235. Proofs of some geometry problems with complex numbers.

by Virgil Nicula, Mar 3, 2011, 10:41 AM

Lemma 1. If $X(x)$ is the point $X$ with affix $x\in\mathbb C$ , Then $ABC\sim DEF\ \stackrel{(SAS)}{\iff}$ $\left\{\begin{array}{c}
\frac {AB}{AC}=\frac {DE}{DF}\\\\
\widehat {BAC}\equiv\widehat{EDF}\end{array}\right\|\iff$

$\frac {a-b}{a-c}=$ $\frac {d-e}{d-f}\ \iff\ a(e-f)+b(f-d)+$ $c(d-e)=0\ \iff\ \left|\begin{array}{ccc}
1 & 1 & 1\\\
a & b & c\\\
d & e & f\end{array}\right|=0$ .

Lemma 2. The triangle $ABC$ is equilateral if and only if $a^2+b^2+c^2=ab+bc+ca$ .


Proof 1. Denote $w=\cos\frac {\pi}3+i\cdot\sin\frac {\pi}3$ . Observe that $\omega^3=-1$ and $\omega^2=\omega -1=-\overline {\omega}$ . Thus, $ABC$ is an equilateral triangle $\iff$ $(a-b)=\omega (c-b)$ or $a-b=$

$\overline{\omega}\cdot (c-b)\iff$ $a+b\omega^2-c\omega =0$ or $a-b\omega+c\omega^2=0\iff$ $\left(a+b\omega^2-c\omega\right)\left(a-b\omega+c\omega^2\right)=0\iff$ $\sum a^2+\left(\omega^2-\omega\right)\cdot\sum bc=0\iff$ $\sum a^2=\sum bc$ .

Proof 2. $ABC$ is an equilateral triangle $\iff$ $ABC\sim BCA\ \stackrel{(\mathrm{lema\ 1})}{\iff}\ a(c-a)+$ $b(a-b)+c(b-c)=0\iff\ \sum a^2=\sum bc$ .



P1. Triangles $ABC$ , $DEF$ are equilateral and denote the midpoints $P$, $Q$, $R$ of $[AD]$ , $[BE]$ , $[CF]$ respectively. Show that $\triangle PQR$ is equilateral.

Proof. I"ll show that $a^2+b^2+c^2=ab+bc+ca\ \wedge\ d^2+e^2+f^2=de+ef+fd\  \implies$ $(a+d)^2+(b+e)^2+(c+f)^2=$

$(a+d)(b+e)+(b+e)(c+f)+(c+f)(a+d)$ . Indeed, $\triangle ABC\sim \triangle DEF\ \wedge\ ABC$ $\sim EFD\ \stackrel{(\mathrm{lema\ 1)}}{\iff}\ ae+bf+cd=af+bd+ce=$

$ad+be+cf$ . In conclusion, $\boxed{(a+d)^2+(b+e)^2+(c+f)^2}=$ $\left(a^2+b^2+c^2\right)+\left(d^2+e^2+f^2\right)+2(ad+be+cf)=$

$(ab+bc+ca)+(de+ef+fd)+(ae+bf+cd)+(af+bd+ce)=$ $\boxed{(a+d)(b+e)+(b+e)(c+f)+(c+f)(a+d)}$ .



P2. Let $ABCD$ be a quadrilateral such that $AD=BC$ and $\angle A+\angle B = 120^{\circ}$. Construct the equilateral triangles

$ACP$, $DCQ$, $DBR$ such that the points $P,Q,R$ lie on the same side of $AB$. Prove that $P,Q,R$ are collinear points.


Proof 1. Let $X(x)$ with the affix $x$ and the rotation $\omega =\cos\frac{\pi}{3}+i\cdot\sin\frac{\pi}{3}$ , i.e. $\omega^{3}=-1$ , $\overline{\omega }=\frac{1}{\omega }$ and $\omega^{2}-\omega+1=0$ . Construct $E$ for which the quadrilateral $ADCE$ is a

parallelogram. Thus, $a+c=d+e$ , i.e. $e-c=a-d$ and $\left\{\begin{array}{c}BC=AD\\\ A+B=120^{\circ}\end{array}\right\|$ $\Longleftrightarrow$ the triangle $BCE$ is equilateral $\Longleftrightarrow$ $b-c=(e-c)\cdot\omega$ $\Longleftrightarrow$ $\boxed{b-c=(a-d)\cdot\omega}$.

Therefore, $\left\{\begin{array}{ccccc}\triangle\mathrm{ACP\ is\ equilateral}& \Longleftrightarrow & p-a=(c-a)\cdot\omega & \Longleftrightarrow & p=a+(c-a)\cdot\omega\\\ \triangle\mathrm{BDR\ is\ equilateral}& \Longleftrightarrow & r-d=(b-d)\cdot\omega & \Longleftrightarrow & r=d+(b-d)\cdot\omega\\\ \triangle\mathrm{CDQ\ is\ equilateral}& \Longleftrightarrow & q-d=(c-d)\cdot\omega & \Longleftrightarrow & q=d+(c-d)\cdot\omega\end{array}\right\|$ $\implies$ $p+r-2q=(a-d)+[(b-c)-(a-d)]\cdot\omega =$

$(a-d)+[(a-d)\cdot\omega-(a-d)]\cdot\omega =$ $(a-d)\cdot\left(1-\omega+\omega^{2}\right)=0$ $\implies$ $p+r=2q$, i.e. $\left\{\begin{array}{c}Q\in (PR)\\\ QP=QR\end{array}\right\|$ .

Proof 2. Denote: $S=AD\cap BC$ . Prove easily that $\triangle AQB$ is an equilateral. So $\begin{cases}AQ=AB,\,AP=AC\\ \widehat{PAQ}=\widehat{CAB}\end{cases}$ $\implies$ $\triangle APQ=\triangle ACB\implies\widehat{APQ}=\widehat{ACB}\quad (1)$ and $APSC$

is cyclic, so $\widehat{APS}=\widehat{ACB}\quad (2)$ . From $(1)$ and $(2)$ we have: $P\in SQ$ . Similarly, we also have: $R\in SQ$ . Hence $P,\,Q,\,R$ are collinear. We also have $Q$ is midpoint of $PR.$



P3. Let $ABCD$ be a parallelogram and let $ABMN,$ $BCQP$ be two squares what belong to outside of the parallelogram. Prove that $DP\perp MQ\ \wedge\ MQ=DP.$

Proof. Denote the affix $x\in\mathbb C$ of the point $X$ from our plane and denote $X(x).$ Suppose w.l.o.g. $A(a),$ $B(b),$ $C(-a)$ and $D(-b).$ Therefore,

$\left\{\begin{array}{ccccccc}
M(m) & \implies & m=b+i(b-a) & ; & N(n) & \implies & n=a+i(b-a)\\\\
P(p) & \implies & p=b-i(a+b) & ; & Q(q) & \implies & q=-a-i(a+b)\end{array}\right\|\implies$ $\left\{\begin{array}{ccccc}
m-q & = & [b+i(b-a)]-[-a-i(a+b)] & = & (a+b)+2ib\\\\
p-d & = & [b-i(a+b)]-(-b) & = & 2b-i(a+b)\end{array}\right\|\ .$

Observe that $m-q=i\cdot (p-d)\implies$ $|m-q|=|p-d|\implies$ $MQ=PD$ and $MQ\perp PD.$ Prove similarly that $\triangle BCM\equiv\triangle CQD\implies MC\perp DQ$ and $MC=DQ.$
This post has been edited 49 times. Last edited by Virgil Nicula, Sep 24, 2016, 1:08 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a