425. Geometrical extremity II.
by Virgil Nicula, May 14, 2015, 11:56 PM
PE0. Let
be a right circular cone with the lengths
,
of the radius and the generatrix respectively. Prove that if its
volume is constant, then
its lateral surface is minimum
its total surface is minimum 
Proof. Let the circle
from base and the apex
with
. Thus,
and the volume 
is constant, i.e.
is constant. The lateral surface area is
and the total surface area is
.
is constant
is constant
is constant
. Thus, 

is constant
is constant
is constant
is constant
. Therefore,
.
PE1.Sa se afle dimensiunile unui cilindru de rotatie fara un "capac" (de exemplu gen "cana","oala" etc), de volum constant si care are suprafata minima.
Dem. Fie
- raza cercului din baza si
- generatoarea cilindrului. Volumul cilindrului
este constant
(constant) si suprafata fara un
"capac" este
Asadar
este
suma
este
suma
este
Se observa ca
produsul
(constant). Deci suma
este
In concluzie, ![$\boxed{A(x,y)\ \mathrm{este}\ \min\iff x=y=\sqrt[3]k}\ .$](//latex.artofproblemsolving.com/0/3/3/03367033e2b3322faa9f9ebae91b47046907b699.png)
PE2. Sa se afle dimensiunile unui cilindru de rotatie cu volum constant si care are suprafata totala minima.
Dem. Fie
- diametrul cercului din baza si
- generatoarea cilindrului. Volumul cilindrului
este constant
este constant

este constant. Aria totala este
. Deci aria totala este minima
este minima
suma
este minima.
Produsul termenilor acestei sume este constant. Aria totala este minima
, adica
, ceea ce inseamna ca in solutia de minim sectiunea axiala este un patrat.
PE3. Construim o fereastra
care este alcatuita dintr-un dreptunghi
si semicercul cu diametru
astfel incat suprafetele lor au in comun numai
. In ipoteza
ca perimetrul ferestrei este constant, sa se determine dimensiunile dreptunghiului
astfel incat aria ferestrei sa fie maxima, adica sa patrunda cat mai multa lumina pe timpul zilei.
Dem. Notam
si
. Asadar, perimetrul ferestrei este
(constant) si aria ferestrei este
. Deci, aria ferestrei
este maxima
este maxima
este maxim
este maxim 
este minim
si
, adica
.
PE4. Fie fix
in interiorul unghiului
si mobile
astfel incat
. Sa se determine pozitia dreptei
astfel incat aria
sa fie minima.
Dem. Fie
si ariile
este minima
suma
este minima. Se observa ca
, i.e.
(constant).
Astfel, deoarece
este constant, aria
este minima
suma
este minima
.
PE5. Sa se inscrie un dreptunghi
de arie maxima in
astfel incat
.
Dem. Fie
si
astfel ca
. Se observa ca
(constant).
In concluzie, aria
a dreptunghiului
este maxima
produsul
este maxim
este linie mijlocie in
.
PE6. Fie un mobil
pe semicercul de diametru
, unde
. Sa se determine maximul sumei
, unde
.
Dem. Suma
este max.
este max.
este max.
este max. deoarece
este constant
este max. 
este max,
este max.
este max. , unde
(constant)
. In concluzie,
.
Observatie. Fie
a doua intersectie intre
si cercul circumscris al
. Aplicam inegalitatea
in
Deci
.
PE7. Sa se arate ca intr-un triunghi
-dreptunghic exista inegalitatea
.
Dem.

cu egalitate
, adica
.
PE8. Fie
, unde
. Sa se arate ca
cu egalitate
.
Dem. Daca
, atunci
cu egalitate
, adica
. Fie
si
, unde
. Deci

, adevarat. Avem egaltate
, adica
.
Obs. Daca
, adica
, atunci inegalitatea devine
, cu egalitate
(vezi problema propusa PE6).
PE9. Pe laturile
consideram
astfel incat
, adica
. Cercul circumscris
al 
intalneste a doua oara
,
si
in
,
si
respectiv. Sa se arate ca
.
Dem.
. Aplicand relatia Stewart la
in
se obtine
si din puterea lui
in raport cu 
obtinem
. Asadar,


because
and
. Se arata usor ca avem egalitate
, adica centrul de greutate
.
PE10. Let
be a convex pentagon inscribed in a given circle
and for which
. Ascertain the its maximum area
.
Proof. Suppose w.l.o.g.
. Let
and the distance
of
to
. Since
obtain
and
. Apply the Ptolemy's theorem in the cyclic
. Thus,

. Thus, the area
is maximum
is maximum, where exists
.
.

and
. Thus,
si
, i.e.
,
and
.
PE11. Let
and the mobile point
. A circle which passes through
and is tangent to
in
cut again
,
in
,
respectively.
Let the area
of the cyclic
and the area
of
. Prove that exists the inequality
with equality if and only if
.
Proof. Let
. Thus,
. Thus,
is
is 
is
is
is
.
Let
, where
. Thus,
.
So
, where
and
, i.e.
the ray
is the
-bisector of
. In this case,
.
Remark. The inequality
is equivalently with
, what is Holder's inequality
.
Consequence. In the case
, i.e.
obtain that in an acute
exists the inequality
.
Extension. Let
and let
be two mobile points which belong to the side
so that
(constant) . The circumcircle of the triangle
cut again
the sides
,
in the points
,
respectively. Find the maximum of the area of the cyclic pentagon
and the position of the points
,
where it is touched.
PE12. Let
be an convex quadrilateral with the fixed
and the mobile
. Find the maximum value of the area
, where
.
Proof. Let
. Bretschneider's formula
. Thus,
is absolute
, i.e.
is cyclic. In this case
is
is
is
because
(constant) and
is
and
. Remark. Prove easily that
with equality iff
.
Therefore
with equality iff
.
PE13. Peter and Jane begin running along a straight track starting from point
while Lily looks on at the side. The diagram shows a particular instant when Peter, Lily and Jane are at
,
and
respectively. Given that Peter runs
times faster than Jane and
, find the maximum value of Lily's angle of sight, i.e.
between the two runners.

Proof 1 (analytic). Let
and the slopes
where

. Let
. Thus,
. Prove easily that
is
is
.
Proof 2. Let
(constant) and
, i.e.
and
. Thus,
.I"ll apply the identity
in any
. Therefore,

. In conclusion,
is
.
is
.
is
.
is
.
is
.
Observe that the product
(constant).Thus,
is
.
and
, i.e.
.
Proof 3. I"ll use same notations from the upper proof. Thus,
. Apply the generalized Pythagoras's theorem 
. In conclusion,
is
is
is
is
is
is 
is
is
is
is
is

Observe that
(constant). Therefore,
is
and
, i.e.
.
Lemma. Let
be a pair of isogonal points on the side
, i.e.
. Then exists the relation
where
.
Proof. From
obtain that
. Apply the Steiner's relation
, i.e. 
. Denote
,
and
. Apply the theorem of Sines to the triangles 

PE14. Prove that there is the inequality
, where
is the length of the circumradius and
is the length of
the
-median of
(author: Dmitry Tereshin from Moscow. This problem was proposed in "All Russian Olympiad 1994").
Proof. Prove easily or is well-known the relation
and from upper lemma for
obtain that
where
and
are the lengths of the
-altitude and the
-symmedian respectively. Therefore,
In conclusion,
PE15. What is the maximum volume of a cylinder what is inscribed within a cone given with radius
of the base and height
?
Proof. Denote the lengths
and
of radius and height for the required cylinder. Observe that
and its volume is
. Thus,
is 
is
is
, where
(constant)
and in this case
.
PE16. What is the maximum of whole surface for a cylinder what is inscribed within a cone given with radius
of the base and height
?
Proof. Denote the lengths
and
of radius and height for the required cylinder. Observe that
, i.e.
and its total surface is
. Thus,
is
is
is
is 
is
. Appear two cases. If If
, then
is
and in this case
. If
, then
.
PE17. Find the maximum value of
, where
..
Proof 1. Let
, where
. Our function becomes
. By AM-GM follows:
.
Dividing both sides by
gives
. Equality holds iff
, i.e.
. Get
. which holds for
where
.
Proof 2.
.
PE18. Suppose we have a (right, circular) truncated cone
, where: its height
and its volume are constants; its upper radius
and
its lower radius
are variables, where
. Find the ratio
when the sum between its lateral surface and surface of lower base is minimum.
Proof.
PE19. Find
where
and
Proof 1 (without derivatives). Observe that the sum
(constant) and
is 
is
is
i.e.
and
what is compatibly.
Proof 2 (with derivatives) Observe that
and
becomes
and
![$\frac {2u^3v^2}{(1+u)^2}\cdot\left[2(1-u)(1+u)-3u\right]=$](//latex.artofproblemsolving.com/5/c/8/5c8cc614b328bdd2552f137a1bf91e0f7f9c189f.png)
Prove easily that 
Example (Israel Diaz Acha). Find the maximum of
where
and 
Proof. I"ll use the notations
and
Thus,
and

i.e.
Using upper proposed problem P18 obtain that the function
touches its maximum for
PE20. Let the
-right
the midpoint
of
and the point
so that
and
Prove that
Proof 1 (with derivatives).
and
Hence
and 
Thus,
Therefore,
Denote 
where
In conclusion, the relation
becomes the equation
where
Observe that 
i.e. the function
is increasing (
) on
(only one real root). Observe that

See here and here.

PE21. Find the maximum and the minimum of the function
over
where 
Proof. See its extension P14 from here.



volume is constant, then



Proof. Let the circle





is constant, i.e.
























PE1.Sa se afle dimensiunile unui cilindru de rotatie fara un "capac" (de exemplu gen "cana","oala" etc), de volum constant si care are suprafata minima.
Dem. Fie





"capac" este







produsul


![$\min \iff xy=x^2=\sqrt[3]{k^2}.$](http://latex.artofproblemsolving.com/9/d/1/9d196f4fe1fc9c92f3b0e5e0428990f32627b524.png)
![$\boxed{A(x,y)\ \mathrm{este}\ \min\iff x=y=\sqrt[3]k}\ .$](http://latex.artofproblemsolving.com/0/3/3/03367033e2b3322faa9f9ebae91b47046907b699.png)
PE2. Sa se afle dimensiunile unui cilindru de rotatie cu volum constant si care are suprafata totala minima.
Dem. Fie







este constant. Aria totala este






Produsul termenilor acestei sume este constant. Aria totala este minima


PE3. Construim o fereastra


![$[CD]$](http://latex.artofproblemsolving.com/e/7/0/e70960e9e5738a46ad23f794e796ef3cb4ad7e2c.png)
![$[CD]$](http://latex.artofproblemsolving.com/e/7/0/e70960e9e5738a46ad23f794e796ef3cb4ad7e2c.png)
ca perimetrul ferestrei este constant, sa se determine dimensiunile dreptunghiului

Dem. Notam




este maxima

![$\frac {\pi x^2}{2}+x\left[k-(2+\pi )x\right]$](http://latex.artofproblemsolving.com/6/a/3/6a313debf77a7380716938ff76dc1d2af2cac957.png)











PE4. Fie fix






Dem. Fie

![$[AOF]=[BOF]=a\ ,\ [AFM]=$](http://latex.artofproblemsolving.com/6/5/4/65462e45e6d7a98e185d0ac19ee34708b583ab5b.png)
![$x\ ,\ [BFN]=y\implies$](http://latex.artofproblemsolving.com/0/3/f/03f18b5ceadff347734344d26830526022afc03d.png)
![$S\equiv [MON]=2a+x+y$](http://latex.artofproblemsolving.com/a/6/7/a67de560be74a459aa29423f9155fc1f5093310a.png)






Astfel, deoarece







PE5. Sa se inscrie un dreptunghi




Dem. Fie







In concluzie, aria








PE6. Fie un mobil

![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)



Dem. Suma






















Observatie. Fie






PE7. Sa se arate ca intr-un triunghi


Dem.





cu egalitate


PE8. Fie




Dem. Daca






















Obs. Daca




PE9. Pe laturile






intalneste a doua oara








Dem.






obtinem






![$-3+\sum\left[\frac {(m+1)b^2}{a^2}+\frac {(n+1)a^2}{nb^2}\right]\ge$](http://latex.artofproblemsolving.com/c/d/9/cd93bfb6aca97fa5e1e155c52f143b4c5cacefb2.png)



because




PE10. Let



![$ [ABCDE]$](http://latex.artofproblemsolving.com/9/6/4/964e1a67199afc81d2077cdee30359adbb71f9de.png)
Proof. Suppose w.l.o.g.









![$ [ABCDE] = [ABCD] + [AED] =$](http://latex.artofproblemsolving.com/d/4/2/d4205040e1cf02d04819172941dfdd05a685724b.png)


![$ [ABCDE]$](http://latex.artofproblemsolving.com/9/6/4/964e1a67199afc81d2077cdee30359adbb71f9de.png)

![$ \left[2uv + y(2R + x)\right]$](http://latex.artofproblemsolving.com/2/f/4/2f4d3ede802215b9197bb017c74e5abd10d229c9.png)
























PE11. Let

![$ M\in [BC]$](http://latex.artofproblemsolving.com/c/b/2/cb2eadd4abe5420c8abae2614db09fde5dd970de.png)

![$ [BC]$](http://latex.artofproblemsolving.com/3/5/5/3550468aa97af843ef34b8868728963dec043efe.png)

![$ [AB]$](http://latex.artofproblemsolving.com/d/7/a/d7a8027c238eec9cf67de0f7ec6cb1df4df49a61.png)
![$ [AC]$](http://latex.artofproblemsolving.com/5/b/0/5b08b2b92472414250205866b93405af4772e86c.png)


Let the area






Proof. Let


![$[AXMY]$](http://latex.artofproblemsolving.com/2/7/0/270e4928bb3973d026a0516365e11e6356da7d94.png)

![$[MBX]+[MCY]$](http://latex.artofproblemsolving.com/9/a/b/9ab9690f0495f33816cd550ba867eceb75ac5da2.png)








Let



![$[c(a-x)]^2\ .s.s.\ bx-c(a-x)=(b+c)x-ac$](http://latex.artofproblemsolving.com/1/c/e/1ceb6a5761b7391a7af1f53685bfec037aad9b0c.png)
So












Remark. The inequality



Consequence. In the case




Extension. Let


![$ [BC]$](http://latex.artofproblemsolving.com/3/5/5/3550468aa97af843ef34b8868728963dec043efe.png)


the sides
![$ [AB]$](http://latex.artofproblemsolving.com/d/7/a/d7a8027c238eec9cf67de0f7ec6cb1df4df49a61.png)
![$ [AC]$](http://latex.artofproblemsolving.com/5/b/0/5b08b2b92472414250205866b93405af4772e86c.png)





PE12. Let



![$S=[ABCD]$](http://latex.artofproblemsolving.com/d/7/c/d7c0f0918fa7f2eaf7f90ca234333d338468e9cb.png)

Proof. Let


















Therefore






PE13. Peter and Jane begin running along a straight track starting from point








Proof 1 (analytic). Let











Proof 2. Let





![$4[ABC]=\left(b^2+c^2-a^2\right)\tan\phi$](http://latex.artofproblemsolving.com/a/a/9/aa98a64a93a8a22f17b34e78234b1fa505a86ddd.png)


















Observe that the product







Proof 3. I"ll use same notations from the upper proof. Thus,




























Observe that








Lemma. Let

![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)



Proof. From















PE14. Prove that there is the inequality



the


Proof. Prove easily or is well-known the relation









PE15. What is the maximum volume of a cylinder what is inscribed within a cone given with radius


Proof. Denote the lengths















PE16. What is the maximum of whole surface for a cylinder what is inscribed within a cone given with radius


Proof. Denote the lengths









![$x\left[x+\frac {h(r-x)}r\right]$](http://latex.artofproblemsolving.com/3/9/3/393edec4ab80735d5f92b66e6ab95b279c779fc0.png)

![$x\left[rx+h(r-x)\right]$](http://latex.artofproblemsolving.com/8/a/6/8a621f57e171a955d8a0eb047baa5fd80618f5dc.png)










PE17. Find the maximum value of


Proof 1. Let

![$t\in [0,1]$](http://latex.artofproblemsolving.com/f/5/9/f59b2675d4485df7a52a77eb0d7ea513eae7e947.png)

![$3t(1 - t)^3\le \left[\frac{3t + (1 - t) + (1 - t) + (1 - t)}{4}\right]^4 = \frac{81}{256}$](http://latex.artofproblemsolving.com/5/5/0/5508c7285d75d410d70d16a5510d987b70242a04.png)
Dividing both sides by







Proof 2.

![$\frac {16f(x)}{27}=(1-\cos x)\left(\frac {1+\cos x}3\right)^3\le\left[\frac {(1-\cos x)+3\frac {1+\cos x}3}4\right]^4=\frac 1{16}\implies$](http://latex.artofproblemsolving.com/8/7/c/87c1d1cadb2c2fcca123c103ad8679b45d03d4af.png)

PE18. Suppose we have a (right, circular) truncated cone



its lower radius



Proof.
PE19. Find



Proof 1 (without derivatives). Observe that the sum














Proof 2 (with derivatives) Observe that








![$4u^3v^3-\frac {6u^4v^2}{(1+u)^2}=2u^3v^2\cdot\left[2v-\frac {3u}{(1+u)^2}\right]=$](http://latex.artofproblemsolving.com/5/5/2/55217a435e1948f2ddf97d987c9204f9f1aa9f8a.png)
![$\frac {2u^3v^2}{(1+u)^2}\cdot\left[2v(1+u)^2-3u\right]=$](http://latex.artofproblemsolving.com/a/e/4/ae4ae03c561d8bc4ec9781b4bb8f5ff304fc1c02.png)
![$\frac {2u^3v^2}{(1+u)^2}\cdot\left[2(1-u)(1+u)-3u\right]=$](http://latex.artofproblemsolving.com/5/c/8/5c8cc614b328bdd2552f137a1bf91e0f7f9c189f.png)



Example (Israel Diaz Acha). Find the maximum of



Proof. I"ll use the notations











PE20. Let the



![$[AC]$](http://latex.artofproblemsolving.com/0/9/3/0936990e6625d65357ca51006c08c9fe3e04ba0c.png)




Proof 1 (with derivatives).














![$a^2+\left(\frac {ab}{a+c}\right)^2=\left[\frac {c(c-a)}{a+c}\right]^2\iff$](http://latex.artofproblemsolving.com/8/b/8/8b89e62d971d174afd043566b75f67d13f4f7e33.png)



where





i.e. the function








See here and here.

PE21. Find the maximum and the minimum of the function



Proof. See its extension P14 from here.
This post has been edited 209 times. Last edited by Virgil Nicula, Feb 25, 2019, 7:23 PM