280. Common roots of two polynomial equations.

by Virgil Nicula, May 24, 2011, 2:19 PM

Lemma. If the equations $\left\{\begin{array}{c}
ax^2+bx+c=0\\\\
a'x^2+b'x+c'=0\end{array}\right\|$ have at least a common root $\iff$

$\left|\begin{array}{cc}
a & c\\\
a' & c'\end{array}\right|^2=$ $\left|\begin{array}{cc}
a & b\\\
a' & b'\end{array}\right|\cdot$ $\left|\begin{array}{cc}
b & c\\\
b' & c'\end{array}\right|\ (*)$ and in this case the common root is $x_c=-\frac {\left|\begin{array}{cc}
a & c\\\
a' & c'\end{array}\right|}{\left|\begin{array}{cc}
a & b\\\
a' & b'\end{array}\right|}$ .


Proof 1. I denoted $\left|\begin{array}{cc}
x & y\\\
z & t\end{array}\right|=xt-yz$ . Solve the linear system $\left\{\begin{array}{c}
a\left(x^2\right)+bx=-c\\\\
a'\left(x^2\right)+b'x=-c'\end{array}\right\|$ and

obtain $(x^2)=-\frac {\left|\begin{array}{cc}
b & c\\\
b' & c'\end{array}\right|}{\left|\begin{array}{cc}
a & b\\\
a' & b'\end{array}\right|}$ and $x=-\frac {\left|\begin{array}{cc}
a & c\\\
a' & c'\end{array}\right|}{\left|\begin{array}{cc}
a & b\\\
a' & b'\end{array}\right|}$ . In conclusion, $(x^2)=(x)^2\iff (*)$ .

Proof 2. Let the equations $\left\{\begin{array}{c}
f(x)=a_1x^2+b_1x+c_1=0\begin{array}{c}
\nearrow\\\
\searrow\end{array}\begin{array}{c}
x_1\\\\
x_2\end{array}\\\\
g(x)=a_2x^2+b_2x+c_2=0\begin{array}{c}
\nearrow\\\
\searrow\end{array}\begin{array}{c}
y_1\\\\
y_2\end{array}\end{array}\right\|$ , where $\left\{\begin{array}{c}
S=y_1+y_2=-\frac {b_2}{a_2}\\\\
P=y_1y_2=\frac {c_2}{a_2}\end{array}\right\|$ .

These equations has at least a common root $\iff f\left(y_1\right)\cdot f\left(y_2\right)=0\iff$

$\left(a_1y_1^2+b_1y_1+c_1\right)\left(a_1y_2^2+b_1y_2+c_1\right)=0\iff$

$a_1^2P^2+a_1b_1PS+a_1c_1\left(S^2-2P\right)+b_1^2P+b_1c_1S+c_1^2=0\iff$

$a_1^2c_2^2-a_1b_1b_2c_2+a_1c_1\left(b_2^2-2a_2c_2\right)+b_1^2a_2c_2-b_1c_1a_2b_2+c_1^2a_2^2=0\iff$

$\left(a_1c_2-a_2c_1\right)^2=\left(a_1b_2-a_2b_1\right)\cdot \left(b_1c_2-b_2c_1\right)\iff$ $\left|\begin{array}{cc}
a_1 & c_1\\\
a_2 & c_2\end{array}\right|=\left|\begin{array}{cc}
a_1 & b_1\\\
a_2 & b_2\end{array}\right|\cdot\left|\begin{array}{cc}
b_1 & c_1\\\
b_2 & c_2\end{array}\right|$ .



PP1. If $x_1$ and $x_2$ are the roots of $X^2 + X + 4 = 0$ , then find the equation with roots $y_k=x_k+\frac {1}{x_k}$ , $k\in\overline{1,2}$ .

Proof. Denote $y=x+\frac 1x$ . The equations $\left\{\begin{array}{c}
x^2-yx+1=0\\\\
x^2+x+4=0\end{array}\right\|$ have at least a common root $\iff$

$\left|\begin{array}{cc}
1 & 1\\\
1 & 4\end{array}\right|^2=\left|\begin{array}{cc}
1 & -y\\\
1 & 1\end{array}\right|\cdot\left|\begin{array}{cc}
-y & 1\\\
1 & 4\end{array}\right|$ , i.e. the equation in $y$ is $4y^2+5y+10=0$ .



PP2. Ascertain $m\in\mathbb R$ so that the equation $(1+2i)\cdot z^2+(2m-i)\cdot z-(3+mi)=0$ has at least a real root and in this case solve the given equation.

Proof. Our equation is equivalently with $\left(z^2+2mz-3\right)+\left(2z^2-z-m\right)\cdot i=0\ (*)$ . If this equation has at least a real root, then exists $z\in\mathbb R$ so that the

equations with real coefficients $\left\{\begin{array}{c}
z^2+2mz-3=0\\\\
2z^2-z-m=0\end{array}\right\|$ have at least a common real root. Apply upper lemma : $\left|\begin{array}{cc}
1 & -3\\\
2 & -m\end{array}\right|^2=\left|\begin{array}{cc}
1 & 2m\\\
2 & -1\end{array}\right|\cdot\left|\begin{array}{cc}
2m & -3\\\
-1 & -m\end{array}\right|$ ,

i.e. the equation in $m\in\mathbb R$ is $(m-6)^2=(4m+1)\left(2m^2+3\right)\iff$ $8m^3+m^2+24m-33=0$ $\iff$ $(m-1)(8m^2+9m+33)=0$

from where obtain $m=1$ . The initial equation becomes $(z-1)\cdot[(1+2i)\cdot z+(3+i)]=0$ which has the roots $z_1=1$ and $z_2=-1+i$ .

Another examples. Ascertain $m\in\mathbb R$ so that the following equations have at least a real root and in this case solve these:

$1\blacktriangleright\ z^3+(3+i)\cdot z^2-3z-(m+i)=0\ .$

$2\blacktriangleright\ (2+i)\cdot z^2+2(m+i)\cdot z-2(4+mi)=0\ .$

$3\blacktriangleright\ (3+i)\cdot z^2+(m-i)\cdot z-2(11+i)=0\ .$



PP3. Ascertain $\{m,n\}\subset\mathbb Z$ so that the equations $\left\{\begin{array}{c}
x^4-2x^3-x+m=0\\\\
x^3-x^2-4x+2n=0\end{array}\right\|$ have at least two common roots.

Proof. $$\left\|\begin{array}{c}
x^4-2x^3-x+m=0\\\\
x^3-x^2-4x+2n=0\end{array}\right|\left|\begin{array}{cc}
\odot & -1\\\
\odot & x\end{array}\right\|\ \bigoplus$$
$$\left\|\begin{array}{c}
x^3-4x^2+(2n+1)x-m=0\\\\
x^3-x^2-4x+2n=0\end{array}\right|\left|\begin{array}{cc}
\odot & -1\\\
\odot & 1\end{array}\right\|\ \bigoplus$$
$$\left\|\begin{array}{c}
3x^2-(2n+5)x+m+2n=0\\\\
x^3-x^2-4x+2n=0\end{array}\right|\left|\begin{array}{cc}
\odot & -x\\\
\odot & 3\end{array}\right\|\ \bigoplus$$
$$\left\|\begin{array}{c}
(2n+2)x^2-(m+2n+12)x+6n=0\\\\
3x^2-(2n+5)x+(m+2n)=0\end{array}\right\|$$
\[\mathrm{Upper\ equations\ have\ two\ common\ roots}\]
\[\frac {2n+2}{3}=\frac {m+2n+12}{2n+5}=\frac {6n}{m+2n}\]
\[\begin{array}{c}
(2n+2)(2n+5)=3(m+2n+12)\\\\
(2n+2)(m+2n)=18n\end{array}\]
\[\begin{array}{c}
4\cdot \underline n^2+8\cdot \underline n-(3m+26)=0\\\\
4\cdot \underline n^2+2(m-7)\cdot \underline n+2m=0\end{array}\ (*)\]
\[\mathrm{Upper\ equations\ have\ at\ least\ a\ common\ root\ in\ variable\ \underline n}\ :\]
\[n_{com}=-\frac {\left|\begin{array}{cc}
4 & -(3m+26)\\\
4 & 2m\end{array}\right|}{\left|\begin{array}{cc}
4 & 8\\\
4 & 2(m-7)\end{array}\right|}=-\frac {5m+26}{2(m-11)}\]
\[\left|\begin{array}{cc}
4 & -(3m+26)\\\
4 & 2m\end{array}\right|^2=\left|\begin{array}{cc}
4 & 8\\\
4 & 2(m-7)\end{array}\right|\cdot\left|\begin{array}{cc}
8 & -(3m+26)\\\
2(m-7) & 2m\end{array}\right|\]
\[\left|\begin{array}{cc}
1 & -(3m+26)\\\
1 & 2m\end{array}\right|^2=\left|\begin{array}{cc}
1 & 4\\\
1 & m-7\end{array}\right|\cdot\left|\begin{array}{cc}
4 & -(3m+26)\\\
m-7 & 2m\end{array}\right|\]
\[(5m+26)^2=(m-11)(3m^2+13m-182)\]
\[m^3-15m^2-195m+432=0\]
\[(m-2)(m^2-13m-221)=0\]
\[\boxed{\ m=n=2\ }\]
Otherwise, can eliminate $m$ between the equations from $(*)$ and obtain $4n^3+18n^2-39n-26=0$ , i.e. $(n-2)(4n^2+26n+13)=0$ a.s.o.

In this case $\left\{\begin{array}{ccc}
x^4-2x^3-x+2 & = & (x^2-3x+2)(x^2+x+1)\\\\
x^3-x^2-4x+4 & = & (x^2-3x+2)(x+2)\end{array}\right\|$ , i.e. the common roots are $x_1=1$ and $x_2=2$ .


PP4. The real numbers $x,\ y$ satisfy $xy\ne 0$ , $x+\frac{1}{x}=1$ and $ xy+\frac{1}{xy}=\sqrt{2}$ . Find the value of $t=y+\frac{1}{y}$ .

Proof 1. $\left\{\begin{array}{c}
x+\frac{1}{x}=1\\\\
xy+\frac{1}{xy}=\sqrt{2}\end{array}\right\|$ $\iff$ $\left\{\begin{array}{c}
1\cdot \underline x^2 -1\cdot \underline x  +1=0\\\\
y^2\cdot \underline x^2 -y\sqrt 2\cdot \underline x  +1=0\end{array}\right\|\iff$ $\left|\begin{array}{cc}
1 & 1\\\\
y^2 & 1\end{array}\right|^2=$ $\left|\begin{array}{cc}
1 & -1\\\\
y^2 & -y\sqrt 2\end{array}\right|\cdot \left|\begin{array}{cc}
-1 & 1\\\\
-y\sqrt 2 & 1\end{array}\right|$ $\iff$

$y^4-y^3\sqrt 2+y^2-y\sqrt 2+1=0$ $\iff$ $t^2-t\sqrt 2-1=0$ . In conclusion $t=y+\frac 1y\in\left\{\frac {\sqrt 2\pm\sqrt 6}{2}\right\}$ .

Remark. $2=\left(xy+\frac {1}{xy}\right)^2\implies$ $x^2y^2+\frac {1}{x^2y^2}=0\implies$ $(xy)^4=-1\implies$ $xy\in\left\{\pm\frac {\sqrt 2}{2}\cdot (1\pm i)\right\}$ .

Proof 2. For $\left\{\begin{array}{c}
x+\frac 1x=a\ ;\ y+\frac 1y=b\\\\
z+\frac 1z=c\ ;\ xyz=1\end{array}\right\|$ I"ll show that $a^2+b^2+c^2-abc=4$ . Indeed, $xyz=1$ $\implies$ $\frac {x}{yz}+\frac {yz}{x}=$ $x^2+\frac {1}{x^2}$ and $\sum a^2-abc=$

$\sum\left(x^2+\frac {1}{x^2}\right)+6-$ $\sum\left(\frac {x}{yz}+\frac {yz}{x}\right)-2=4$ . Particular case. $a=1$ and $c=\sqrt 2$ $\implies$ $b^2-b\sqrt 2-1=0\implies$ $b=y+\frac 1y\in\left\{\frac {\sqrt 2\pm\sqrt 6}{2}\right\}$ .



PP5. If $ax^5 + bx^2 + c$ has a factor of the form $x^2 + px + 1$ , then prove that $(a^2 -c^2)(a^2-c^2+bc) = a^2b^2$ .

Proof. If $a=0$ we have $bx^2+c$ has a factor $f\equiv x^2+px+1$ , i.e. $p=0$ , $b=c$ and the statement is true. Now let's see the

case when $a\neq 0$ . Thus, $ax^5 + bx^2 + c \stackrel{f}{\equiv} ax(px+1)^2-b(px+1)+c\stackrel{f}{\equiv}$ $ax\left[-p^2(px+1)+2px+1\right]-b(px+1)+c\stackrel{f}{\equiv}$

$ap^3(px+1)-ap^2x-2ap(px+1)+ax-bpx-b+c\stackrel{f}{\equiv}$ $\left(ap^4-3ap^2-bp+a\right)\cdot x+\left(ap^3-2ap-b+c\right)$ . Therefore,

$ax^5+bx^2+c$ has a factor of the form $x^2+px+1\iff$ $\left(ap^4-3ap^2-bp+a\right)\cdot x+\left(ap^3-2ap-b+c\right)\stackrel{f}{\equiv}0\iff$ the equations

$\left\{\begin{array}{c}
ap^4-3ap^2-bp+a=0\\\\
ap^3-2ap-b+c=0\end{array}\right\|$ in the variable $p$ have at least a common root, i.e. $\boxed{\begin{array}{ccc}
ap^4-3ap^2-bp+a=0 & \odot & (-1)\\\\
ap^3-2ap-b+c=0 & \odot & p\\\
============== & & ===\\\
ap^2+cp-a=0 & \odot & p\\\\
ap^3-2ap-b+c=0 & \odot & (-1)\\\
============== & & ===\\\
cp^2+ap+(b-c)=0 & & \\\\
ap^2+cp-a=0 & &\end{array}}$ . In conclusion,

$\left|\begin{array}{cc}
c & a\\\
a & c\end{array}\right|\cdot\left|\begin{array}{cc}
a & b-c\\\
c & -a\end{array}\right|=$ $\left|\begin{array}{cc}
c & b-c\\\
a & -a\end{array}\right|^2\ \iff$ $\boxed{\left(a^2-c^2\right)\cdot\left(a^2-c^2+bc\right)=a^2b^2}$ and $p=-\frac {\left|\begin{array}{cc}
c & b-c\\\
a & -a\end{array}\right|}{\left|\begin{array}{cc}
c & a\\\
a & c\end{array}\right|}$ , i.e. $\boxed{p=\frac {ab}{c^2-a^2}}$ .

Example. For $a=\sqrt 2$ , $b=c=1$ and $p=-\sqrt 2$ obtain that $x^5\sqrt 2+x^2+1=\left(x^2-x\sqrt 2+1\right)\left(x^3\sqrt 2+2x^2+x\sqrt 2+1\right)$ .



PP6. Find the relation between $a\ne b$ such that the equations $\left\{\begin{array}{c}
(1+a)x^2+2bx+1-a=0\\\\
(1+b)x^2+2ax+1-b=0\end{array}\right\|$ have at least a common root.

Proof. $\left|\begin{array}{cc}
1+a & 1-a\\\\
1+b & 1-b\end{array}\right|^2=\left|\begin{array}{cc}
1+a & 2b\\\\
1+b & 2a\end{array}\right|\cdot \left|\begin{array}{cc}
2b & 1-a\\\\
2a & 1-b\end{array}\right|$ $\iff (a+b+1)(a+b-1)=1\iff$ $a+b\in\left\{\pm\sqrt 2\right\}$ .


PP7. Let $a < b < c<d$ be real numbers so that $abc\ne 0$ . Show that the equations

$(*) \left\{\begin{array}{c}
ax^2 + (b+d)x + c = 0\\\\
bx^2 + (c+d)x + a = 0\\\\
cx^2 + (a+d)x + b = 0\end{array}\right\|$ have at least a common root if and only if $a + b+c+d = 0\ \ \vee\ \ a=b=c$ .


Proof. The equations from $(*)$ have at least a common root (denote it by $r$) $\iff$ the homogeneous system $\left(\begin{array}{ccc}
a & b+d & c\\\\
b & c+d & a\\\\
c & a+d & b\end{array}\right|$ $\left|\begin{array}{c}
0\\\\
0\\\\
0\end{array}\right)$

has at least a nonzero solution $\left(r^2,r,1\right)\iff$ $\left|\begin{array}{ccc}
a & b+d & c\\\\
b & c+d & a\\\\
c & a+d & b\end{array}\right|=0\iff$ $\left|\begin{array}{ccc}
a & b & c\\\\
b & c & a\\\\
c & a & b\end{array}\right|+d\cdot$ $\left|\begin{array}{ccc}
a & 1 & c\\\\
b & 1 & a\\\\
c & 1 & b\end{array}\right|=0\iff$

$\left[(a+b+c)+d\right]\cdot \left(\sum a^2-\sum bc\right)=0\iff$ $a+b+c=-d$ or $a=b=c$ .



PP8. Let $a,b,c$ nonzero real numbers. If the equations $x^2+ax+bc=0$ and $x^2+bx+ca=0$

have only one common root, then prove that the other roots verify the equation $x^2+cx+ab=0$ .


Proof. The equations $\left\{\begin{array}{c}
x^2+ax+bc=0\\\\
x^2+bx+ca=0\end{array}\right\|$ have only one common root $\iff$ $a\ne b$ and $\left|\begin{array}{cc}
1 & bc\\\\
1 & ca\end{array}\right|^2=$ $\left|\begin{array}{cc}
1 & a\\\\
1 & b\end{array}\right|\cdot\left|\begin{array}{cc}
a & bc\\\\
b & ca\end{array}\right|\iff$

$c^2(a-b)^2+c(a+b)(a-b)^2=0\iff$ $(a+b+c)=0$ because $c\ne 0$ and $a\ne b$ . The common root is $x_{\mathrm{com}}=-\frac {\left|\begin{array}{cc}
1 & bc\\\
1 & ca\end{array}\right|}{\left|\begin{array}{cc}
1 & a\\\
1 & b\end{array}\right|}$ ,

i.e. $x_{\mathrm{com}}=c$ , because $a\ne b$ . Therefore, other rooots are $a$ , $b$ and $a+b=-c$ , i.e. these roots verify the equation $x^2+cx+ab=0$ .
This post has been edited 80 times. Last edited by Virgil Nicula, Nov 22, 2015, 6:46 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a