290. Characterize "OP perpendicular on OA" in ABC a.s.o.

by Virgil Nicula, Jun 24, 2011, 1:46 PM

PP1. Let $ABC$ be a triangle with the circumcircle $w=C(O,R)$ . Consider an interior point $P$ with the barycentrical coordinates

$(x,y,z)$ w.r.t. $\triangle ABC$ . Prove that $OP\perp OA\ \iff\ z\cdot AC^2+y\cdot AB^2=2R^2$ . Study some particular cases.


Proof. Let $S\in AO$ so that $PS\perp AO$ , $D\in BC\cap AP$ , diameter $[AA']$ of $w$ and $\{A,E\}=AP\cap w$ . Since $E$ , $S$ belong to the circle with the diameter

$[A'P]$ obtain $AP\cdot AE=AS\cdot AA'\ (*)$ . Since $\left\{\begin{array}{c}
AP=(y+z)\cdot AD\\\\
\frac {DB}{z}=\frac {DC}{y}=\frac {a}{y+z}\end{array}\right\|$ and $\left\{\begin{array}{c}
DB\cdot DC=DA\cdot DE\\\\
a\cdot\left(AD^2+DB\cdot DC\right)=c^2\cdot DC+b^2\cdot DB\end{array}\right\|$ , the relation $(*)$

becomes $(y+z)\cdot AD\cdot (AD+DE)=2R\cdot AS\iff$ $(y+z)\cdot \left(AD^2+DB\cdot DC\right)=$ $2R\cdot AS\iff$ $(y+z)\cdot\left(c^2\cdot DC+b^2\cdot DB\right)=$

$2aR\cdot AS\iff$ $\boxed{yc^2+zb^2=2R\cdot AS}$ . In conclusion, $OP\perp OA\iff$ $S\equiv O\iff$ $AS=R\iff$ $yc^2+zb^2=2R^2$ .

Some particular cases.

$\blacktriangleright\ P:=I\left(\frac {a}{2s},\frac {b}{2s},\frac {a}{2s}\right)\implies OI\perp OA\iff aR=r(b+c)\iff$ $a(R+r)=2S\iff$ $h_a=R+r\iff$ $\cos B+\cos C=\cos (B-C)$ .

$\blacktriangleright\ P:=G\left(\frac 13,\frac 13,\frac 13\right)\ \implies\ OG\perp OA\iff$ $OH\perp OA\iff$ $b^2+c^2=6R^2\iff$ $1+\cos 2B+\cos 2C=0$ .

$\blacktriangleright\ P:=M\left(0,\frac 12,\frac 12\right)\ \implies\ OM\perp OA\iff$ $b^2+c^2=4R^2$ .



PP2. Let $ABC$ be a triangle with the circumcircle $w=C(O,R)$ . Consider the midpoint $M$ of the side $[BC]$

and a point $P\in (AM)$ for which $AM=\rho\cdot AP$ . Prove that $\boxed{OP\perp OA\ \iff\ b^2+c^2=4\rho\cdot R^2}$ .

Particular case For $\rho:=\frac 32$ obtain $\boxed{OG\perp OA\ \iff\ b^2+c^2=6R^2}$ , where $G$ is centroid of $\triangle ABC$ .


Proof 1 $.\ \frac {m_a}{\rho}=\frac {AP}{1}=\frac {PM}{\rho -1}\implies$ $AP=\frac {m_a}{\rho}$ and $PM=\frac {(\rho -1)m_a}{\rho}$ . Denote the second intersection $A_1$ of $AM$ with $w$ . Observe that

$MA_1\cdot MA=MB\cdot MC\implies$ $MA_1=\frac {a^2}{4m_a}$ . Thus, $PA\cdot PA_1=\frac {m_a}{\rho}\cdot \left(PM+MA_1\right)=$ $\frac {m_a}{\rho}\left[\frac {(\rho -1)m_a}{\rho}+\frac {a^2}{4m_a}\right]=$

$\frac {m_a}{\rho}\cdot\frac {4(\rho -1)m_a^2+\rho a^2}{4\rho m_a}=$ $\frac {1}{4\rho ^2}\cdot\left[2(\rho -1)\left(b^2+c^2\right)+\rho a^2\right]$ . In conclusion, $OP\perp OA\iff$ $OP^2+OA^2=AP^2\iff$

$2R^2=\frac {1}{4\rho^2}\cdot\left[2(\rho -1)\left(b^2+c^2\right)+a^2\right]+\frac {m_a^2}{\rho ^2}$ $\iff$ $8\rho^2R^2=2(\rho -1)\left(b^2+c^2\right)+a^2+2\left(b^2+c^2\right)-a^2\iff$ $b^2+c^2=4\rho R^2$ .

Proof 2 (Yetti). Denote the symmedian $AK$ and the altitude $AD$ , where $\left\{K,D\right\}\subset BC$ . Thus, $OP\perp OA\iff$ the line $OP$ is

antiparallel to $BC$ w.r.t. $\widehat{BAC}$ $\Longrightarrow$ $\triangle ADK\sim\triangle AOP$ $\Longrightarrow$ $\frac {AD}{AK}=\frac {AO}{AP}\ (*)$ and from the w.k. relations $AK=\frac {2bc}{b^2+c^2}\cdot AM$

and $bc=2Rh_a$ obtain that $b^2 +c^2 =$ $4Rh_a \cdot \frac {AM}{AK} =4R \cdot \frac {AD}{AK}\cdot AM\stackrel{(*)}{=}$ $4R\cdot \frac {AO}{AP}\cdot AM=$ $4R^2 \varrho$ .

Remark. Can obtain directly this problem from the general case PP1 for $y=z=\frac {1}{2\rho}$ .


An easy extension. Let $ABC$ be a triangle with the circumcircle $w=C(O,R)$ . Consider a point $M\in [BC]$ so that $\frac{MB}{MC}=\lambda$

and a point $P\in (AM)$ for which $AM=\rho\cdot AP$ . Prove that $\boxed{OP\perp OA\ \iff\ \lambda b^2+c^2=2R^2\rho (\lambda +1)}$ .


Proof. Denote the isogonal $AK$ of $AM$ and the altitude $AD$ , where $\left\{K,D\right\}\subset BC$ . Since the line $OP$ is antiparallel to $BC$ w.r.t. $\widehat{BAC}$

obtain that $\triangle ADK\sim\triangle AOP$ $\Longrightarrow$ $\frac {AD}{AK}=\frac {AO}{AP}\ (*)$ and from the w.k. relations $AK=\frac {(\lambda +1)bc}{\lambda b^2+c^2}\cdot AM$ and $bc=2Rh_a$

obtain that $\lambda b^2 +c^2 =$ $2(\lambda +1)Rh_a \cdot \frac {AM}{AK} =2(\lambda +1)R \cdot \frac {AD}{AK}\cdot AM\stackrel{(*)}{=}$ $2(\lambda +1)R\cdot \frac {AO}{AP}\cdot AM=$ $2(\lambda +1)R^2 \varrho$ .



PP3. Let $ABC$ be an $A$-right triangle with incenter $I$ . Denote $\begin{array}{c}
E\in BI\cap AC\\\
F\in CI\cap AB\end{array}$ and the midpoint $M$ of $[EF]$ . Prove that $MI\perp BC$ .

Proof 1 (synthetic). Denote the projections $X$ , $Y$ on $BC$ of $F$ , $E$ respectively. Observe that $EA=EY$ and $FA=FX$ . Therefore, $IA=IY$

and $IA=IX$ , i.e. $I$ is the circumcenter of $\triangle XAY$ . In conclusion, $MI$ is middleline in the right trapezoid $EFXY$ $\implies$ $MI\perp BC$ .

Remark. Prove easily that the point $I$ is the $B$-exincenter of $\triangle BFX$ and is the $C$-exincenter of $\triangle CEY$ . Thus $IX\perp IY$ and $m\left(\widehat{XAY}\right)=45^{\circ}$ .

Proof 2 (metric). I"ll use the equivalence $MI\perp BC\ \iff\ MB^2-MC^2=IB^2-IC^2$ and the well-known relations $\left\{\begin{array}{c}
BE^2=ac-EA\cdot EC\\\
CF^2=ab-FA\cdot FB\end{array}\right\|\ (1)$ .

Observe that $\left\{\begin{array}{c}
BF=\frac {ac}{a+b}=\frac {a(a-b)}{c}\\\
CE=\frac {ab}{a+c}=\frac {a(a-c)}{b}\end{array}\right\|\implies$ $\boxed{c\cdot BF-b\cdot CE=a(c-b)}\ (2)$ . Apply the theorem of the median to :

$\left\{\begin{array}{ccc}
BM/\triangle EBF & \implies & 4\cdot BM^2=\left(BF^2+BE^2\right)-EF^2\\\
CM/\triangle ECF & \implies & 4\cdot CM^2=\left(CE^2+CF^2\right)-EF^2\end{array}\right\|$ $\implies$ $2\cdot\left(MB^2-MC^2\right)=$ $\left(BF^2-CE^2\right)+BE^2-CF^2\stackrel{(1)}{=}$

$\left(BF^2-CE^2\right)+\left(ac-EA\cdot EC\right)-\left(ab-FA\cdot FB\right)=$ $a(c-b)+BF(BF+FA)-CE(CE+EA)=$ $a(c-b)+c\cdot BF-b\cdot CE\stackrel{(2)}{=}$

$2a(c-b)\implies$ $\boxed{MB^2-MC^2=a(c-b)}\ (3)$ . On other hand, $IB^2-IC^2=\frac {ac(s-b)}{s}-\frac {ab(s-c)}{s}\implies$ $\boxed{IB^2-IC^2=a(c-b)}\ (4)$ .

From the last relations $(3)$ and $(4)$ obtain that $MB^2-MC^2=IB^2-IC^2$ , i.e. $MI\perp BC$ .

Proof 3 (metric). Denote the point $N\in EF$ for which $NI\perp BC$ . I"ll show that $N\equiv M$ . Using an well-known property $\frac {NF}{NE}=\frac {IF}{IE}\cdot\frac {\sin\widehat{NIF}}{\sin\widehat{NIE}}=$

$\frac cb\cdot\frac {CF}{BE}\cdot\frac {\cos\frac C2}{\cos\frac B2}=$ $\frac {a+c}{a+b}\cdot \frac {\cos^2\frac C2}{\cos^2\frac B2}=$ $\frac {c(a+c)(a+b-c)}{b(a+b)(a+c-b)}=$ $\frac {bc(a+c)+c\left(a^2-c^2\right)}{bc(a+b)+b\left(a^2-b^2\right)}=$ $\frac {bc(a+c)+b^2c}{bc(a+b)+bc^2}=1\implies$ $NE=NF\implies N\equiv M$ .

Remark. Prove easily that in any triangle $ABC$ exists the relation $MB^2-MC^2=a(c-b)\cdot\left[1+\frac {bc\cdot \cos A}{(a+b)(a+c)}\right]=a(c-b)\cdot\frac {(a+b+c)^2}{2(a+b)(a+c)}$ .

Observe that $A=90^{\circ}\iff b^2+c^2=a^2$ $\iff (a+b+c)^2=$ $2(a+b)(a+c)\iff$

$c(a+c)(a+b-c)=b(a+b)(a+c-b)\iff MI\perp BC\iff NE=NF$ .



PP4.Let $ABCD$ be a convex quadrilateral. Denote $O\in AC\cap BD$ , the centroids $M$ , $N$ of $\triangle ABO$ and

$\triangle CDO$ respectively, the orthocenters $P$ , $Q$ of $\triangle BCO$ and $\triangle AOD$ respectively. Prove that $MN\perp PQ$ .


Proof. Soon !
This post has been edited 72 times. Last edited by Virgil Nicula, Nov 21, 2015, 2:04 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a