7. Some interesting "slicing" problems.

by Virgil Nicula, Apr 19, 2010, 3:06 PM

PP1. Let $\triangle ABC$ and $D\in (AC)$ such that $m(\angle CBD) - m(\angle ABD) = 60^\circ$ , $m(\angle BDC) = 30^\circ$ and $BD^2=BA\cdot BC$ . Find $A$ .

Proof 1 (trigonometric). Denote $m(\angle ABD)=x$ , i.e. $m(\angle CBD)=60^{\circ}+x$ and $m(\angle BAD)=30^{\circ}-x$ . Apply the Sinus' theorem

in $\triangle BCD$ and $\triangle ABD$ . The given relation becomes $:\ \ \frac {BD}{BC}=\frac {AB}{BD}\iff$ $\frac {\sin\widehat {BCD}}{\sin\widehat{ADB}}=\frac {\sin\widehat {BAD}}{\sin\widehat{BDC}}\iff$ $\frac {\cos x}{\sin 30^{\circ}}=\frac {\sin 30^{\circ}}{\sin (30^{\circ}-x}$

$\iff$ $4\cos x\sin (30^{\circ}-x)=1\iff$ $2\left[\sin 30^{\circ}+\sin (30^{\circ}-2x)\right]=1\iff$ $\sin (30^{\circ}-2x)=0\iff$ $x=15^{\circ}\iff$ $A=15^{\circ}$ .

Proof 2 (synthetic). Let $B'$ be the reflection of $B$ in $AC$ . Thus, $BDB'$ is an equilateral triangle and $BB'$ is the isogonal line of $BD$ .

Since $BB'=BD$ the given relation becomes $\frac{AB}{BB'}=\frac{BD}{BC}$ , i.e. $\triangle ABD \sim \triangle BB'C$ , i.e. $BD=AD$ . Further, just angle chasing.



PP2. Let $ABC$ be a triangle with $A=70^{\circ}$ and the incenter $I$ for which $IA=a-b$ . Find $B$ .

Proof 1. Let $D\in AC$ so that $A\in (CD)$ and $AD=AI$ . So $\triangle DAI$ is $A$-isosceles with $m(\widehat{ADI})=$

$m(\widehat{AID})=\frac {35^{\circ}}{2}$ . Since $CBD$ is $C$-isosceles obtain that $m(\widehat{IBC})=m(\widehat{ADI})$ . Thus, $m(\widehat{ABC})=35^{\circ}$ .

Proof 2. Let $D\in [CB$ so that $CD=CA$ . Thus, $AI=DI=BD$ and $m(\angle CDI)=$

$m(\angle CAI)=35^\circ$ , i.e. $\triangle BDI$ is $D$-isosceles $\implies$ $DI\parallel AB$ , i.e. $B=35^\circ$ .



PP3. Let $ABC$ be a triangle. Denote the midpoint $M$ of $[BC]$ and suppose that $\widehat{MAC}=B$ and $\widehat{BAM}=105^\circ$ . Find $m\left(\widehat{ABC}\right)$ .

Method 1 (trigonometric). $\triangle CAM\sim\triangle CBA\implies$ $\frac ba=\frac {a}{2b}\implies$ $a\stackrel{(*)}{=}b\sqrt 2$ . Apply the Sinus' theorem in $\triangle ABM\ :$

$\frac {b}{\sin B}=\frac {a}{\sin (105+B)}\stackrel{(*)}{\implies}$ $\sqrt 2\cdot\sin B=\cos (15+B)\iff$ . The function $f(x)=\sqrt 2\cdot\sin x-\cos (15+x)$ is strict

increasing on $\left[0,\frac{\pi}{2}\right]$ $\implies$ the equation $f(x)=0$ has at least one zero. Observe that $f(B)=f(30^{\circ})=0$ . In conclusion, $B=30^{\circ}$ .

Method 2 ("slicing" - Sunken Rock). The sideline $AC$ is tangent to the circle of $\triangle AMB\implies$ $a=b\sqrt 2$ and $c=m_a\sqrt 2$ . Construct equilateral

$\triangle ABD$ so that $AB$ doesn't separates $D\ ,\ C$ . Thus, $AM=AB\cdot\frac {\sqrt 2}{2}$ $\implies$ $AM=AD\cdot\cos 45^{\circ}$ . From $m(\angle MAD)=45^\circ$

obtain that $MD = MA$ and $MD\perp MA$ $\implies$ $\triangle BAM \equiv \triangle BDM$ , i.e. $AMDB$ is a kite with $AD\bot BC$ , i.e. $B=30^\circ$ .

Method 3 (trigonometric). $\triangle CAM\sim\triangle CBA\implies$ $\frac ba=\frac {m_a}{c}=\frac {a}{2b}$ $\implies$ $\boxed{\frac {c}{m_a}=\frac ab=\sqrt 2}$ . Apply the generalized Pytagoras' theorem to the side

$[BM]$ in $\triangle ABM\ :\ \frac {a^2}{4}=c^2+m_a^2-2cm_a\cdot\cos 105^{\circ}\iff$ $a^2=$ $4c^2+2\left(b^2+c^2\right)-a^2-8\cdot c\cdot \frac {c}{\sqrt 2}\cdot\frac {\sqrt 2}{2}\left(\frac 12-\frac {\sqrt 3}{2}\right)\iff$

$a^2=b^2+3c^2+c^2\left(\sqrt 3-1\right)\iff$ $a^2=\frac {a^2}2+\left(2+\sqrt 3\right)\cdot c^2\iff$ $a^2=2\left(2+\sqrt 3\right)\cdot c^2\implies$ $\boxed{a=b\cdot\sqrt 2=\left(1+\sqrt 3\right)\cdot c}$ .

In conclusion, the triangle with this property is similarly with the triangle $\left(\sqrt 2+\sqrt 6,1+\sqrt 3,\sqrt 2\right)$ . Apply the Cosinus' theorem to $\widehat{ABC}$

in $\triangle ABC\ :\ \cos B=\frac {2(1+\sqrt 3)^2+2-(1+\sqrt 3)^2}{2\cdot \sqrt 2(1+\sqrt 3)\cdot \sqrt 2}=$ $\frac {(1+\sqrt 3)^2+2}{4(1+\sqrt 3)}=$ $\frac {2\sqrt 3\cdot (1+\sqrt 3)}{4(1+\sqrt 3)}\implies$ $\cos B=\frac {\sqrt 3}{2}\implies$ $B=30^{\circ}$ .
Vezi link - urile (1) , (2) , (3) , (4) .

PP4. Let $A$-right $ \triangle ABC$ for which denote $ D\in (AC)$ so that $ BA+AD=BC$ . Prove that $ m(\angle CBD)=15^{\circ}\ \Longrightarrow\ C=30^{\circ}$ .

Method 1. Denote $C=x$ . Prove easily that $x<\frac {\pi}{3}$ and $ BA+AD=BC\Longleftrightarrow$ $\tan\left(x+\frac {\pi}{12}\right)=\frac {c}{a-c}=$ $\frac {\frac ca}{1-\frac ca}\Longleftrightarrow$ $ \boxed {\tan\left(x+\frac {\pi}{12}\right)=\frac {\sin x}{1-\sin x}\ }$ $\Longleftrightarrow$

$\frac {\sin\left(x+\frac {\pi}{12}\right)}{\sin x}\cdot\frac {1-\sin x}{\cos\left(x+\frac {\pi}{12}\right)}=1$ $\Longleftrightarrow$ $f(x)\cdot g(x)=1$ , where $f(x)=\frac {\sin\left(x+\frac {\pi}{12}\right)}{\sin x}$ and $g(x)=\frac {1-\sin x}{\cos\left(x+\frac {\pi}{12}\right)}$ . But $f(x)=\cos \frac {\pi}{12}+\sin \frac {\pi}{12}\cdot\cot x$ is

decreasing and $g'(x)\ .a.s.\ -\cos x\cos\left(x+\frac {\pi}{12}\right)+(1-\sin x)\sin \left(x+\frac {\pi}{12}\right)=$ $\sin \left(x+\frac {\pi}{12}\right)-\cos \frac {\pi}{12}=$ $\cos\left(\frac {5\pi}{12}-x\right)-\cos $ $\frac {\pi}{12}\ .a.s.\ \left(x-\frac {\pi}{3}\right)<0$ .

Observe that the functions $f$ , $g$ are positively and decreasing. Hence the function $f\cdot g$ is decreasing $\left(\searrow\right)$ , i.e. our equation has exactly one zero.


Extension. For any $\alpha\in\left[\frac {\pi}{12},\frac {\pi}{8}\right]$ the equation $\tan (x+\alpha )=\frac {\sin x}{1-\sin x}$ has exactly one zero in the interval $\left[\frac {\pi}{4}-\alpha\ ,\ \frac {\pi}{2}-2\alpha\right]$ .

Proof. Denote analogously $f(x)=\frac {\sin (x+\alpha)}{\sin x}$ , $g(x)=\frac {1-\sin x}{\cos (x+\alpha )}$ si $h(x)=f(x)(g(x)-1$ . The equation becomes $f(x)g(x)=1$ or $h(x)=0$ . Observe that

$f(x)=\cos \alpha +\sin\alpha\cdot\cot x$ is decreasing and $g'(x)\ .a.s.\ -\cos x\cos\ (x+\alpha )+(1-\sin x)\sin (x+\alpha )=$ $\sin (x+\alpha )-\cos\alpha =$ $\left[\cos\left(\frac {\pi}{2}-x-\alpha\right)-\cos\alpha\right]\ .a.s.$

$\left[x-\left(\frac {\pi}{2}-2\alpha\right)\right]<0$ . Thus, the functions $f$ , $g$ are positively and decreasing. Therefore, the function $f\cdot g$ is decreasing $\left(\searrow\right)$ , i.e. our equation has at least one zero. But

$h\left(\frac {\pi}4-\alpha\right)=$ $\frac {1-2\sin\left(\frac {\pi}{4}-\alpha\right)}{\sin\left(\frac {\pi}{4}-\alpha \right)}\ .a.s.$ $\left[\sin \frac {\pi}6-\sin\left(\frac {\pi}{4}-\alpha \right)\right]=$ $2\sin\frac {\alpha-\frac {\pi}{12}}{2}\cos\frac {\frac {5\pi}{12}-\alpha}{2}\ge 0$ and $h\left(\frac {\pi}{2}-2\alpha\right)=$ $\frac {\cos\alpha}{\cos 2\alpha}\cdot\frac {1-\cos 2\alpha }{\sin\alpha }-1=$ $\frac {2\sin \alpha \cos\alpha}{\cos 2\alpha }-1=$

$\tan 2\alpha -1\le 0$ .In concluzie $h\left(\frac {\pi}{4}-\alpha\right)\cdot h\left(\frac {\pi}{2}-2\alpha\right)\le 0$ , what means the equation $h(x)=0$ has exactly one zero in the interval $\left[\frac {\pi}{4}-\alpha\ ,\ \frac {\pi}{2}-2\alpha\right]$ .

Remark. For $\alpha =\frac {\pi}{12}\implies x=\frac {\pi}{6}$ and for $\alpha =\frac {\pi}{8}\implies x=\frac {\pi}{4}$ .

Method 2. Let circumcentre $ O$ , the incentre $ I$ for $ \triangle ABC$ and $ E\in AI$ , $OE\perp BC$ . Thus, $ AD=a-c$ , $ BD^2=2c^2+a(a-2c)$ , $ m(\angle DBE)=60^{\circ}$ , $ BE=\frac {a}{\sqrt 2}$ and

$ AE=\frac {b+c}{\sqrt 2}$ . Apply generalized Pytagoras' theorem $:\  \left\|\ \begin{array}{cc}
 \triangle DBE\ : & DE^2=\frac {a^2}{2}+(a-c)^2+c^2-\frac {a}{\sqrt 2}\cdot BD\\\\
 \triangle DAE\ : & DE^2=(a-c)^2+\frac {(b+c)^2}{2}-(b+c)(a-c)\end{array}\ \right\|$ $\Longrightarrow$ $\frac {a^2}{2}+(a-c)^2+c^2-\frac {a}{\sqrt 2}\cdot BD=$

$ (a-c)^2+\frac {(b+c)^2}{2}-(b+c)(a-c)$ $\Longrightarrow$ $a\cdot BD=\sqrt 2\cdot \left[a(b+c)-2bc\right]$ $\Longrightarrow$ $ a^2\cdot \left[2c^2+a(a-2c)\right]=$ $ 2\cdot \left[ac+b(a-2c)\right]^2$ $\Longrightarrow$ $a^3(a-2c)=$

$4abc(a-2c)+2b^2(a-2c)^2$ $\Longrightarrow$ $a=2c$ sau $a^3=4abc+$ $2b^2(a-2c)$ . Observe that $ a^3=4abc+2b^2(a-2c)$ $\Longleftrightarrow$ $ a(b^2+c^2)=$

$4abc+2b^2(a-2c)$ $\Longleftrightarrow$ $ a\left(b^2-c^2\right)+4bc(a-b)=0$ ceea ce este absurd ( $ c\ <\ b\ <\ a$ ). In conclusion, $ a=2c$ ceea ce inseamna $ C=30^{\circ}$ .

Remark. In this case $\triangle BDE$ is equilateral and $\triangle CED$ este $E$-isosceles, i.e. $ B$ , $ I$ , $ D$ , $ C$ belong to the circle with the centre $ E$ .



PP5. Let $ A$-right $\triangle ABC$ for which exists $ D\in (AC)$ so that $ m(\angle DBC)=\frac C2$ . Prove that $ BA+AD=BC\ \Longleftrightarrow\ C\ \in \left\{30^{\circ} , 45^{\circ}\right\}$ .

Method 1. Suppose that$ BA+AD=BC$ . Denote $ E$ for which $ DE\perp BC$ si $ x=m(\angle DBC)$ . Observe that $ DC=b+c-a$ si $ \triangle CDE\sim\triangle CBA$ , i.e.

$ \frac {b+c-a}{a}=\frac {DE}{c}=\frac {EC}{b}$ . Obtain$ DE=\frac {c(b+c-a)}{a}$ , $ EC=\frac {b(b+c-a)}{a}\ \Longrightarrow$ $ BE=BC-EC=a-\frac {b(b+c-a)}{a}$ , i.e. $ BE=\frac {c^2-bc+ab}{a}$ . Thus,

$ \tan x=\frac {DE}{BE}$ , i.e. $ \boxed {\ \tan x=\frac {c(b+c-a)}{c^2+b(a-c)}\ }$ . For $ C=2x$ obtain $: \tan x=\tan\frac C2=\frac {\sin C}{1+\cos C}=$ $ \frac  {\frac ca}{1+\frac ba}=\frac {c}{a+b}$ $\Longrightarrow$ $\frac {c}{a+b}=$ $ \frac {c(b+c-a)}{c^2+b(a-c)}$ $\Longleftrightarrow$ $ c^2+b(a-c)=$

$ (a+b)(b+c-a)\ \stackrel{(a^2=b^2+c^2)}{\Longleftrightarrow}$ $ 2c^2-2bc=ac-ab$ $\Longleftrightarrow$ $(a-2c)(b-c)=0$ . In conclusion, $ \boxed {\ BA+AD=BC\ \Longleftrightarrow\ \tan \frac C2=\frac {c(b+c-a)}{c^2+b(a-c)}\ \Longleftrightarrow\ C\ \in \left\{30^{\circ} , 45^{\circ}\right\}\ }$ .

Method 2. Suppose well-known or prove easily that in $ \triangle ABC$ exists the equivalence $ B=2C$ $\Longleftrightarrow$ $b^2=c(c+a)\ \vee\ a=c$ . Thus, $ C=2(\angle DBC)$ $\stackrel{(\triangle DBC)}{\Longleftrightarrow}$

$ BD^2=DC\cdot (DC+BC)\ (1)$ . Thus, $ BA+AD=BC$ $\Longleftrightarrow$ $AD=a-c$ , $DC=$ $ b+c-a$ $\stackrel{(1)}{\Longleftrightarrow}$ $c^2+(a-c)^2=$ $(b+c-a)(b+c)$ $\Longleftrightarrow$ $ c^2+(a-c)^2=$

$ (b+c-a)(b+c)$ $\Longleftrightarrow$ $\ 2c^2+a^2-$ $ 2ac=b^2+c^2+2bc-ab-$ $ ac\ \stackrel{(a^2=b^2+c^2)}{\Longleftrightarrow}$ $ 2c^2-ac=2bc-ab$ $\Longleftrightarrow$ $2c(b-c)=$ $ a(b-c)$ $\Longleftrightarrow$ $ b=$ $ c\ \vee\ a=2c$ $\Longleftrightarrow$ $C\ \in \left\{30^{\circ} , 45^{\circ}\right\}$ .

Method 3. Let $ m(\angle DBC)=x$ , i.e. $ C=2x$ . Thus, $ D\in (AC)$ $\Longleftrightarrow$ $x<30^{\circ}$ , i.e. $ \underline{\overline{\left\|\ C\ <\ 60^{\circ}\ \right\|}}$ . Thus, $ BA+AD=BC$ $\Longleftrightarrow$ $BD\cdot (\sin 3x+$ $ \cos 3x)=BC$ $\Longleftrightarrow$

$\sin 2x(\sin 3x+$ $ \cos 3x)=\sin 3x$ $\Longleftrightarrow$ $2\cos x(\sin 3x+\cos 3x)=$ $ 1+2\cos 2x$ $\Longleftrightarrow$ $\sin 4x+\sin 2x+\cos 4x=$ $ 1+\cos 2x\ \stackrel{(2x=C)}{\Longleftrightarrow}\ \sin 2C+\sin C=$ $ 1-\cos 2C+\cos C$

$\Longleftrightarrow$ $\sin 2C-\cos C=$ $ 2\sin^2C-\sin C$ $\Longleftrightarrow$ $\cos C(2\sin C-1)=$ $ \sin C(2\sin C-1)$ $\Longleftrightarrow$ $\tan C=1\ \ \vee\ \sin C=$ $ \frac 12$ $\Longleftrightarrow$ $C\in\left\{30^{\circ},45^{\circ}\right\}$ .

Method 4. Prove easily that $ C\ \in \left\{30^{\circ}\ ,\ 45^{\circ}\right\}$ $\Longrightarrow$ $BA+AD=BC$ . Suppose that $ BA+AD=BC$ , i.e. $ AD=a-c$ . Let circumcentre $ O$ , incentre $ I$ for $ \triangle ABC$ and $ E\in AI$

so that $ OE\perp BC$ . So $ BE=\frac {a}{\sqrt 2}$ , $ AE=\frac {b+c}{\sqrt 2}$ , $ BD^2=c^2+(a-c)^2=2c^2+a(a-2c)$ si $ \left\|\ \begin{array}{ccc}
 m(\angle DBE) & = & 45^{\circ}+\frac C2\\\\
 m(\angle DAE) & = & 45^{\circ}\end{array}\ \right\|$ . Apply the generalized Pytagoras' theorem :

$ \left\|\ \begin{array}{cc}
 \triangle DBE\ : & DE^2=BD^2+BE^2-2\cdot BD\cdot BE\cdot \cos (\angle DBE)\\\\
 \triangle DAE\ : & DE^2=AD^2+AE^2-2\cdot AD\cdot AE\cdot \cos (\angle DAE)\end{array}\ \right\|$ $\Longrightarrow$ $ BD^2+BE^2-2\cdot BD\cdot BE\cdot \cos (\angle DBE)=$ $ AD^2+AE^2-2\cdot AD\cdot AE\cdot \cos (\angle DAE)$

$\Longrightarrow$ $ c^2+\frac {a^2}{2}-2\cdot BD\cdot\frac {a}{\sqrt 2}\cdot \cos \left(45^{\circ}+\frac C2\right)=$ $ \frac {(b+c)^2}{2}-2\cdot (a-c)\cdot \frac {b+c}{\sqrt 2}\cdot \cos 45^{\circ}$ $\Longrightarrow$ $a\sqrt 2\cdot BD\cdot \cos \left(45^{\circ}+\frac C2\right)=$ $a(b+c)-2bc$ $\Longrightarrow$

$ a^2\cdot BD^2\left[1+\cos \left( 90^{\circ}+C\right)\right]=$ $ [ac+b(a-2c)]^2$ $\Longrightarrow$ $a^2\left[2c^2+a(a-2c)\right]\left(1-\frac ca\right)=$ $ [ac+b(a-2c)]^2$ $\Longrightarrow$ $ a(a-c)\left[2c^2+a(a-2c)\right]=$ $ [ac+b(a-2c)]^2$ $\Longrightarrow$

$2ac^2(a-c)+a^2(a-c)(a-2c)=$ $ a^2c^2+2abc(a-2c)+b^2(a-2c)^2$ $\Longrightarrow$ $ac^2(a-2c)+a^2(a-c)(a-2c)=$ $ 2abc(a-2c)+b^2(a-2c)^2$ $\Longrightarrow$ $\boxed {\ a=2c\ }\ \ \vee$

$ac^2+\left(b^2+c^2\right)(a-c)=$ $ 2abc+b^2(a-2c)$ . Suppose $ a\ne 2c$ . In this case obtain $ 2ac^2+ab^2-b^2c-c^3=$ $ ab^2-2b^2c+2abc\ \Longrightarrow$ $2ac^2-c^3=-b^2c+2abc\ \Longrightarrow$

$ 2a(b-c)=b^2-c^2$ $\Longrightarrow$ $\boxed {\ b=c\ }\ \ \vee\ \ 2a=b+c$ . Se observa ca $ 2a>b+c$ . In conclusion, $ c\in\left\{b\ ,\ \frac a2\right\}$ , i.e. $ C\ \in \left\{30^{\circ} , 45^{\circ}\right\}$ .

Method 5. Denote $ x=m(\angle DBC)$ . Thus, $ \tan B=\frac bc$ and $\tan (B-x)=\frac {a-c}{c}$ . Hence $ \frac bc=\tan [x+(B-x)]=$ $ \frac {\tan x+\tan (B-x)}{1-\tan x\cdot\tan (B-x)}=$ $\frac {\tan x+\frac {a-c}{c}}{1-\tan x\cdot\frac {a-c}{c}}=$

$ \frac {c\cdot\tan x+(a-c)}{c-(a-c)\cdot\tan x}$ $\Longrightarrow$ $b\cdot\left[c-(a-c)\cdot\tan x\right]=$ $ c\left[c\cdot \tan x+(a-c)\right]$ $\Longleftrightarrow$ $ \tan x=\frac {c(b+c-a)}{c^2+b(a-c)}$ . For $ C=2x$ obtain : $ \tan x=\tan\frac C2=$ $ \frac {\sin C}{1+\cos C}=$

$ \frac  {\frac ca}{1+\frac ba}=$ $ \frac {c}{a+b}$ $\Longrightarrow$ $\frac {c}{a+b}=$ $ \frac {c(b+c-a)}{c^2+b(a-c)}$ $\Longleftrightarrow$ $ c^2+$ $ b(a-c)=(a+b)(b+c-a)$ $\stackrel{(a^2=b^2+c^2)}{\Longleftrightarrow}$ $ 2c^2-2bc=ac-ab$ $\Longleftrightarrow$ $(a-2c)(b-c)=0$ .

In conclusion, $ BA+AD=BC$ $\Longleftrightarrow$ $\tan \frac C2=$ $ \frac {c(b+c-a)}{c^2+b(a-c)}$ $\Longleftrightarrow$ $C\ \in \left\{30^{\circ} , 45^{\circ}\right\}$ .



PP6 (British math Olimpiad 2013). The point $P$ lies inside of $\triangle ABC$ so that $\widehat{ABP} \equiv\widehat{ACP}$ . The point $Q$ is such that $PBQC$ is a parallelogram. Prove that $\widehat{BAQ} \equiv\widehat{CAP}$ .

Proof 1. Awesome problem ! In my diagram, $P$ is to the left of $Q$ . Complete the parallelogram $BASP$ . Then note that $BPQC$ is also a parallelogram, leading us to the fact that $ASCQ$

is also a parallelogram. Therefore, $\angle ABP=\angle ASP=\angle ACP$ so that $ASCP$ is a cyclic quadrilateral. Now, $\angle QAC=\angle ACS=\angle APS=\angle BAP$ . So we are done.

Proof 2. Construct the parallelogram $PARC$ . Observe that $BARQ$ is also a parallelogram. Thus, $\triangle ABP\equiv \triangle RQC$ and $ARCQ$ is cyclically

because $\widehat{RAC}\equiv\widehat{ACP}\equiv$ $\widehat{ABP}\equiv\widehat{RQC}\implies$ $\widehat{RAC}\equiv \widehat{RQC}$ . Hence $\widehat{CAQ}\equiv\widehat{CRQ}\equiv$ $\widehat{PAB}\implies$ $\widehat{CAQ}\equiv\widehat{PAB}\implies$ $\widehat{CAP} \equiv\widehat{BAQ}$

Proof 3. Let $\left\{\begin{array}{c}
m\left(\widehat{BAQ}\right)=x\\\\
m\left(\widehat{CAP}\right)=y\end{array}\right|\ .$ Thus, $\left\{\begin{array}{cc}
QB=PC\ ; & \widehat{ABP}\equiv\widehat{ACP}\\\\
QC=PB\ ; & \widehat{ABQ}\equiv\widehat{ACQ}\end{array}\right|\ .$ Apply the theorem of Sines $:\ \left\{\begin{array}{ccc}
\triangle ABQ\ : & \frac {QA}{QB}=\frac {\sin\widehat {ABQ}}{\sin x}\\\\
\triangle ACQ\ : & \frac {QC}{QA}=\frac {\sin (A-x)}{\sin \widehat{ACQ}}\\\\
\triangle APB\ : & \frac {PA}{PB}=\frac {\sin\widehat {ABP}}{\sin (A-y)}\\\\
\triangle APC\ : & \frac {PC}{PA}=\frac {\sin y}{\sin \widehat{ACP}}\end{array}\right|\ \bigodot\ \implies$

$\frac {\sin (A-x)}{\sin x}=$ $\frac {\sin (A-y)}{\sin y}\iff$ $\sin A\cdot\cot x-\cos A=\sin A\cot y-\cos A\iff$ $\cot x=\cot y\iff$ $x=y\iff$ $\widehat{BAQ} \equiv\widehat{CAP}$ .



PP7. Let an isosceles $\triangle ABC$ with $AB=AC$ . The $B$-angled (interior) bisector meet $AC$ at $D$ so that $BD + DA = BC$ . Find $A$ .

Proof 1. Let $B=2x$ , the circle $w=C(D,r)$ with $DA=r$ and $\{M,N\}\subset BC\cap w$ , so that $M\in (BN)$ . Prove easily that $\triangle MDN$ is $D$-isosceles with $m\left(\widehat{DMN}\right)=$

$m\left(\widehat{DNM}\right)=4x$ $\implies$ $N\in (MC)$ and $ND=NC\implies$ $NC=DA\implies$ $BN=BD\implies$ $m\left(\widehat{BDN}\right)=4x\implies$ $9x=180^{\circ}\implies$ $x=20^{\circ}\implies$ $A=100^{\circ}$ .

Proof 2 (trigonometric). Let $A=4x$ . Thus, $m\left(\widehat{ABD}\right)=45^{\circ}-x$ , $m\left(\widehat{BDC}\right)=45^{\circ}+3x$ and $C=90^{\circ}-2x$ . Apply theorem of Sines in the triangles $ABD$

and $ABC\ :\ BD+DA=BC\implies$ $\frac {BD+DA}{AB}=\frac {BC}{AB}\implies$ $\frac {\sin 4x+\sin\left(45^{\circ}-x\right)}{\sin \left(45^{\circ}+3x\right)}=$ $\frac {\sin 4x}{\cos 2x}\implies$ $\sin 4x+\sin\left(45^{\circ}-x\right)=2\sin 2x\sin\left(45^{\circ}+3x\right)\implies$

$\sin 4x+\cos\left(45^{\circ}+x\right)=\cos\left(45^{\circ}+x\right)-\cos\left(45^{\circ}+5x\right)\implies$ $\sin 4x=\sin \left(5x-45^{\circ}\right)\implies$ $4x+\left(5x-45^{\circ}\right)=180^{\circ}\implies$ $9x=225^{\circ}\implies$ $x=25^{\circ}\implies$ $\boxed{A=100^{\circ}}$ .

Proof 3. Let $A=2x$ and $AB=AC=b$ , $BC=b$ . Thus, $\boxed{2\sin x=\frac ab}\ (*)$ , $DA=\frac {b^2}{a+b}$ and $BD=a-DA\implies$ $BD=\frac {a^2+ab-b^2}{a+b}$ . Apply the theorem of Cosines

to $\widehat{BAC}$ in $\triangle ABD\ :$ $\cos 2x=\frac {b^2(a+b)^2+b^2-\left(a^2+ab-b^2\right)}{2b^3(a+b)}=$ $\frac {b^4+4ab^3+2a^2b^2-2a^3b-a^4}{2b^3(a+b)}\implies$ $\cos 2x=\frac {b^3+3ab^2-a^2b-a^3}{2b^3}\implies$

$2\cos 2x=1+3\left(\frac ab\right)-\left(\frac ab\right)^2-\left(\frac ab\right)^3\stackrel{(*)}{\implies}$ $2\cos 2x=1+6\sin x-4\sin^2x-8\sin^3x\implies$ $2\cos 2x=1+6\sin x-2(1-\cos 2x)-4\sin x(1-\cos 2x)\implies$

$-1+2\sin x+4\sin x\cos 2x=0\implies$ $-1+2\sin x+2(\sin 3x-\sin x)=0\implies$ $\sin 3x=\frac 12\implies$ $3x=150^{\circ}\implies$ $x=50^{\circ}\implies A=100$ .



PP8. Let $\triangle ABC$ with $A=20^{\circ}$ . Its $B$-bisector cut $AC$ at $D$ . Prove that $\boxed{AD=DB+BC\iff C\in \left\{80^{\circ},40^{\circ}\right\}}$ .

Proof. Let $B=2x$ . Thus, $AD=DB+BC\iff$ $\frac {AD}{DB}=1+\frac {BC}{BD}\iff$ $\frac {\sin x}{\sin 20}=1+\frac {\sin(x+20)}{\sin(2x+20)}$ $\iff$ $\sin x\sin (2x+20)=\sin 20[\sin (2x+20)+\sin (x+20)]\iff$

$2\sin x\sin (2x+20)=$ $\cos 2x-\cos (2x+40)+$ $\cos x-\cos (x+40)\iff$ $2\sin x\sin (2x+20)=[\cos 2x-\cos (x+40)]+$ $[\cos x-\cos (2x+40)]\iff$

$\sin x\sin (2x+20)=$ $\sin\left(\frac {3x}{2}+ 20\right)\sin\left(20-\frac x2\right)+$ $\sin\left(\frac {3x}{2}+20\right)\sin\left(\frac x2+20\right)$ $\iff$ $\sin x\sin (2x+20)=$ $\sin\left(\frac {3x}{2}+ 20\right)\left[\sin\left(20-\frac x2\right)+\sin\left(\frac x2+20\right)\right]\iff$

$\sin \frac x2\cos\frac x2\sin (2x+20)=$ $\sin\left(\frac {3x}{2}+ 20\right)\sin 20\cos\frac x2\iff$ $\sin\frac x2\sin (2x+20)=$ $\sin\left(\frac {3x}{2}+ 20\right)\sin 20\iff$ $\cos\left(\frac {3x}{2}+20\right)-\cos\left(\frac {5x}{2}+20\right)=$

$\cos\frac {3x}{2}-\cos\left(\frac {3x}{2}+40\right)\iff$ $\cos\left(\frac {3x}2+20\right)+\cos\left(\frac {3x}2+40\right)=$ $\cos\left(\frac {5x}2+20\right)+\cos \frac {3x}{2}$ $\iff$ $\cos\left[3\left(\frac {x}{2}+10\right)\right]\cos 10=$ $\cos (2x+10)\cos\left(\frac x2+10\right)$ $\iff$

$\left[4\cos^2\left(\frac x2+10\right)-3\right]\cos 10=\cos (2x+10)\iff$ $[2\cos (x+20)-1]\cos 10=$ $\cos (2x+10)\iff$ $\cos (x+30)+\cos (x+10)=$ $\cos 10+\cos (2x+10)\iff$

$x\in\{40^{\circ},60^{\circ}\}$ $\iff$ $C\in \left\{80^{\circ},40^{\circ}\right\}$ .
This post has been edited 114 times. Last edited by Virgil Nicula, Nov 22, 2015, 9:43 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a