340. Geometry problems for middle school.

by Virgil Nicula, Apr 13, 2012, 10:50 PM

PP1. Let $\triangle ABC$ with the circumcircle $w$ , the incircle $C(I,r)$ and the $A$-excircle $C\left(I_a,r_a\right)$ . Denote $D\in BC\cap AI$ and $\{A,S\}=AI\cap w$ .

Construct $M\in AB$ and $N\in AC$ so that $MN\parallel BC$ . Prove that $AI\cdot AI_a=AD\cdot AS=AB\cdot AC$ and $AI_a^2=AB\cdot AN=AC\cdot AM$ .


Proof. Prove easily that $\left\{\begin{array}{ccccc}
\triangle ABI_a\sim \triangle AIC & \implies & =\frac {AB}{AI}=\frac {AI_a}{AC} & \implies & AI\cdot AI_a=AB\cdot AC\\\\
\triangle ABS\sim \triangle ADC & \implies & =\frac {AB}{AD}=\frac {AS}{AC} & \implies & AD\cdot AS=AB\cdot AC\\\\
\triangle ABI_a\sim \triangle AI_aN & \implies & =\frac {AB}{AI_a}=\frac {AI_a}{AN} & \implies & AB\cdot AN=AI_a^2\end{array}\right\|$ .

Remark that $MN\parallel BC\iff$ $\frac {AB}{AM}=\frac {AC}{AN}\iff$ $AC\cdot AM=AB\cdot AN=AI_a^2$ .



PP2. Let $\triangle ABC$ with $BA=BC\ ,\ BA\perp BC$ and $\{D,E\}\subset(AC)$ so that $m\left(\widehat {DBE}\right)=45^{\circ}$ .

Let the circumcircle $w$ of $\triangle DBE$ and $\left\{\begin{array}{c}
\{B,F\}=\{B,A\}\cap w\\\\
\{B,G\}=\{B,C\}\cap w\end{array}\right\|$ . Prove that $AF+CG=FG$ .


Proof. Suppose w.l.o.g. $AB=1\implies$ $AC=\sqrt 2$ . Let midpoints $X\ ,\ Y$ of $[BF]\ ,\ [BG]$ and $\left\{\begin{array}{ccc}
AF=m\ ; &  BF=1-m\ ; & XB=XF=\frac {1-m}2\\\\
CG=n\ ; & BG=1-n\ ; & YB=YG=\frac {1-n}2\end{array}\right\|\implies$

$\left\{\begin{array}{cc}
XE\parallel BC\ ; & XA=XE=\frac {m+1}2\\\\
YD\parallel BA\ ; & YC=YD=\frac {n+1}2\end{array}\right\|\implies$ $\left\{\begin{array}{cccc}
\frac {AE}{AX}=\frac {EC}{XB}=\frac {AC}{AB} & \implies & \frac {AE}{m+1}=\frac {EC}{1-m}=\frac {\sqrt 2}2\\\\
\frac {CD}{CY}=\frac {DA}{YB}=\frac {AC}{CB} & \implies & \frac {CD}{n+1}=\frac {DA}{1-n}=\frac {\sqrt 2}2\end{array}\right\|$ . Using the power of $A$ w.r.t. $w$ obtain that $AF\cdot AB=AD\cdot AE\iff$

$m=\frac {(1-n)\sqrt 2}2\cdot\frac {(1+m)\sqrt 2}2\iff$ $2m=(1-n)(1+m)\iff$ $\boxed{mn+m+n=1}\ (*)$ . Therefore, $FG^2=BF^2+BG^2=$ $(1-m)^2+(1-n)^2\implies$

$FG^2= 2-2(m+n)+m^2+n^2=$ $(m+n)^2-$ $2(mn+m+n-1)\ \stackrel{(*)}{\implies}\ FG^2=$ $(m+n)^2\implies FG=m+n\implies FG=AF+CG$ .



PP3 (clasa a VII - a). Let $\triangle ABC$ with $A=120^{\circ}$ . Denote the $A$-bisector $AD$ , where $D\in BC$ . Prove that $\frac 1{AD}=\frac 1{AB}+\frac 1{AC}$ .

Proof. Construct the equilateral $\triangle ABT$ , $\triangle BCS$ so that $AB$ separates $T$ , $D$ and $BC$ separates $S$ , $A$ . Thus, $T\in (AC)$ and

$\left|\begin{array}{ccccccc}
\left|\begin{array}{c}
BC=BS\\\\
BT=BA\\\\
\widehat{CBT}\equiv\widehat{SBA}\end{array}\right| & \implies & CBT\stackrel{(s.a.s)}{\equiv}SBA & \implies &  CT=SA & \implies  & \boxed{AB+AC=AS}\\\\
 \left|\begin{array}{c}
\widehat{BAS}\equiv\widehat{DAC}\\\\
\widehat{ASB}\equiv\widehat{ACD}\end{array}\right| & \implies & \triangle ABS\stackrel{(a.a)}{\sim}\triangle ADC & \implies & \frac {AB}{AS}=\frac {AD}{AC} & \implies &\boxed{AB\cdot AC=AD\cdot AS}\end{array}\right\|$ .

In conclusion, $AB\cdot AC=AD\cdot AS\implies$ $AB\cdot AC=AD\cdot (AC+AB)\implies$ $\frac 1{AD}=\frac 1{AB}+\frac 1{AC}$ .

Remarks (clasa a IX - a).

$\blacktriangleright$ Apply the generalized Pythagoras' theorem to the side $[BC]$ of $\triangle ABC\ :\ \boxed{a^2=b^2+c^2+bc}$ .

$\blacktriangleright$ Apply the
Pompeiu's theorem (a particular case of the Ptolemy's theorem) to the cyclical quadrilateral $ABSC\ : \boxed{AS=AB+AC}$ .

$\blacktriangleright$ Using the identity $AD=\frac {2bc\cos\frac A2}{b+c}$ obtain that $AD=\frac {bc}{b+c}$ , i.e. $\frac 1{AD}=\frac 1{AB}+\frac 1{AC}$ .



PP4. Let An isosceles trapezoid with the incircle $w=C(I,r)$ which touches it at $\left\{\begin{array}{cc}
M\in AB\ ; &N\in BC\\\\
L\in CD\ ; & T\in DA\end{array}\right\|$ . Prove that $[LAN]=[LBT]=\frac 34\cdot [MNLT]$ .

Proof 1. Let $\left\{\begin{array}{c}
S\in ML\cap NT\\\
P\in AN\cap BT\\\
Q\in DN\cap CT\end{array}\right\|$ . Is well-known that $\{P,Q\}\subset MN$ and $MP=PS=SQ=QL$ . Thus, $S\in AC\cap BD$ (Brianchon's theorem) and

$\left\{\begin{array}{c}
BM=BN=CN=CL=x\\\\
AM=AT=DT=DL=y\end{array}\right\|\implies$ $r=\sqrt{xy}$ and $\odot\begin{array}{ccccccccc}
 \nearrow & [LBT] & = & [LBP]+[LPT] & = & [LNP]+[LPT] & = & [LNPT] & \searrow\\\\
 \searrow & [LAN] & = & [LAP]+[LPN] & = & [LTP]+[LPN] & = & [LNPT] & \nearrow\end{array}\odot$ $\implies$

$[LBT]=[LAN]=[LNPT]=$ $\frac 12\cdot PL\cdot NT=$ $\cdot \frac 12\cdot \frac 34\cdot ML\cdot NT=\frac 34\cdot [MNLT]$ .

Proof 2. I"ll apply the well-known property: if $d_1\parallel d_2\parallel d_3$ , where $d_2$ is between $d_1\ ,\  d_3$ and $\{A,B\}\subset d_2$ , then for any $X\in d_1$ and for any $Y\in d_3$ we have

$[XAYB]=\frac 12\cdot AB\cdot \delta$ (constant), where $\delta$ is the distance between $d_1$ , $d_3$ . Therefore, $[NAL]=[TBL]=\frac 12\cdot PL\cdot NT=\frac 12\cdot \frac 34\cdot ML\cdot NT=\frac 34\cdot [MNLT]$ .

Remark. Consider an trapezoid $ABCD$ with $AD\parallel BC$ and $I\in AC\cap BD$ . Suppose w.l.o.g. $AD>BC$ and denote $\left\{\begin{array}{ccc}
M\in (AB)\ ; & N\in (CD)\\\\
X\in (AB)\ ; & Y\in (CD)\\\\
U\in (AC)\ ; & V\in (BD)\end{array}\right\|$ so that $I\in MN\ ,$

$\{U,V\}\subset XY$ and $MN\parallel UV\parallel AD$ . Let $[ABCD]=S$ and $\frac {XA}{XB}=m$ . Prove easily that the following properties: $[AIB]=[CID]\le\frac S4\ ;\ [BIC]\cdot [AID]=$ $[AIB]^2\ ;$

$XY=$ $\frac {AD+m\cdot BC}{1+m}\ ;\ XU=YV=\frac {AD-m\cdot BC}{1+m}\ ;\ IM=IN$ and $\frac 1{IM}=\frac 1{AD}+\frac 1{BC}$ , i.e. $MN$ is the harmonical mean between $AD$ and $BC$ .



PP5. Let line $d$ , points $\{A,B,C,D\}\subset d$ in this order so that $BA=CD$ and point $P\not\in d$ so that $\widehat{APB}\equiv\widehat{CPD}$ . Prove that $PA=PD\ ,\ PB=PC$ .

Proof 1. Apply directy Steiner's theorem, where $PB$ , $PC$ are isogonals in $\widehat{APD}$ and will obtain $PA = PD$. Let projection $T$ of $P$ on $AD$ . Thus,

$PA = PD\implies$ $TA = TD\implies$ $TB = TC\implies PB = PC$. Otherwise, can pass through the proof of the Steiner's theorem. In this case

construct parallelogram $PAQD$ and $R\in PB\cap AQ$ , $S\in PC\cap DQ$ . Thus, $\frac {BA}{BD}=\frac {RA}{PD}\ ,\ \frac {CA}{CD}=\frac {PA}{SD}$ and $\triangle PAR\sim \triangle PDS \implies$

$\frac {RA}{SD}=\frac {PA}{PD}$ . In conclusion, $AB = CD$ and $CA = BD\implies$ $1=\frac {BA}{BD}\cdot\frac {CA}{CD}=$ $\frac {RA}{PD}\cdot\frac {PA}{SD}=$ $\frac {RA}{SD}\cdot\frac {PA}{PD}= \left(\frac {PA}{PD}\right)^2=$ $PA = PD$ a.s.o.

Proof 2. $PB\ ,\ PC$ cut again circumcircle of $\triangle APD$ in $X\ ,\ Y$ . Thus, $\left\{\begin{array}{ccc}
\widehat{APX}\equiv\widehat{DPY} & \implies & AX=DY\\\\
\widehat{APY}\equiv\widehat{DPX} & \implies & \widehat{CDY}\equiv\widehat{BAX}\end{array}\right\|\ \stackrel{(BA=CD)}{\implies}$

$\triangle$ $BAX\ \stackrel{(s.a.s)}{\equiv}\ \triangle CDY\implies\left\{\begin{array}{c}
PA=PD\\\\
PB=PC\end{array}\right\|$ .

Proof 3. Let $m\left(\widehat{APB}\right)=m\left(\widehat{CPD}\right)=x$ and $m\left(\widehat{BPC}\right)=y$ . Thus, $\left\{\begin{array}{c}
\frac {BA}{BD}=\frac {PA}{PD}\cdot\frac {\sin x}{\sin (x+y)}\\\\
\frac {CA}{CD}=\frac {PA}{PD}\cdot\frac {\sin (x+y)}{\sin x}\end{array}\right\|\ \bigodot\ \implies$

$\frac {BA}{BD}$ $\cdot \frac {CA}{CD}=$ $\frac {PA^2}{PD^2}\ \begin{array}{ccc}
 \nearrow & (AB=CD) & \searrow\\\\
\implies & \implies & \implies\\\\
\searrow & (AC=BD) & \nearrow\end{array}\ 1=$ $\frac {PA^2}{PD^2}\implies PA=PD$ .

Proof 4. I"use same notations. Thus, $\left\{\begin{array}{c}
\frac {BA}{BC}=\frac {PA}{PC}\cdot\frac {\sin x}{\sin y}\\\\
\frac {CB}{CD}=\frac {PB}{PD}\cdot\frac {\sin y}{\sin x}\end{array}\right\|\ \bigodot\ \implies\ \frac {PA}{PC}$ $\cdot \frac {PB}{PD}=1\implies$ $\frac {PA}{PC}=\frac {PD}{PB}\ \stackrel{(s.a.s)}{\implies}$

$\triangle APC\sim\triangle DPB\implies A=D\ ,\ C=B\implies$ $PA=PD\ ,\ PB=PC$.

Proof 5. Denote $m\left(\widehat{PBD}\right)=u$ and $m\left(\widehat{PCA}\right)=v$ . Therefore, $\frac {\sin D}{\sin A}=$ $\frac {PA}{PD}=$ $\frac {PA}{AB}\cdot \frac {CD}{PD}=$ $\frac {\sin u}{\sin x}\cdot\frac {\sin x}{\sin v}$ $\implies$ $\frac {\sin D}{\sin A}=$ $\frac {\sin u}{\sin v}$ . In conclusion,

$\sin A\sin (A+x)=\sin D\sin (D+x)$ $\implies$ $\cos x-\cos (2A+x)=$ $\cos x-\cos (2D+x)\implies$ $A=D\implies PA=PD$ and $PB=PC$ .



PP6. Let semicircle $w=\mathbb S(O,a)$ with diameter $[AB]$ and a rectangle $ABCD$ so that $CD$ is tangent to $w$ .

For $P\in (BC)$ denote $\{M,N\}=DP\cap w$ such that $M\in (DN)$ . Suppose that distancies of $(M,N,P)$

to $AB$ is $(m,n,p)$ respectively and $OM\perp ON$ . Prove that $\frac a2=\frac m{\sqrt 3}=\frac n1$ . In particular, $m^2+n^2=a^2$ .


Proof. Denote the projections $(U,V)$ of $(M,N)$ respectively on the line $AB$ . Thus, $MU=m$ and $NV=n$ . Prove easily that $OM=ON=a\implies$ $\left\{\begin{array}{c}
OU=\sqrt{a^2-m^2}\\\\
OV=\sqrt{a^2-n^2}\end{array}\right\|$ and $OM\perp ON\iff$ $\triangle OMU\sim\triangle NOV\iff$ $\frac {MU}{OV}=\frac {OU}{NV}\iff$ $\frac m{\sqrt{a^2-n^2}}=\frac {\sqrt{a^2-m^2}}n\iff$ $\sqrt {\left(a^2-m^2\right)\left(a^2-n^2\right)}=mn\iff$ $a^4-a^2\left(m^2+n^2\right)+m^2n^2=m^2n^2\iff$ $\boxed{m^2+n^2=a^2}\ (*)$ . In this case $\left\{\begin{array}{cc}
AU=a-n\ ; & UO=n\\\\
BV=a-m\ ; & VO=m\end{array}\right\|$ and prove easily that $\frac {m+n}{a+m}=$ $\frac {m-n}{a-n}\implies $ $a=2n\ \stackrel{(*)}{\implies}\  \frac a2=$ $\frac m{\sqrt 3}=\frac n1$ and $p=\frac {a(a+n-m)}{m+n}\implies p=a\sqrt3\left(2-\sqrt 3\right)$ .

An easy extension. Let the semicircle $w=\mathbb S(O,a)$ with the diameter $[AB]$ . Construct the rectangle $ABCD$ so that $CD$ is tangent to $w$ .

For $P\in (BC)$ denote $\{M,N\}=DP\cap w$ so that $M\in (DN)$ . Suppose that the distancies of $(M,N,P)$ to $AB$ is $(m,n,p)$ respectively.

Denote $\left\{\begin{array}{c}
m\left(\widehat{CDP}\right)=\phi\\\\
m\left(\widehat{MON}\right)=\psi\end{array}\right\|$ . Prove that $\boxed{\begin{array}{c}
2\sin 2\phi +\cos\psi =1\\\\
p=a(1-2\tan\phi )\end{array}}\ \ \wedge\ \ \boxed{\begin{array}{c}
m^2+n^2=a^2\sin^2\psi+2mn\cos \psi\\\\
m-n=2a\sin\phi\sqrt{\sin2\phi}\end{array}}$ .


Proof. $OM=ON=a$ . Let midpoint $T$ of $[CD]$ and projection $R$ of $O$ on $DP$ . Thus, polygon $ADTRO$ is inscribed in circle with diameter $[OD]\implies$ $m\left(\widehat{ROT}\right)=\phi$ . Since

$OR=OD\sin \widehat{ODR}=$ $a\sqrt 2\sin\left(45^{\circ}-\phi\right)$ obtain $OR=a(\cos\phi -\sin\phi )\implies$ $MR^2=OM^2-OR^2=a^2\left[1-(\cos\phi -\sin\phi )^2\right]=a^2\sin2\phi\implies$

$MR=a\sqrt{\sin 2\phi}\implies$ $a\sin\frac {\psi}2=a\sqrt{\sin 2\phi}\implies$ $ \sin 2\phi =\sin^2\frac {\psi}2\implies$ $\boxed{2\sin 2\phi +\cos\psi =1}\ (*)$ .Denote the projections $(U,V)$ of $(M,N)$ on $AB$ , i.e. $MU=m$

and $NV=n$ . Thus, $UV^2+(m-n)^2=MN^2\implies$ $\left[\sqrt{a^2-m^2}+\sqrt{a^2-n^2}\right]^2+(m-n)^2=$ $\left(2a\sqrt{\sin2\phi}\right)^2\ \stackrel{(*)}{\implies}\ 2a^2-$ $2mn+2\sqrt{\left(a^2-m^2\right)\left(a^2-n^2\right)}=$

$4a^2\cdot \frac {1-\cos\psi}2\implies$ $\sqrt{\left(a^2-m^2\right)\left(a^2-n^2\right)}=mn-a^2\cos\psi\implies$ $\left(a^2-m^2\right)\left(a^2-n^2\right)=\left(mn-a^2\cos\psi\right)^2\implies$ $a^2-\left(m^2+n^2\right)=a^2\cos^2\psi -2mn\cos\psi\implies$

$\boxed{m^2+n^2=a^2\sin^2\psi+2mn\cos \psi}$ . Let projection $S$ of $N$ on the line $MU$ . Thus,

$\odot\begin{array}{ccccccc}
\nearrow & \sin\widehat{SNM}=\frac {MS}{MN} & \iff & \sin\phi =\frac {m-n}{2a\sqrt{\sin 2\phi}} & \iff & \boxed{m-n=2a\sin\phi\sqrt{\sin 2\phi }} & \searrow\\\\
\searrow & \tan\widehat{CDP}=\frac {CP}{CD} & \implies & \tan\phi =\frac {a-p}{2a} & \implies & \boxed{p=a(1-2\tan\phi )} & \nearrow\end{array}\odot$

Show easily that $0<\phi\le \arctan\frac 12$ and for $\tan\phi =\frac 12$ get $\tan\widehat {MOA}=\frac 43\implies\psi =\pi -\arctan \frac 43$ .



PP7. Let $ABCD$ be a square with $AB=1$ and let $w=\mathbb C(A,1)$ be a circle. For a mobile point $M\in \overarc[]{BD}$ denote $N\in AM\cap BD$ .

Find the position of $M$ so that $\widehat{ANB}\equiv\widehat {BCM}$ , more exactly ascertain the common value of the equal angles.


Proof 1. Denote $\left\{\begin{array}{ccc}
m\left(\widehat{BCM}\right) & = & x\\\\
m\left(\widehat{BAM}\right) & = & 2y\end{array}\right\|$ . Observe that $\boxed{45^{\circ}<x\ ;\ x+2y=135^{\circ}}\ (*)$ , $AM=AB=1$ and $BM=2\sin y$ . Apply the teorem of Sines in

$\triangle BCM\ :\frac {BM}{\sin \widehat{BCM}}=$ $\frac {BC}{\sin\widehat{BMC}}$ $\iff$ $\frac {2\sin y}{\sin x}=\frac 1{\sin (x+y)}\iff$ $\sin x=2\sin y\sin (x+y)\iff$ $\sin x=\cos x-\cos (x+2y)\ \stackrel{(*)}{\iff}$

$0<\sin x-\cos x=\frac {\sqrt 2}{2}\iff$ $(\sin x-\cos x)^2=\frac 12\iff$ $1-\sin 2x=\frac 12\iff$ $\sin 2x=\frac 12\iff$ $\boxed{\ x=75^{\circ}\ }$ .

Proof 2. Since $\widehat{DNM}\equiv\widehat{ANB}\equiv \widehat{BCM}\implies$ $\widehat{DNM}\equiv\widehat{BCM}$ obtain that $BCMN$ is cylically $\implies$ $\widehat{CMB}\equiv\widehat{CNB}\equiv$ $\widehat{ANB}\equiv\widehat{BCM}\implies$

$\widehat{CMB}\equiv\widehat{BCM}\implies$ $BM=BC=AB=AM\implies$ $ABM$ is equilateral $\implies$ $m\left(\widehat{CBM}\right)=30^{\circ}\implies$ $x=75^{\circ}$ .



PP8. Let a rectangle $ABCD$ with $AB=4r$ and circles $\alpha =\mathbb C(A,2r)\ ,\ \beta =\mathbb C(B,2r)\ ,\ \left\{\begin{array}{ccccc}
 E\in (CD) & , & DE=r & ; & \delta =\mathbb C(E,r)\\\\
F\in (CD) & , & CF=r & ; & \gamma =\mathbb C(F,r)\end{array}\right\|$ so that $\gamma$ is exterior

tangent to $\beta$ and the circle $\delta$ is exterior tangent to $\alpha$ . Denote $\iota =\mathbb C(I,x $ which belongs to inside of $ABCD$ and which is exterior tangent to $\left\{\alpha ,\beta ,\gamma ,\delta\right\}$ . Prove that $7x=4r$ .


Proof. Let $AD=u$ and $\left\{\begin{array}{ccccc}
V\in (CD) & , & DV=2r & ; & IV=v\\\\
W\in (CD) & , & AW=2r & ; & IW=w\end{array}\right\|$ . Thus, $v+w=u$ and

$\left\{\begin{array}{cccccc}
\triangle ADE\ : & AE^2=DA^2+DE^2 & \implies & (2r+r)^2=u^2+r^2 & \implies & \boxed{u=2r\sqrt 2}\\\\
\triangle IEV\ : & EI^2=VE^2+VI^2 & \implies & (r+x)^2=r^2+v^2 & \implies & v=\sqrt{x^2+2rx}\\\\
\triangle IAW\ : & AI^2=WA^2+WI^2 & \implies & (2r+x)^2=4r^2+w^2 & \implies & w=\sqrt{x^2+4rx}\end{array}\right\|$ In conclusion,

$v+w=u\iff$ $\sqrt{x^2+2rx}+\sqrt{x^2+4rx}=2r\sqrt 2\iff$ $\left(x^2+2rx\right)+\left(x^2+4rx\right)+2\sqrt{\left(x^2+2rx\right)\left(x^2+4rx\right)}=8r^2\iff$ $\sqrt{\left(x^2+2rx\right)\left(x^2+4rx\right)}=$

$4r^2-x^2-3rx=$ $-(x-r)(x+4r)\ge 0\iff$ $x\le r$ and $\left(x^2+2rx\right)\left(x^2+4rx\right)=$ $\left(4r^2-x^2-3rx\right)^2\iff$ $\underline{x}^4+\underline{\underline{6rx}}^3+\underline{\underline{\underline{8r^2x}}}^2=$ $16r^4+\underline{x}^4+\underline{\underline{\underline{9r^2x}}}^2-$

$\underline{\underline{\underline{8r^2x}}}^2-24r^3x+\underline{\underline{6rx}}^3\iff$ $7r^2x^2+24r^3x-16r^4=0\iff$ $7x^2+24rx-16r^2=0\iff$ $(7x-4r)(x+4r)=0\iff$ $7x=4r$ .


Extension. Let a rectangle $ABCD$ with $AB=2a$ and $AD=b$ so that $a<b$ . Denote the midpoints $V$ , $W$ of $[CD]$ , $[AB]$ respectively and $E\in (VD)$ , $F\in (VC)$ so that

$VE=VF=r\le\frac a2$ , i.e. $DE=CF=a-r\ge r$ . Denote $\alpha =\mathbb C(A,a)\ ,\ \beta =\mathbb C(B,a)\ ,\ \delta =\mathbb C(E,r)\ ,\ \gamma =\mathbb C(F,r)$ so that $\gamma$ is exterior tangent to $\beta$ and $\delta$ is exterior

tangent to $\alpha$ . Let $\iota =\mathbb C(I,x)$ which belongs to inside of $ABCD$ and which is exterior tangent to $\left\{\alpha ,\beta ,\gamma ,\delta\right\}$ . Prove that $\boxed{\frac 14\le \frac ra\le\frac 12}$ and $\boxed{x=\frac {2ar}{(a+r)+2\sqrt {2ar}}}$ .


Proof. Let $\left\{\begin{array}{c}
IV=v\\\\
IW=w\end{array}\right\|$ . Thus, $v+w=b$ and $\left\{\begin{array}{cccccc}
\triangle ADE\ : & AE^2=DA^2+DE^2 & \implies & (a+r)^2=b^2+(a-r)^2 & \implies & \boxed{b^2=4ar}\ge a^2\\\\
\triangle IEV\ : & EI^2=VE^2+VI^2 & \implies & (r+x)^2=r^2+v^2 & \implies & v=\sqrt{x^2+2rx}\\\\
\triangle IAW\ : & AI^2=WA^2+WI^2 & \implies & (a+x)^2=a^2+w^2 & \implies & w=\sqrt{x^2+2ax}\end{array}\right\|$ . In conclusion, $v+w=b\iff$ $\sqrt{x^2+2rx}+\sqrt{x^2+2ax}=2\sqrt{ar}\iff$ $\left(x^2+2rx\right)+\left(x^2+2ax\right)+2\sqrt{\left(x^2+2rx\right)\left(x^2+2ax\right)}=4ar\iff$ $\sqrt{\left(x^2+2rx\right)\left(x^2+2ax\right)}=$ $-x^2-(a+r)x+2ar\ge 0\iff$ $\left(x^2+2rx\right)\left(x^2+2ax\right)=$ $\left[x^2+(a+r)x-2ar\right]^2\iff$ $\left[6ar-\left(a^2+r^2\right)\right]x^2+4ar(a+r)x-4a^2r^2=0\iff$ $x=\frac {-2ar(a+r)+4ar\sqrt {2ar}}{6ar-\left(a^2+r^2\right)}=$ $\frac {2ar\left[2\sqrt{2ar}-(a+r)\right]}{6ar-\left(a^2+r^2\right)}\implies$ $\boxed{\ x=\frac {2ar}{(a+r)+2\sqrt {2ar}}\ }$ . Observe that $\left\{\begin{array}{ccc}
2r\le a & \implies & \frac ra\le \frac 12\\\\
b^2=4ar\ge a^2 & \implies & \frac ra\ge \frac 14\\\\
6ar-\left(a^2+r^2\right)>0 & \implies & |a-3r|<2r\sqrt 2\end{array}\right\|\Cap\implies$ $\boxed{\ \frac a4\le r\le \frac a2\ }$ .


PP9. Let $w$ be a semicircle with the diameter $[BC]$ . For a point $T\in w$ with $\overarc[]{BT}<\overarc[]{TC}$ denote the points $A\in TT\cap BC$ and $P\in AT$

such that $CP\perp AT$ . Denote $PT=x\ ,\ TB=y\ ,\ BA=z$ . Prove that $\boxed{y^2=2rx\sqrt{\frac {z}{z+2r}}\ \ ;\ \ 2r=\frac {z\left(2x^2-y^2\right)}{y^2-x^2}\ \ ;\ \ y^2=\frac {z\left(2x^2-y^2\right)}{\sqrt{y^2-x^2}}}$ .


Proof. $\triangle BCT\sim\triangle TGP\iff$ $\frac {BC}{TC}=\frac {BT}{TP}\iff$ $\frac {2r}{TC}=\frac {y}{x}\iff$ $\boxed{TC=\frac {2rx}y}\ (*)$ . Apply an well-known relation (prove easily)

$\frac {AB}{AC}=\left(\frac {TB}{TC}\right)^2\ \stackrel{(*)}{\implies}\ \sqrt{\frac z{z+2r}}=\frac y{\frac {2rx}y}\iff$ $\boxed{y^2=2rx\sqrt{\frac {z}{z+2r}}}\ (1)$ . But $TB\perp TC\iff$ $TB^2+TC^2=BC^2\iff$ $y^2+\frac {4r^2x^2}{y^2}=4r^2\iff$

$4r^2\left(y^2-x^2\right)=y^4\iff$ $\boxed{y^2=2r\sqrt{y^2-x^2}}\implies$ $\sqrt{y^2-x^2}=\frac {y^2}{2r}=x\sqrt{\frac z{z+2r}}\implies$ $\boxed{y^2=\frac {z\left(2x^2-y^2\right)}{\sqrt{y^2-x^2}}}\ (2)$ .

Therefore, $x^2z=(z+2r)\left(y^2-x^2\right)\implies$ $z\left(2x^2-y^2\right)=2r\left(y^2-x^2\right)\implies$ $\boxed{2r=\frac {z\left(2x^2-y^2\right)}{y^2-x^2}}\ (3)$ .

Remark.$[CP$ is the bisector of $\widehat{BCP}$ . Thus, $\left\{\begin{array}{cc} 
\triangle ABT\sim\triangle ATC\implies\frac z{AT}=\frac y{TC}=\frac {AT}{z+2r} & \implies\left|\begin{array}{c}
AT^2=z(z+2r)\\\\
\boxed{TC=\frac yz\cdot AT}\end{array}\right|\\\\
\triangle BCT\sim\triangle TCP\implies\frac {2r}{TC}=\frac {CT}{PC}=\frac yx & \implies\left|\begin{array}{c}
\boxed{TC=\frac {2rx}y}\\\\
PC=\frac xy\cdot TC\end{array}\right|\end{array}\right\|$ $\implies$ $AT=\frac {2rxz}{y^2}\implies$ $y^2=2rx\sqrt{\frac {z}{z+2r}}$ a.s.o.



PP10. Let $\triangle ABC$ and $D\in (BC)$ and $E\in (AD)$ so that $\left\{\begin{array}{ccc}
m\left(\widehat{EBA}\right)=x & ; & m\left(\widehat{EBD}\right)=x\\\\
m\left(\widehat{ECA}\right)=2x & ; & m\left(\widehat{ECD}\right)=3x\end{array}\right\|$ . Prove that $AD\perp BC\iff$ $x=10^{\circ}$ .

Proof. Let $m\left(\widehat{ADC}\right)=\phi$ , i.e. $\left\{\begin{array}{ccc}
m\left(\widehat{BAD}\right) & = & \phi -2x\\\\
m\left(\widehat{CAD}\right) & = & \pi -(\phi +5x)\end{array}\right\|$ . Thus, $\left\{\begin{array}{cccc}
\triangle ABD\ : & \frac {EA}{ED}=\frac {BA}{BD}=\frac {\sin\widehat{BDA}}{\sin\widehat{BAD}}=\frac {\sin \phi}{\sin (\phi -2x)} & \implies & \frac {EA}{ED}=\frac {\sin \phi}{\sin (\phi -2x)}\\\\
\triangle ACD\ : & \frac {EA}{ED}=\frac {CA}{CD}\cdot\frac {\sin\widehat{ECA}}{\sin\widehat{ECD}}=\frac {\sin \phi}{\sin (\phi +5x)}\cdot\frac {sin 2x}{\sin 3x} & \implies & \frac {EA}{ED}=\frac {\sin \phi\sin 2x}{\sin(\phi +5x)\sin 3x} \end{array}\right\|$ $\implies$

$\frac {\sin \phi}{\sin (\phi -2x)}=\frac {\sin \phi\sin 2x}{\sin(\phi +5x)\sin 3x}\iff$ $\sin(\phi +5x)\sin 3x=\sin (\phi -2x)\sin 2x\iff$ $\cos (\phi +2x)-\cos (\phi +8x)=\cos (\phi -4x)-\cos\phi \iff$

$\cos\phi +\cos (\phi +2x)=$ $\cos (\phi +8x)+\cos (\phi -4x)\iff$ $\cos\phi +\cos (\phi +2x)=2\cos(\phi +2x)\cos 6x\iff$ $\boxed{\cos\phi =\cos (\phi +2x)(2\cos 6x-1)}$ .

In conclusion, $AD\perp BC\iff$ $\phi =90^{\circ}\iff$ $x=10^{\circ}$ .



PP11. Let $A$-right triangle, the point $D\in (AC)$ and the midpoint $M$ of $[BD]$ so that $\left\{\begin{array}{ccc}
m\left(\widehat{DBA}\right) & = & x\\\
m\left(\widehat{DBC}\right) & = & 2x\\\
m\left(\widehat{MCD}\right) & = & 2x\end{array}\right\|$ . Prove that $x=15^{\circ}$ .

Proof 1. Denote w.l.o.g. $BD=4$ , $AD=m$ and $N$ so that $CN\perp AM$ . Thus, $m\left(\widehat{BAM}\right)=x\implies$ $m\left(\widehat{CAN}\right)=90^{\circ}-x\implies$ $m\left(\widehat{ACN}\right)=m\left(\widehat{MCN}\right)=x\implies$

$CA=CM$ . Therefore, $\triangle DCM\sim\triangle DBC\implies$ $\frac {DC}{DB}=\frac {DM}{DC}=\frac {CM}{BC}\implies$ $\frac {DC}{4}=\frac {2}{DC}=\frac {CM}{BC}\implies$ $DC=2\sqrt 2$ and $MC\sqrt 2=BC$ . In conclusion,

$\triangle ABD\sim\triangle NCA\implies$ $\frac {AD}{NA}=\frac {DB}{AC}\implies$ $m=\frac {4}{m+2\sqrt 2}\implies$ $m^2+2m\sqrt 2-4=0\implies$ $m=\sqrt 6-\sqrt 2\implies$ $\sin x=\frac {AD}{BD}=\frac m4=\frac {\sqrt 6-\sqrt 2}4=$

$\frac {\sqrt2}2\cdot \left(\frac {\sqrt 3}2-\frac 12\right)=$ $\sin\left(45^{\circ}-30^{\circ}\right)\implies$ $\sin x=\sin 15^{\circ}\implies$ $x=15^{\circ}$ .

Proof 2. Apply trigonometric form of Ceva's theorem to $M$ and $\triangle ABC\ :\ \sin\widehat{MCA}$ $\sin\widehat{MAB}\sin\widehat{MBC}=$ $\sin\widehat{MCB}\sin\widehat{MBA}\sin\widehat{MAC}\iff$

$\sin^22x\sin x=\cos 5x\sin x\cos x\iff$ $2\sin x\sin 2x=\cos 5x\iff$ $\cos x-\cos 3x=\cos 5x\iff$ $\cos x=\cos 3x+\cos 5x\iff$

$\cos x=2\cos 4x\cos x\iff$ $\cos 4x=\frac 12$ $\iff$ $4x=60^{\circ}\iff$ $2x=30^{\circ}\iff$ $x=15^{\circ}$ .

Proof 3. $\left\{\begin{array}{c}
m\left(\widehat{CDB}\right)=90^{\circ}+x\\\\
m\left(\widehat{MCB}\right)=90^{\circ}-5x\end{array}\right\|$ . Thus, $\frac {MD}{MB}=\frac {CD}{CB}\cdot\frac {\sin\widehat{MCD}}{\sin\widehat{MCB}}\iff$ $\boxed{\sin^22x=\cos x\cos5x}\iff$ $1-\cos 4x=\cos 4x+\cos 6x\iff$ $\cos 6x+2\cos 4x=1\ \stackrel{(\cos 2x=t)}{\iff}$ $t\left(4t^2-3\right)+2\left(2t^2-1\right)-1=0\iff$ $4t^2(t+1)-3(t+1)=0\iff$ $(t+1)\left(4t^2-3\right)=0\iff$ $t=\frac {\sqrt 3}2\iff$

$\cos 2x=\frac {\sqrt 3}2\iff$ $2x=30^{\circ}\iff$ $x=15^{\circ}$ .



PP12. Let $ABCD$ be a trapezoid, where $AB\parallel CD$ and $AB=a\ ,\ CD=b$ . For two points $M\in (AD)\ ,\ N\in (BC)$ so that $MN\parallel AB$ and $MN=x$ .

Prove that $\boxed{a\cdot NC+b\cdot NB=x\cdot BC}$ . With other words, $\boxed{MA\cdot [BCD]+MD\cdot [BCA]=AD\cdot [BCM]}$ , where $[XYZ]$ is the area of $\triangle XYZ$ .


Proof. Suppose w.l.o.g. $b>a$ and let $U\in (MN)\ ,\ V\in (DC)$ so that $UV\parallel AD$ and $NB=u\ ,\ NC=v$ .

Thus, $\left\{\begin{array}{ccc}
UN & = & x-a\\\
VC & = & b-a\end{array}\right\|$ . Hence $\frac {UN}{VC}=\frac {BN}{BC}\iff$ $\frac {x-a}{b-a}=\frac u{u+v}\iff$ $x=\frac {av+bu}{u+v}$ .


PP13. Let a trapezoid $ABCD$ where $AD\parallel BC\ ,\ AD>BC$ and $(M,N,P,Q)$ are the midpoints of $[AB]\ ,\ [CD]\ ,\ [AC]\ ,\ [BD]$ . Prove that $\frac {BD^2-AC^2}{CD^2-AB^2}=\frac {MN}{PQ}$ .

Proof. Let $X\ ,\ Y$ be projections of $B\ ,\ C$ on $AD$ and $\left\{\begin{array}{cc}
BX=CY=h\ ;\ XY=BC=b\\\\
XA=u\ ,\ YD=v\ ;\ AD=a=u+v+b\end{array}\right\|$ where $u\ne v$ . The relations $\left\{\begin{array}{c}
2\cdot MN=AD+BC=u+v+2b\\\\
2PQ=AD-BC=u+v\end{array}\right\|$

are well-known. So $\left\{\begin{array}{cccc}
BD^2-AC^2=\left[h^2+(b+v)^2\right]-\left[h^2+(b+u)^2\right] & = & (v-u)(v+u+2b)=(v-u)(a+b)\\\\
CD^2-AB^2=\left(h^2+v^2\right)-\left(h^2+u^2\right)=v^2-u^2 & = & (v-u)(v+u)=(v-u)(a-b)\end{array}\right\|$ . In conclusion, $\frac {BD^2-AC^2}{CD^2-AB^2}=\frac {a+b}{a-b}=\frac {MN}{PQ}$ .
This post has been edited 301 times. Last edited by Virgil Nicula, Nov 26, 2015, 3:23 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a