374. Some proofs of the Law of Cosines.

by Virgil Nicula, May 12, 2013, 2:59 PM

PP1. Prove that in any $\triangle ABC$ there is the relation $a^2=b^2+c^2-2bc\cos A$ , i.e. $\boxed{\cos A=\frac {b^2+c^2-a^2}{2bc}}$ - Law of Cosines.

Proof 1. Denote $D\in AC\ ,\ BD\perp AC$ . Thus, $\left\|\begin{array}{c}
DB=c\sin A\\\\
DC=b-c\cos A\end{array}\right\|$ . Here appear two cases, $D\in (AC)$ or $A\in (CD)$ . Apply the Pythagoras' theorem

in a $D$-right-angled $\triangle BDC\ :$ $BC^2=$ $DB^2+DC^2\iff$ $a^2=c^2\sin^2A+\left(b-c\cos A\right)^2\iff$ $a^2=b^2+c^2-2bc\cos A\iff$ $\boxed{\cos A=\frac {b^2+c^2-a^2}{2bc}}$ .

Proof 2. Let $D\in BC\ ,\ AD\perp BC$ . Suppose w.l.o.g. that $D\not\in\{B,C\}$ $\implies$ $\left\|\begin{array}{ccccc}
\mathrm{Case}\ 1\ :\ D\in (BC) & \implies & \left|\begin{array}{c}
DB=c\cos B\\\\
DC=b\cos C\end{array}\right| & \implies & BC=DB+DC\\\\
\mathrm{Case}\ 2\ :\ B\in (DC) & \implies & \left|\begin{array}{c}
DB=-c\cos B\\\\
DC=b\cos C\end{array}\right| & \implies & BC=DC-DB\\\\
\mathrm{Case}\ 3\ :\ C\in (BD) & \implies & \left|\begin{array}{c}
DB=c\cos B\\\\
DC=-b\cos C\end{array}\right| & \implies & BC=DB-DC\end{array}\right\|$ $\implies$

$\boxed{b\cos C+c\cos B=a}$ . Hence $\left\{\begin{array}{ccc}
\underline{b\cos C}+\underline{\underline{c\cos B}}=a & \odot & (-a)\\\\
c\cos A+\underline{a\cos C}=b & \odot & b\\\\
\underline{\underline{a\cos B}}+b\cos A=c & \odot & c\end{array}\right|\bigoplus\implies$ $a^2=b^2+c^2-2bc\cos A\iff \boxed{\cos A=\frac {b^2+c^2-a^2}{2bc}}$ .

Proof 3. Denote the circle $w=\mathbb C(B,c)$ , its diameters $[AG]$ , $[DE]$ , where $B\in (CE)$ and $\{A,F\}=\{AC\}\cap w$ .

Suppose w.l.o.g. $A\ne 90^{\circ}$ . Power of $C$ w.r.t. $w\implies\boxed{CD\cdot CE=CA\cdot CF}\ (*)\implies$

$\left\|\begin{array}{cccc}
\mathrm{Case}\ 1\ :\ A<90^{\circ}\ \implies & \left|\begin{array}{c}
AF=2c\cos A\\\\
CD=c-a\end{array}\right| & \stackrel{(*)}{\implies} & (c-a)(c+a)=b\left(2c\cos A-b\right)\\\\
\mathrm{Case}\ 2\ :\ A>90^{\circ}\ \implies & \left|\begin{array}{c}
AF=-2c\cos A\\\\
CD=a-c\cos C\end{array}\right| & \stackrel{(*)}{\implies} & (a-c)(c+a)=b\left(b-2c\cos A\right)\end{array}\right\|$ $\implies a^2=b^2+c^2-2bc\cos A$ $\implies \boxed{\cos A=\frac {b^2+c^2-a^2}{2bc}}$ .

Remark 1. $\boxed{4S=\left(b^2+c^2-a^2\right)\tan A}$ . Indeed, $S=\frac {bc\sin A}{2}=$ $\frac {\left(2bc\cos A\right)\tan A}{4}=\frac {\left(b^2+c^2-a^2\right)\tan A}{4}\iff$ $4S=\left(b^2+c^2-a^2\right)\tan A$ .

Remark 2. Let $w=\mathbb C(O,R)$ and its exterior $C$ , i.e. $OC>R$ . Denote $\{A,B,M,N\}\subset w$ so that $AB$ separates $M$ , $N$ and $CA$ , $CB$ are tangent to $w$ .

In this case $AB=2R\sin\widehat{AMB}=$ $2R\sin\widehat{ANB}=2R\sin \widehat{CAB}$ - Law of Sines. Indeed, if $[AD]$ is diameter of $w$ , then $\sin \widehat {ADB}=\sin\widehat{AMB}$ and in

$D$-right $\triangle ADB$ we have $AB=AD\sin\widehat{ADB}\implies AB=2R\sin\widehat {AMB}$ .

Remark 3. Prove easily that $:\ \triangle ABC$ is acute $\iff S=[ABC]=[BOC]+[COA]+[AOB]\iff$ $2S=R\sum a\cos A=$ $\iff$ $\boxed{a\cos A+b\cos B+c\cos C=\frac {2S}{R}}\ ;$

$\triangle ABC$ is acute $\iff S=[ABC]=[BOC]+[COA]-[AOB]\iff$ $2S=R\cdot\left(b\cos B+c\cos C-a\cos A\right)=$ $\iff$ $\boxed{b\cos B+c\cos C-a\cos A=\frac {2S}{R}}\ .$

$\left\{\begin{array}{cc}
b\cos C+c\cos B=a\\\\
c\cos A+a\cos C=b\\\\
a\cos B+b\cos A=c\\\\
a\cos A+b\cos B+c\cos C=\frac {2S}{R}\end{array}\right|\ \bigoplus\ \implies\ (a$ $+b+c)(\cos A+\cos B+\cos C)=(a+b+c)+\frac {r(a+b+c)}{R}\implies$ $\boxed{\cos A+\cos B+\cos C=1+\frac rR}\ .$

Remark 4. Let $D$ be the symmetrical point of $A$ w.r.t. the midpoint of the side $[BC]$ . Apply the Euler's relation in the quadrilateral (parallelogram) $ABDC\ :$

$4m_a^2+a^2=$ $2\left(b^2+c^2\right)$ . From the sum of the relations $\left\{\begin{array}{ccc}
b^2+c^2-a^2 & = & 2bc\cos A\\\\
4m_a^2+a^2 & = & 2\left(b^2+c^2\right)\end{array}\right\|\bigoplus\implies$ $\boxed{b^2+c^2+2bc\cos A=4m_a^2}$ .

Remark 5. $\left\|\begin{array}{ccccc}
s(s-a) & + & (s-b)(s-c) & = & bc\\\\
s(s-a) & - & (s-b)(s-c) & = & bc\cos A\end{array}\right\|\implies$ $\left\|\begin{array}{ccccc}
s(s-a) & = & \frac 12\cdot bc(1+\cos A) & = & bc\cos^2\frac A2\\\\
(s-b)(s-c) & = & \frac 12\cdot bc(1-\cos A) & = & bc\sin^2\frac A2\end{array}\right\|\implies$ $\left\|\begin{array}{ccc}
\cos\frac A2 & = & \sqrt {\frac {s(s-a)}{bc}}\\\\
\sin\frac A2 &= &  \sqrt {\frac {(s-b)(s-c)}{bc}}\end{array}\right\|$ .



PP2 (Ptolemy thorem). Let $ABCD$ be a convex and cyclic quadrilateral. Then there is the relation $AB\cdot CD+AD\cdot BC=AC\cdot BD$ .

Proof (trigonometric). Let the circumcircle $w=\mathbb C(O,R)$ of $\triangle ABC\ ,\ \left\{\begin{array}{c}
AB=a\ ;\ BC=b\ ;\ CD=c\\\\
DA=d\ ;\ AC=e\ ;\ BD=f\end{array}\right\|$ and $\left\|\begin{array}{ccc}
m\left(\widehat{ACB}\right)=m\left(\widehat{ADB}\right)=\alpha & \implies & a=2R\sin\alpha\\\\
m\left(\widehat{BAC}\right)=m\left(\widehat{BDC}\right)=\beta & \implies & b=2R\sin\beta\\\\
m\left(\widehat{CAD}\right)=m\left(\widehat{CBD}\right)=\gamma & \implies & c=2R\sin\gamma\\\\
m\left(\widehat{DBA}\right)=m\left(\widehat{DCA}\right)=\delta & \implies & d=2R\sin\delta\end{array}\right\|$ ,

where $\alpha+\beta+\gamma +\delta =180^{\circ}$ . In conclusion, $AB\cdot CD+AD\cdot BC=AC\cdot BD\iff$ $ac+bd=ef\iff$ $\boxed{\sin\alpha\sin\gamma+\sin\beta\sin\delta=\sin (\alpha +\beta)\sin (\alpha +\delta )}\iff$

$\cos (\alpha -\gamma )-\cos (\alpha +\gamma )+\cos (\beta -\delta )-\cos (\beta +\delta )=\cos (\beta -\delta )+\cos (\alpha -\gamma )\iff$ $\cos (\alpha +\gamma )+\cos (\beta +\delta )=0$ , what is truly because $(\alpha +\gamma )+(\beta +\delta )=180^{\circ}$ .

Particular case. If $[AC]$ is diameter, i.e. $AC=2R$ , then $\left\|\begin{array}{cc}
a=2R\cos\beta\ ;\ b=2R\sin\beta \\\\
c=2R\sin\gamma\ ;\ d=2R\cos\gamma\\\\
e=2R\ ;\ f=2R\sin(\beta+\gamma )\end{array}\right\|$. In conclusion, $AB\cdot CD+AD\cdot BC=AC\cdot BD\iff$ $ac+bd=ef\iff$

$\cos\beta\sin\gamma +\sin\beta\cos\gamma=$ $\sin (\beta +\gamma )$ , what is truly . The relation $\boxed{\sin (x+y)=\sin x\cos y+\sin y\cos x}$ is named "the trigonometric form of the Ptolemy's theorem".
This post has been edited 49 times. Last edited by Virgil Nicula, Apr 12, 2017, 6:45 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a