\begin{array}{c}
\widehat{MFZ}\equiv \widehat{MEX}\\\\
\widehat{MFX}\equiv \widehat{MEY}\end{array}\right\|\implies$ $\left\{\begin{array}{ccc}
\triangle MFZ\sim\triangle MEX & \implies & \frac {MF}{ME}=\frac zx\\\\
\triangle MEY\sim \triangle MFX & \implies & \frac {ME}{MF}=\frac yx\end{array}\right\|\ \bigodot\ \implies$ $yz=x^2$ a.s.o.

Remark. If $AB=a$ , then $r=\frac {a\sqrt 3}6$ and $\sqrt{yz}+y+z=\frac {a\sqrt 3}4$ . In the particular case $z=1$ and $y=4$ obtain that $a=\frac {28\sqrt 3}3$ . Let $T\in BC\cap w$ and $MT=\boxed{t=x+\frac h2}$ .

Prove easily that $\boxed{\sqrt y+\sqrt z=\sqrt t}$ . Indeed, $yz=x^2$ and $x+y+z=\frac h2\implies$ $2x+y+z=x+\frac h2\iff$ $2\sqrt{yz}+y+z=t\iff$ $\left(\sqrt y+\sqrt z\right)^2=t\iff$ $\sqrt y+\sqrt z=\sqrt t$ .


An easy extension. Let $ABC$ be an $A$-isosceles triangle with $A=2\phi$ and with the incircle $w=\mathbb C(I,r)$ . Denote the tangent points $E\in AC\cap w$ and $F\in AB\cap w$ .

Let $M\in w$ so that $EF$ doesn't separate the points $M$ and $A$ . Denote $\left\{\begin{array}{ccc}
X\in EF\ , & MX\perp EF\ ; & MX=x\\\\
Y\in AC\ , & MY\perp AC\ ; & MY=y\\\\
Z\in AB\ , & MZ\perp AB\ ; & MZ=z\end{array}\right\|$ . Prove that $\boxed{x^2=yz}$ and $\boxed{2x\sin\phi +(y+z)=2r\cos^2\phi}$ .


Proof. $\left\{\begin{array}{c}
\widehat{MFA}\equiv \widehat{MEF}\\\\
\widehat{MFE}\equiv \widehat{MEA}\end{array}\right\|\implies$ $\left\{\begin{array}{c}
\widehat{MFZ}\equiv \widehat{MEX}\\\\
\widehat{MFX}\equiv \widehat{MEY}\end{array}\right\|\implies$ $\left\{\begin{array}{ccc}
\triangle MFZ\sim\triangle MEX & \implies & \frac {MF}{ME}=\frac zx\\\\
\triangle MEY\sim \triangle MFX & \implies & \frac {ME}{MF}=\frac yx\end{array}\right\|\ \bigodot\ \implies$ $yz=x^2$ . Observe that $\left\{\begin{array}{c}
EF=2r\cos\phi\\\\
AE=AF=r\cot\phi\\\\
AD=r\cot\phi\cos\phi\end{array}\right\|$ .

Therefore, $EF\cdot AD=2S=x\cdot EF+y\cdot AE+z\cdot AF\iff$ $2r\cos\phi\cdot r\cot\phi\cos\phi=x\cdot 2r\cos\phi +(y+z)\cdot r\cot\phi\iff$ $2x\sin\phi +(y+z)=2r\cos^2\phi$ .



PP8. Let $\triangle ABC$ with the circumcircle $w=C(O,R)$ and let $P$ be a point on the small arc $ AB$ .

Denote $\left\{\begin{array}{ccc}
P\in l_a\ ,\ l_a\perp OA\ ,\ X\in l_a\cap OA & \implies & D\in l_a\cap AB\ ,\ E\in l_a\cap AC\\\\
P\in l_b\ ,\ l_b\perp OB\ ,\ Y\in l_b\cap OB & \implies & F\in l_b\cap AB\ ,\ G\in l_b\cap BC\end{array}\right\|$ .

Prove that $ DP = DE\Longleftrightarrow FP = FG$ $ \Longleftrightarrow$ the line $ CP$ is the $ C$-symmedian in $ \triangle ABC$ .


Lemma. Let $\triangle ABC\ ,\ M\in [BC]$ and denote the distance $ \delta_d(X)$ from $ X$ to $ d$ . Then $ MB = MC$ $ \Longleftrightarrow$

$ \delta_{AM}(B) = \delta_{AM}(C)$ $ \Longleftrightarrow$ $ AB\cdot\sin \widehat {MAB} = AC\cdot\sin\widehat {MAC}$ $ \Longleftrightarrow \sin C\cdot\sin\widehat {MAB} = \sin B\cdot\sin\widehat {MAC}$


Proof of the proposed problem. Denote the midpoint $ M$ of the side $ [AB]$ , the intersections $ \left\|\begin{array}{c} X\in PE\cap OA \\
\ Y\in PG\cap OB \\
\ S\in CP\cap AB\end{array}\right\|$ and $ \left\|\begin{array}{c} m(\angle PAB) = x \\
\ m(\angle PBA) = y\end{array}\right\|$ .Observe that $ x + y = C$ and the

quadrilaterals $ OXDM$ , $ OYFM$ are cyclically, i.e. $ m(\angle ADE) = m(\angle PDF) = m(\angle PFD) = m(\angle BFG) = C$ . Therefore, $ PD = PF$ , $ \left\|\begin{array}{c} m(\angle APE) = C - x = y \\
\ m(\angle BPG) = C - y = x\end{array}\right\|$

and $ \left\|\begin{array}{c} m(\angle AEP) = B \\
\ m(\angle BGP) = A\end{array}\right\|$ (lines $ DE$ , $ FG$ are antiparallels to $ BC$ , $ AC$ in $ \triangle\ ABC$ ). Apply the upper lemma in the triangles $ PAE$ and $ PBG$ to the cevians $ AD$ , $ BF$ respectively :

$ \left\|\begin{array}{ccccc} DE = DP & \Longleftrightarrow & \sin\widehat {APE}\cdot\sin \widehat {DAE} = \sin\widehat {AEP}\cdot\sin\widehat {DAP} & \Longleftrightarrow & \sin y\cdot\sin A = \sin B\cdot\sin x \\
 \\
FG = FP & \Longleftrightarrow & \sin\widehat {BPG}\cdot\sin \widehat {FBG} = \sin\widehat {BGP}\cdot\sin\widehat {FBP} & \Longleftrightarrow & \sin x\cdot\sin B = \sin A\cdot\sin y\end{array}\right\|$ . In conclusion,

$ \boxed {\ DE = DP\ \Longleftrightarrow\ b\cdot\sin x = a\cdot \sin y\ \Longleftrightarrow\ FG = FP\ }$ . Observe that in this case $ \frac {SA}{SB} = \frac {CA}{CB}\cdot\frac {\sin \widehat {SCA}}{\sin\widehat {SCB}} = \frac ba\cdot\frac {\sin y}{\sin x} = \frac {b^2}{a^2}$ ,

i.e. in this case the point $ S$ is the foot of the $ C$-symmedian in the triangle $ ABC$ . We can apply this property to the problem from
here


PP9. Let a $C$-isosceles $\triangle ABC$ with the circumcircle $w=C(O,R)$ . For $P\in w$ between $A$ and $B$ (and on

the opposite side of the line $AB$ to $C$) denote $D\in PB$ so that $CD\perp PB$ . Show that $PA + PB = 2 \cdot PD$ .

An equivalent enunciation. Let $\triangle ABC$ with the circumcircle $w$ . Let the midpoint $M$ of the side $[BC]$ and the diameter $[NS]$ of $w$ so that

line $BC$ separates $A\ ,\ S$ and $M\in NS$ . Denote $X\in AB$ so that $SX\perp AB$ . Prove that $MX\perp AS$ and $AX=\frac {b+c}{2}$ .


Proof 1. Apply Ptolemy's theorem to $ABSC\ :\ (b+c)\cdot SC=a\cdot SA$ . Prove easily $\triangle AXS\sim\triangle CMS$ , i.e. $\frac {AX}{CM}=\frac {AS}{SC}$ . Thus, $\frac {b+c}{a}=\frac {SA}{SC}=$

$\frac 2a\cdot AX$ $\implies$ $AX=\frac {b+c}{2}$ . Since $MXBS$ is cyclically, obtain that $\widehat{MXS}\equiv$ $\widehat{MBS}\equiv$ $\widehat{SAX}$ , i.e.in the $X$-right triangle $AXS$ we have $MX\perp AS$ .

Proof 2. Denote $D\in BC\cap BC$ . Well-known relations $\left\{\begin{array}{c}
AD\cdot AS=bc\\\\
AD=\frac {2bc\cos\frac A2}{b+c}\end{array}\right|\implies$ $AX=AS\cdot \cos\frac A2=$ $\frac {bc\cdot\cos\frac A2}{AD}=$ $\frac {b+c}{2}$ .



PP10. Let an acute $\triangle ABC$ with incircle $ \omega = C(I,r)$ and circumcircle $ \rho = C(O,R)$ . The circles $ w_{1}= C(P,r_{1})$ and $ w_{2}= (Q,r_{2})$ are tangent internally to $ \rho$ in

the same $ A$ . $ w$ is tangent externally to $ w_{1}$ and is tangent internally to $ w_{2}$ . Prove that $ \boxed{PQ =\frac{a^{2}(p-a)}{4S}}$, where $ 2p = a+b+c$ and $ S\equiv [ABC]$- the area of $ \triangle ABC$ .


$ \left\{\begin{array}{ccccc}IP = r+r_{1}& , & IQ = r_{2}-r\\ \\ PO = R-r_{1}& , & PA = r_{1}\\ \\ QO = R-r_{2}& , & QA = r_{2}\\ \\ OA = R & , &\boxed{PQ = r_{2}-r_{1}}\end{array}\right\|$ and $ \left\{\begin{array}{c}IO^{2}= R(R-2r)\\\\
IA^{2}=\frac{bc(p-a)}{p}=bc-4Rr\\\\
IA^2=r^{2}+(p-a)^{2}\\\\
p(p-a)+(p-b)(p-c) = bc\end{array}\right\|$ . Thus, $r^2+(p-a)^2=bc-4Rr\implies$ $r^2+4Rr=bc-(p-a)^2$ .

Proof 1. Let $ IO = m$, $ IA = n$. Apply Stewart's theorem in $ \triangle OIA$ for the cevian-rays $ [IP$ and $ [IQ\ :\  \left\{\begin{array}{c}m^{2}r_{1}^{2}+n^{2}(R-r_{1}) = R(r+r_{1})^{2}+Rr_{1}(R-r_{1})\\ \\ m^{2}r_{2}+n^{2}(R-r_{2}) = R(r_{2}-r)^{2}+Rr_{2}(R-r_{2})\end{array}\right\|$ $ \implies$

$ r_{1}(R^{2}+2Rr+n^{2}-m^{2}) = R(n^{2}-r^{2}) = r_{2}(R^{2}-2Rr+n^{2}-m^{2})$ $\implies$ $ r_{1}(R^{2}+2Rr+bc-4Rr-R^{2}+2Rr) =$ $ R(p-a)^{2}=$

$ r_{2}(R^{2}-2Rr+bc-4Rr-R^{2}+2Rr)$ $ \implies$ $ r_{1}bc = R(p-a)^{2}= r_{2}(bc-4Rr)$ $ \implies$ $ PQ = r_{2}-r_{1}=$ $ \frac{4R^{2}r(p-a)^{2}}{bc(bc-4Rr)}=$ $ \frac{4R^{2}pr(p-a)^{2}}{b^{2}c^{2}(p-a)}\implies$ $ \boxed{\ PQ =\frac{a^{2}(p-a)}{4S}\ }$ .

Proof 2. Apply the Pythagoras' theorem in the triangles:

$\triangle\ IOP\blacktriangleright$ $ (r+r_{1})^{2}= (R-r_{1})^{2}+(R^{2}-2Rr)-2(R-r_{1})\cdot$ $ OI\cdot\frac{(R^{2}-2Rr)+R^{2}-\frac{4Rr(p-a)}{a}}{2R\cdot IO}\implies$ $ \boxed{r_{1}=\frac{R(p-a)^{2}}{bc}}\ .$

$ \triangle\ IOQ\blacktriangleright$ $ (r_{2}-r)^{2}= (R-r_{2})^{2}+(R^{2}-2Rr)-2(R-r_{2})\cdot$ $ IO\cdot\frac{(R^{2}-2Rr)+R^{2}-\frac{4Rr(p-a)}{a}}{2R\cdot IO}\implies$ $ \boxed{r_{2}=\frac{Rp(p-a)}{bc}}\ .$

Thus, $ \frac{r_{1}}{p-a}=\frac{r_{2}}{p}=\frac{R(p-a)}{bc}=\frac{PQ}{a}$, i.e. $ \boxed{PQ =\frac{aR(p-a)}{bc}}=\frac{a^{2}(p-a)}{4S}$ . Observe that $ \frac{r_{1}}{r}=\frac{r_{2}}{r_{a}}$, where $ r_{a}$ is the $ A$- exinradius of $ \triangle ABC$ .

Remark. Prove easily that two more interesting relations : $ \boxed{\sum PQ = R+r\ }$ and $ r_{1}= R-\frac{a(4R+r)}{4p}$ , $ \boxed{r_{2}=\frac{ r_{b}+r_{c}}{4}}$.



PP11. Let two secant circles $ w_1\ ,\ w_2$ , where $w_1\cap w_2=\{A,B\}$ . The tangent of $w_1$ in $ A$ intersect $w_2$ in $ D$ and the tangent of $w_2$ in $ A$ intersect

$w_1$ in $ C$ . A ray by $ A$ inside of $ \widehat{CAD}$ intersect again $w_1$ , $w_2$ and the circumcircle of $ ACD$ in $M$ , $N$ and $ P$ respectively. Prove that $ AM = NP$ .


Proof. Let $ R\in AP\cap CD$ . Thus, $ \left\|\begin{array}{c} \widehat {ACM}\equiv\widehat {PCR} \\
 \\
\widehat {ADN}\equiv\widehat {PDR}\end{array}\right\|$ . With Steiner's theorem in $ \triangle ACP$ and $\triangle  ADP$ obtain : $ \left\|\begin{array}{c} 
\frac {MA}{MP}\cdot\frac {RA}{RP} = \left(\frac {CA}{CP}\right)^2 \\\\
\frac {NA}{NP}\cdot \frac {RA}{RP} = \left(\frac {DA}{DP}\right)^2\end{array}\right\|$ $ \implies$ $ \left\|\begin{array}{c} \frac {MA}{MP} = \frac {RP}{RA}\cdot\left(\frac {CA}{CP}\right)^2 \\
 \\
\frac {NA}{NP} = \frac {RP}{RA}\cdot \left(\frac {DA}{DP}\right)^2\end{array}\right\|$ . Thus,

$ AM = NP$ $ \Longleftrightarrow$ $ \frac {MA}{MP} = \frac {NP}{NA}$ $ \Longleftrightarrow$ $ \frac {RP}{RA}\cdot\left(\frac {CA}{CP}\right)^2 = \frac {RA}{RP}\cdot \left(\frac {DP}{DA}\right)^2$ $ \Longleftrightarrow$ $ \frac {RA}{RP} = \frac {CA\cdot DA}{CP\cdot DP}$ , what is truly. See
here an equivalent enunciation of this nice and difficult problem.


PP12. Let $w=C(I,r)$ be the incircle of $C$-right $\triangle ABC$ . The circle $w$ touches $\triangle ABC$ at $D\in BC$ ,

$E\in CA$ and $F\in AB$ . Denote $\{D,P\}=AD\cap w$ . Prove that $PB\perp PC\ \iff\ AE+AP=PD$ .


Proof. Denote the midpoint $M$ of $[PD]$ , i.e. $IM\perp AD$ and $S\in EF\cap BC$ , i.e. $\frac {SB}{SC}=\frac {DB}{DC}$ . Define $x=p-a,\ y=p-b,\ z=p-c\ \ (x+y+z=p)$ and

$PA=n,\ PD=m$ , i.e. $\boxed{n(m+n)=x^2}\ (*)$ , $MD=\frac m2,\ MA=n+\frac m2\ .$ Prove easily that $C=90^{\circ}$ $\Longleftrightarrow $ $xy=z(x+y+z)\ (1)$ . Observe that $\frac{SB}{y}=\frac{SC}{z}=$ $\frac{y+z}{y-z}\Longrightarrow $

$DS=DC+CS=z+\frac{z(y+z)}{y-z}\Longrightarrow $ $DS=\frac{2yz}{y-z}$ . But $SI\perp AD\implies$ $AMCS$ is cyclically, i.e. $DM\cdot DA=DC\cdot DS$ $\Longleftrightarrow$ $m(m+n)=\frac{4yz^2}{y-z}\stackrel{(*)}{\implies}$

$\frac {mx^2}{n}=\frac {4yz^2}{y-z}\implies$ $\frac nm=\frac{x^2(y-z)}{4yz^2}=$ $\frac {x\cdot xy-x^2z}{4yz^2}\stackrel{(1)}{=}$ $\frac {xz(x+y+z)-x^2z}{4yz^2}=$ $\frac {x(y+z)}{4yz}\stackrel{(1)}{=}$ $\frac {z(x+y+z)+xz}{4yz}\implies$ $\boxed{\frac nm=\frac {2x+y+z}{4y}}\ (2)$ .

From the evident relation $n(m+n)=x^2$ and the Stewart's relation applied to the cevians $\left\{\begin{array}{cc}
BP/\triangle ABD\ : & (m+n)PB^2+mn(m+n)=(x+y)^2m+y^2n\\\\
CP/\triangle ACD\ : & (m+n)PC^2+mn(m+n)=(x+z)^2m+z^2n\end{array}\right\|$

obtain that $:$$PB\perp PC\Longleftrightarrow$ $PB^2+PC^2=$ $BC^2\Longleftrightarrow (m+n)PB^2+(m+n)PC^2=(m+n)BC^2\stackrel{(*)}{\iff}$ $m[(x+y)^2+(x+z)^2]+n(y^2+z^2)-2mx^2=$

$(m+n)(y+z)^2\Longleftrightarrow$ $\frac nm=\frac{2x^2+2x(y+z)+(y^2+z^2)-2x^2-(y+z)^2}{(y+z)^2-(y^2+z^2)}\Longleftrightarrow \frac nm=\frac{xy+z(x-y)}{yz}\stackrel{(1)}{=}$ $\frac{z(x+y+z)+z(x-y)}{yz}\Longrightarrow\boxed {\ \frac nm=\frac{2x+z}{y}\ }\ \ (3)\ .$

Therefore, from the relations $(2)$ and $(3)$ results $\frac nm=\frac{2x+y+z}{4y}=\frac{2x+z}{y}\Longleftrightarrow$ $2x+y+z=8x+4z\ ,$ $\frac nm=\frac{2x+z}{y}\Longleftrightarrow$ $y=3(2x+z)\ ,\ \frac nm=\frac{2x+z}{y}\Longleftrightarrow$

$\boxed {\ \frac nm=\frac 13=\frac{2x+z}{y}\ }$. But $x^2=n(m+n)=4n^2\implies \boxed{x=2n}$ . In conclusion, $AE+AP=PD\iff x+n=m\iff 2n+n=3m$ , what is truly.



PP13. Let $\triangle ABC$ such that $C<A<\frac{\pi}{2}$. Let $D\in [AC]$ such that $BD=BA$. The incircle $w=C(I,r)$ of $\triangle ABC$ touches its

sides in $K\in [AB]$ and $L\in [AC]$. Let $w_{1}=C(J,r_{1})$ be the incircle of $\triangle BCD$. Denote $T\in KL\cap AJ$. Prove that $TA=TJ$.


Proof.. The incircle $w_{1}$ touches $\triangle BCD$ in $U\in BD$, $V\in BC$ and $W\in BC$. Observe that $DC=AC-AD=b-2c\cdot\cos A=$ $\frac{b^{2}-(b^{2}+c^{2}-a^{2})}{b}$ $\implies$ $DC=\frac{a^{2}-c^{2}}{b}$.

Thus, $VC=\frac{1}{2}\cdot (BC+CD-BD)=\frac{1}{2}\cdot(a+\frac{a^{2}-c^{2}}{b}-c)\implies VC=\frac{p(a-c)}{b}$ . Since $VC=JC\cdot\cos \frac{C}{2}$ obtain that $\boxed{JC=\frac{p(a-c)}{b\cdot\cos\frac{C}2}}$. Denote $P\in KL\cap CI$. The

property $PC\perp PB$ is well-known (see the lower remark). Thus, $APJW$ is cyclically. Analogously $P\in UV\cap CJ$, i.e. $\boxed{\ P\in KL\cap UV\ }$. Observe that $\boxed{PC=a\cdot \cos \frac{C}{2}}\implies$

$\frac{PC}{JC}=\frac{ab\cdot\cos^{2}\frac{C}{2}}{p(a-c)}=\frac{p-c}{a-c}$ $\implies$ $\frac{PC}{p-c}=\frac{JC}{a-c}=\frac{PJ}{p-a}$ $\implies$ $\boxed{\ \frac{PJ}{PC}=\frac{p-a}{p-c}\ }$. Apply the Menelaus' theorem to transversal $\overline{PTL}$ in $\triangle AJC$ : $\frac{PJ}{PC}\cdot\frac{LC}{LA}\cdot\frac{TA}{TJ}=1$ $\implies$

$\frac{p-a}{p-c}\cdot\frac{p-c}{p-a}\cdot\frac{TA}{TJ}=1$ $\implies TA=TJ$. So $PC\perp PB$ $\Longleftrightarrow$ the quad. $PKIB$ is cyclically $\Longleftrightarrow$ $m(\widehat{PKB})=m(\widehat{PIB})=\frac{B+C}{2}$ or $m(\widehat{PKA})=m(\widehat{PIB})=\frac{B+C}{2}$
This post has been edited 171 times. Last edited by Virgil Nicula, Jan 25, 2016, 8:32 AM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Am I not seeing correctly?, in the solutions of Problem PP6, namely Proof1-4, the requirement $A>90^{\circ}$ is not solved...??

by cip1703, Aug 3, 2023, 9:40 AM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a