322. Incenter, Gergonne, Nagel a.s.o. of ABC.

by Virgil Nicula, Oct 14, 2011, 11:48 AM

PP1. Let $ABC$ be a triangle with the centriod $G$ , the circumcircle $(O)$ , the incircle $(I)$ and the medial $\triangle DEF$ . The circle $(I)$ touches the sides

of $\triangle ABC$ in $M\in BC$ , $N\in CA$ and $P\in AB$ . Prove that the orthocenter of $MNP$ belongs to $OI$ and the incircle of $\triangle DEF$ belongs to $GI$ .


Proof. Note that $NP \perp AI$ etc. We also know that $I$ is the orthocenter of the excenter triangle. Thus, $I_bI_c\parallel NP$ etc. Therefore the intouch $\triangle MNP$ is homothetic to

the excenter $\triangle I_aI_bI_c$ . So there is a point $S$ that takes the intouch triangle to the excenter triangle, i.e. $S\in MI_a\cap NI_b\cap PI_c$ and the Euler's lines of these triangles

are parallelly. But note that $I$ is the circumcenter of $\triangle MNP$ and $I$ is also the orthocenter of $\triangle I_aI_bI_c$ . Therefore, these triangles share the same Euler's line.

But since $O$ is the nine-point center of the excenter triangle and $O$ also lies on the Euler line of the excenter triangle. Thus we have that $O$ , $I$ and the orthocenter

of $MNP$ are collinear and lie on the common Euler's line of $\triangle MNP$ and $\triangle I_1I_2I_3$ .


PP2. Let $ABC$ be a triangle with incircle $w=(I)$ . Denote $D\in BC\cap w$ and $\Gamma$ (Gergonne) , $\mathrm N$ (Nagel)

points of $\triangle ABC$ . Prov that $\boxed{\widehat{ID\Gamma}\equiv \widehat{ID\mathrm N}\iff\frac {a}{b+c}=\frac{s-a}{s}}=\tan\frac {\pi}{8}$ , where $2s=a+b+c$ .


Proof 1 (own). Suppose w.l.o.g. that $b>c$ and denote : the orthocenter $H\ ;\ S\in BC\cap AH\ ;\ X\in AN\cap w\ ;\ L\in AN\cap BC$ and $K\in BC$ for which

$NK\perp BC$ . Show easily that $\frac {SD}{s-a}=\frac {KL}{s-a}=\frac {DK}{2a-s}=\frac {b-c}{a}$ and $NK=\frac {h_a(s-a)}{s}$ . Therefore, $\widehat{ID\Gamma}\equiv \widehat{ID\mathrm N}\iff$ $\widehat{XDA}\equiv \widehat{XD\mathrm N}\iff$

$\tan\widehat{XDA}=\tan\widehat{XDN}\iff$ $\frac {SD}{SA}=\frac {KD}{KN}\iff$ $\frac {(b-c)(s-a)}{ah_a}=\frac {(b-c)(2a-s)}{a}\cdot\frac {s}{h_a(s-a)}\iff$ $(s-a)^2=s(2a-s)\iff$

$\left[(b+c)-a\right]^2=\left[a+(b+c)\right]\left[3a-(b+c)\right]\iff$ $a^2+2a(b+c)-(b+c)62=0\iff$ $\boxed{\frac {a}{b+c}=\sqrt 2-1}$ .

Proof 2 (own). Suppose w.l.o.g. that $b>c$ . Is well-known that $X\in \overline{ANL}$ . Show easily that $LS=\frac {s(b-c)}{a}$ . Thus $\left\|\begin{array}{c}
\widehat{XDA}\equiv\widehat {XDN}\\\\
DX\perp DL\end{array}\right\|\iff$ the division

$(A,N;X,L)$ is harmonically $\iff$ the division $(S,K;D,L)$ is harmonically $\iff\frac {DS}{DK}=\frac {LS}{LK}\iff$ $DS^2=DK\cdot LS\iff$

$(b-c)^2(s-a)^2=(2s-a)(b-c)^2s\iff$ $(s-a)^2=s(2s-a)\iff\ \ldots\ \iff$ $\frac {a}{b+c}=\sqrt 2-1$ .

Proof 3 (Yetti). $K$ is foot of perpendicular from $A$ to $BC$. $AI$ cuts $BC$ at $X$. Excircle $(I_a)$ in $\angle A$ touches $BC$ at $E$ and $N \in AE$. $ID$ cuts $(I)$ again at $F$.

$M$ is common midpoint of $BC$, $DE$. $(I) \sim (I_a)$ are centrally similar with center $A$ and coefficient $\frac{s-a}{s}$ $\Longrightarrow$ $F \in AE$ and $\overline{NA} = -2 \overline{IM} = -\overline {FE}$ $\Longrightarrow$

$\overline{FA} = -\overline{NE}$. Since $DF \perp DE,$ $DIF$ bisects $\angle ND\Gamma \equiv \angle NDA$ $\Longleftrightarrow$ cross ratio $(A, N, F, E) = -1$ is harmonic $\Longleftrightarrow$ $\frac{\overline{AF}}{\overline{AE}} = -\frac{\overline{NF}}{\overline{NE}} =$

$\frac{\overline{AE} - 2 \overline{AF}}{\overline{AF}}$ $\Longleftrightarrow$ $\left(\frac{\overline{AF}}{\overline{AE}}\right)^2 + 2 \frac{\overline{AF}}{\overline{AE}} - 1 = 0$ $\Longleftrightarrow$ $0< \frac{s-a}{s} = \frac{\overline{AF}}{\overline{AE}} = \sqrt 2 - 1 = \tan \frac{_\pi}{^8}$. Cross ratio $(K, X, D, E) = -1$ is always harmonic.

See
here for one way to show it. Therefore, $(A, N, F, E) = -1$ $\Longleftrightarrow$ $NX \parallel FID \parallel AK$ $\Longleftrightarrow$ $\frac{s-a}{s} = \frac{\overline{AF}}{\overline{AE}} = -\frac{\overline{NF}}{\overline{NE}} = \frac{\overline{NF}}{\overline{FA}} = \frac{\overline{XI}}{\overline{IA}} = \frac{a}{b+c}$ .

Proof 4 (Luisgeometra). Let $A^*$ be the reflection of $A$ about $BC.$ Thus, $DI$ bisects $\angle \Gamma D \mathrm{N}$ $\Longleftrightarrow$ $\mathrm{N},$ $D$ and $A^*$ are collinear. Barycentric coordinates of $A^*,$ $\mathrm{N}$ and $D$

w.r.t. $\triangle ABC$ are given by $\mathrm{N} \ (b+c-a:c+a-b:a+b-c),$ $ D \ (0:a+b-c:c+a-b)$ and $A^*(-a^2:a^2+b^2-c^2:a^2+c^2-b^2).$

These points are collinear $\Longleftrightarrow$ $\left [\begin {array}{ccc} -a^2 & a^2+b^2-c^2 & a^2+c^2-b^2\\ b+c-a& c+a-b & a+b-c\\ 0& a+b-c& c+a-b \end{array}\right]=0$ $\Longleftrightarrow 2a(c-b)[(b+c-a)^2-2a^2]=0 \Longleftrightarrow$

Either $b=c$ or $2a^2=(b+c-a)^2$ $\Longleftrightarrow$ $ a=\sqrt{2}(s-a) \Longleftrightarrow \frac{a}{b+c}=\frac{s-a}{s}=\frac{ \sqrt{2}}{ \sqrt{2}+2}= \tan \frac{\pi}{8}.$
This post has been edited 26 times. Last edited by Virgil Nicula, Apr 20, 2016, 1:28 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a