397. Two similar trigonometrical identities.

by Virgil Nicula, Aug 9, 2014, 1:42 PM

PP. Prove the following identities in a triangle $ABC$ (standard notations):

$1\blacktriangleright\ \left(b^2+c^2\right)\sin 2A+\left(c^2+a^2\right)\sin 2B+\left(a^2+b^2\right)\sin 2C=12S$ , where $S$ is the area of $\triangle ABC$ .

$2\blacktriangleright\ a^3\cos (B-C)+b^3\cos (C-A)+c^3\cos (A-B)=3abc$ .


Proof. I"ll use the evident identities $\sum x\left(y^2+z^2\right)=\sum x^2(y+z)$ and $\boxed{\sum x(y+z)(y+z-x)=6xyz}\ (*)$ .

$1\blacktriangleright\ \sum\left(b^2+c^2\right)\sin 2A=\sum\left(b^2+c^2\right)\cdot 2\sin A\cdot\cos A=$ $\sum\left(b^2+c^2\right)\cdot\frac aR\cdot\frac {b^2+c^2-a^2}{2bc}=$ $\frac 1{2Rabc}\cdot\sum a^2$ $\left(b^2+c^2\right)\left(b^2+c^2-a^2\right)\ \stackrel{(*)}{=}\ \frac {6a^2b^2c^2}{2Rabc}=$

$\frac {3abc}{R}=\frac {12RS}{R}\implies$ $\boxed{\sum\left(b^2+c^2\right)\sin 2A=12S}$ . Remark. $a^2\sin 2B+b^2\sin 2A=2a^2\sin B\cos B+2b^2\sin A\cos A=$ $2ab\sin A\cos B+2ba\sin B\cos A=$

$2ab(\sin A\cos B+\sin B\cos A)=$ $2ab\sin (A+B)=$ $2ab\sin C=4S\implies$ $\boxed{a^2\sin 2B+b^2\sin 2A=4S}$ . Observe that $12S=\sum\left(b^2+c^2\right)\sin 2A\ge $

$\sum 2bc\cdot 2\sin A\cos A=\sum 4bc\sin A\cdot\cos A=8S\sum\cos A\implies$ $\boxed{\cos A\le\frac 32}$ .

$2\blacktriangleright\ \sum a^3\cos (B-C)=$ $\sum a^2\cdot 2R\sin A\cdot \cos (B-C)=$ $\sum a^2\cdot 2R\sin (B+C)\cos (B-C)=$ $R\cdot\sum a^2(\sin 2B+\sin 2C)=$ $R\cdot\sum \left(b^2+c^2\right)\sin 2A\stackrel{(1)}{=}$

$R\cdot 12S=3abc\implies$ $\boxed{\sum a^3\cos (B-C)=3abc}$ , i.e. the identity $(2)$ . Otherwise. $\frac {a^2\cos (B-C)}{bc}=$ $\frac {\sin^2A\cos (B-C)}{\sin B\sin C}=$ $\frac {2\sin A\sin (B+C)\cos(B-C)}{2\sin B\sin C}=$

$\frac {\sin A(\sin 2B+\sin 2C)}{2\sin B\sin C}=$ $\frac {\sin A(\sin B\cos B+\sin C\cos C)}{\sin B\sin C}=$ $\frac {\sin A}{\sin C}\cdot \cos B+\frac {\sin A}{\sin B}\cdot \cos C=$ $\frac ac\cdot\frac {a^2+c^2-b^2}{2ac}+\frac ab\cdot\frac {a^2+b^2-c^2}{2ab}=$ $\frac {a^2+c^2-b^2}{2c^2}+\frac {a^2+b^2-c^2}{2b^2}=$

$1+\frac {a^2-b^2}{c^2}+\frac {a^2-c^2}{b^2}\implies$$\sum \frac {a^2\cos (B-C)}{bc}=$ $\sum\left(1+\frac {a^2-b^2}{c^2}+\frac {a^2-c^2}{b^2}\right)=$ $3+\left(\frac {a^2-b^2}{c^2}+\frac {a^2-c^2}{b^2}\right)+\left(\frac {b^2-c^2}{a^2}+\frac {b^2-a^2}{c^2}\right)+$

$\left(\frac {c^2-a^2}{b^2}+\frac {c^2-b^2}{a^2}\right)=3\implies$ $\sum a^3\cos (B-C)=3abc$ .


PP1. Prove that the linear-angled inequality $\boxed{\sum a^2\cos (B-C)\le ab+bc+ca}$ in $\triangle ABC$ (standard notations).

Proof. $\sum a^2\cos (B-C)=\sum a\cdot 2R\sin (B+C)\cos (B-C)=$ $R\cdot\sum a(\sin 2B+\sin 2C)=$ $R\cdot \sum a(2\sin B\cos B+2\sin C\cos C)=$ $\sum a(b\cos B+c\cos C)=$

$\sum a\left(b\cdot\frac {a^2+c^2-b^2}{2ac}+c\cdot\frac {a^2+b^2-c^2}{2ab}\right)=$ $\sum \left[\frac {bc}2+\frac {b\left(a^2-b^2\right)}{2c}+\frac {bc}{2}+\frac {c\left(a^2-c^2\right)}{2b}\right]=$ $\sum\left[bc-\frac {(b+c)(b-c)^2}{2a}\right]\le \sum bc\implies$ $\sum a^2\cos (B-C)\le \sum bc$ .



PP2. Prove that $x^3-x^2-2x+1=0\implies\begin{array}{ccccc}
\nearrow & x_1 & = & 2\cos\frac {\pi}7 & \searrow\\\\
\rightarrow & x_2 & = & 2\cos\frac {3\pi}7 & \rightarrow\\\\
\searrow & x_3 & = & 2\cos\frac {5\pi}7 & \nearrow\end{array}\odot$ .

Proof.

$\blacktriangleright\ s_1=x_1+x_2+x_3=$ $2\left(\cos\frac {\pi}7+\cos\frac {3\pi}7+\cos\frac {5\pi}7\right)=$ $\frac {2\cos\frac {3\pi}7\sin\frac {3\pi}7}{\sin\frac {\pi}7}=\frac {\sin \frac {6\pi}7}{\sin\frac {\pi}7}=1\implies \boxed{\ s_1=1\ }\ (*)$ .

$\blacktriangleright\ s_2=x_1x_2+x_2x_3+x_3x_1=$ $2\left(2\cos\frac {\pi}7\cos\frac {3\pi}7+2\cos\frac {3\pi}7\cos\frac {5\pi}7+2\cos\frac {5\pi}7\cos\frac {\pi}7\right)=$ $2\left(\cos\frac {4\pi}7+\cos\frac {2\pi}7+\cos\frac {8\pi}7+\cos\frac {2\pi}7+\cos\frac {6\pi}7+\cos\frac {4\pi}7\right)=$

$4\left[\cos\frac {2\pi}7-\left(\cos\frac {3\pi}7+\cos\frac {\pi}7\right)\right]\ \stackrel{(*)}{=}$ $4\left[\cos\frac {2\pi}7-\left(\frac 12-\cos \frac {5\pi}7\right)\right]=4\left(\cos\frac {2\pi}7+\cos \frac {5\pi}7\right)-2=-2\implies \boxed{\ s_2=-2\ }$ .

$\blacktriangleright\ s_3=x_1x_2x_3=8\cos\frac {\pi}7\cos\frac {3\pi}7\cos\frac {5\pi}7=$ $4\cos\frac {\pi}7\left(\cos\frac {8\pi}7+\cos\frac {2\pi}7\right)=$ $4\cos\frac {\pi}7\left(\cos\frac {2\pi}7-\cos\frac {\pi}7\right)=$ $2\left[\left(\cos \frac {3\pi}7+\cos \frac {\pi}7\right)-\left(1+\cos \frac {2\pi}7\right)\right]\ \stackrel{(*)}{=}$

$2\left[\left(\frac 12-\cos \frac {5\pi}7\right)-\left(1+\cos \frac {2\pi}7\right)\right]=$ $2\left[-\frac 12-\left(\cos \frac {5\pi}7+\cos \frac {2\pi}7\right)\right]=-1\implies \boxed{\ s_3=-1\ }$ . The equation is $x^3-s_1x^2+s_2x-s_3=0$ , i.e. $x^3-x^2-2x+1=0$ .

Remark. $\cos\frac {\pi}7+\cos\frac {6\pi}7=$ $\cos\frac {2\pi}7+\cos\frac {5\pi}7=$ $\cos\frac {3\pi}7+\cos\frac {4\pi}7=0$ .



PP3. Sa se demonstreze prin inductie relatia $\boxed{\sum_{k=1}^n k\cdot\sin kx=\frac{(n+1)\sin nx-n\sin(n+1)x}{4\sin^2\frac x2}\ ,\ x\ne 2t\pi\ ,\ t\in\mathbb{Z}}\ .$

Proof 1 (inductie).

Etapa 1. Pentru $n=1$ egalitatea devine $\sin x=\frac{2\sin x-\sin 2x}{4\sin^2\frac x2}=\frac{2\sin x(1-\cos x)}{4\sin^2\frac x2}$ $\Longleftrightarrow\ \sin^2\frac x2=\frac{1-\cos x}{2}\ ,$ adevarat.

Etapa 2. Presupunem egalitatea adevarata pentru $n$ numere si o vom demonstra pentru $n+1$ numere. Vom arata ca $\frac{(n+1)\sin nx-n\sin(n+1)x}{4\sin^2\frac x2}+(n+1)\sin(n+1)x=$

$\frac{(n+2)\sin(n+1)x-(n+1)\sin(n+2)x}{4\sin^2\frac x2}\ \stackrel{x\ne 2t\pi}{\iff}$ $\underline{\underline{(n+1)\sin nx}}-$ $\underline{\underline{\underline{n\sin(n+1)x}}}+(n+1)[\sin(n+1)x]\cdot 4\sin^2\frac x2=\underline{\underline{\underline{(n+2)\sin(n+1)x}}}-\underline{\underline{(n+1)\sin(n+2)x}}$ $\Longleftrightarrow$

$\underline{\underline{(n+1)}}[\sin nx+sin(nx+2x)]+\underline{\underline{(n+1)}}[\sin(n+1)x]\cdot4sin^2\frac x2=2\underline{\underline{(n+1)}}\sin(n+1)x$ $\Longleftrightarrow\ 2\underline{\underline{\sin(n+1)x}}\cdot\cos x+\underline{\underline{sin(n+1)x}}\cdot 4\sin^2\frac x2=2\underline{\underline{\sin(n+1)x}}\ .$

Daca $\sin(n+1)x=0$ atunci e evident. Altfel putem imparti prin $\sin(n+1)x\ :\ \cos+2\sin^2\frac x2=1\ \Longleftrightarrow\ sin^2\frac x2=\frac{1-\cos x}{2}\ ,\ \boxed{O.K}\ .$

Proof 2 (direct). Ne propunem sa gasim formula pentru suma $f(x)\equiv\sum_{k=1}^nk\cdot \sin kx$ din care vom obtine $\sum_{k=1}^nk\cdot \sin k=f(1)\ .$

Metoda I. Se calculeaza direct sau prin inductie suma $\boxed{\sum_{k=1}^n\sin kx=\frac {\sin\frac {(n+1)x}{2}\cos\frac {nx}{2}}{\sin \frac x2}}$ si se aplica identitatea $\sum _{k=1}k\cdot a_k=\sum _{s=1}^n\ \sum_{k=s}^na_k$ pentru $a_k=\sin kx\ ,\ k\in\overline{1,n}\ .$

Metoda II. Se calculeaza direct sau prin inductie suma $\overline{\underline{\left\|\ \sum_{k=1}^n\cos kx=\frac {\cos\frac {(n+1)x}{2}\cos\frac {nx}{2}}{\sin \frac x2}\ \right\|}}$ si prin derivare se obtine $\sum_{k=1}^nk\cdot \sin kx=-\left(\sum_{k=1}^n\cos kx\right)^{\prime}=\ \ldots\ \ldots\ .$

Metoda III (numere complexe). Notam $z=cos x+i\cdot\sin x\ .$ Atunci $z^k=\cos kx+i\cdot\sin kx\ ,$ pentru orice $k\in \overline {1,n}\ .$ Notam suma $S_n\equiv\sum_{k=1}^nk\sin kx\in \mathbb R$ si suma $C_n\equiv\sum_{k=1}^nk\cos kx\in\mathbb R\ .$ Asadar $C_n+i\cdot S_n=\sum_{k=1}^nkz^k$ care se calculeaza prin unul din procedeele mentionate mai sus dupa care se identifica partile reale/imaginare.

Comentariu. Formulata astfel, problema initiala nu este interesanta deoarece ni se da rezultatul si nu apare "ipoteza inductiei" ca un act creator, devenind doar un exercitiu de rutina, plicticos. Ceea ce ma surprinde in mod neplacut este faptul ca numeroase exercitii care apar la capitolul "Inductia matematica" sunt de aceasta forma sau eventual se cere "cat face suma ... " ca apoi sa se solicite "verificarea prin inductie", ceea ce este la fel de "nociv" pentru a intelege profund aceasta metoda fecunda a inductiei matematice. Dupa parerea mea ar fi trebuit sa se solicite calcularea sumei respective, ramanand la alegerea elevului procedeul, eventual si metoda inductiei complete. Prin acest "discurs" nu ma adresez "problemistilor", ci indeosebi profesorilor de matematica (in actul predarii).
This post has been edited 29 times. Last edited by Virgil Nicula, May 30, 2016, 4:56 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a