176. Another nice problems for middle school.

by Virgil Nicula, Nov 23, 2010, 9:51 PM

Proposed problem 1. Prove that $\triangle ABC$ is $A$-isosceles or $A$-right angle $\iff b+h_b=c+h_c$ .

Proof. I"ll use the well-known relation $\boxed {\ bc=2Rh_a\ }$ a.s.o. Therefore, $c+h_c=b+h_b\iff $ $2Rc+2Rh_c=2Rb+2Rh_b\iff $

$2Rc+ab=2Rb+ac\iff $ $2R(b-c)=a(b-c)\iff $ $b=c \ \vee\ a=2R\iff$ $\triangle ABC$ is $A$-isosceles or $A$-right angled.

Otherwise, $\left\|\begin{array}{c}
b+h_b=c+h_c\\\
b\cdot h_b=c\cdot h_c=2S\end{array}\right\|\ \iff\ \left\{b,h_b\right\}=$ $\left\{c,h_c\right\}$ $\iff$ $b=c$ or $b=h_c$ $\iff$ $b=c$ or $bc=2S$ $\iff$ $b=c$ or $A=90^{\circ}$ .



Proposed problem 2. Let $ABC$ be an $A$-right triangle with incenter $I$ . Denote $\begin{array}{c}
E\in BI\cap AC\\\
F\in CI\cap AB\end{array}$ and the midpoint $M$ of $[EF]$ . Prove that $MI\perp BC$ .

Proof 1 (synthetic). Denote the projections $X$ , $Y$ on $BC$ of $F$ , $E$ respectively. Observe that $EA=EY$ and $FA=FX$ . Therefore, $IA=IY$

and $IA=IX$ , i.e. $I$ is the circumcenter of $\triangle XAY$ . In conclusion, $MI$ is middleline in the right trapezoid $EFXY$ $\implies$ $MI\perp BC$ .

Remark. Prove easily that the point $I$ is the $B$-exincenter of $\triangle BFX$ and is the $C$-exincenter of $\triangle CEY$ . Thus $IX\perp IY$ and $m\left(\widehat{XAY}\right)=45^{\circ}$ .

Proof 2 (metric). I"ll show that $MB^2-MC^2=IB^2-IC^2$ what is equivalently with $MI\perp BC$ . Indeed, $IB^2-IC^2=\frac {ac(s-b)}{s}-\frac {ab(s-c)}{s}$ ,

i.e. $\boxed {IB^2-IC^2=a(c-b)}$ . Observe that $\begin{array}{cc}
XC=b\ ; & XB=a-b\\\
YB=c\ ; & YC=a-c\end{array}$ . Thus, $\begin{array}{ccc}
EY\perp BC & \implies & BE^2-CE^2=YB^2-YC^2=a(2c-a)\\\
FX\perp BC & \implies & CF^2-BF^2=XC^2-XB^2=a(2b-a)\end{array}$ .

Therefore, $4\cdot\left(MB^2-MC^2\right)=$ $\left[2\cdot \left(BE^2+BF^2\right)-EF^2\right]-$ $\left[2\cdot \left(CF^2+CE^2\right)-EF^2\right]$ $\implies$ $2\cdot\left(MB^2-MC^2\right)=$ $\left(BE^2-CE^2\right)-$

$\left(CF^2-BF^2\right)=$ $a(2c-a)-a(2b-a)$ $\implies$ $\boxed{MB^2-MC^2=a(c-b)}$ . In conclusion, $IB^2-IC^2=MB^2-MC^2$ , i.e. $MI\perp BC$ .




Proposed problem 3. In the convex cyclical quadrilateral $ABCD$ denote the projections $M$ , $N$ , $P$

of the vertex $A$ on lines $BD$ , $BC$ , $CD$ respectively. Prove that there is the relation $\frac{|BD|}{|AM|}=\frac{|BC|}{|AN|}+\frac{|CD|}{|AP|}$ .


Proof. I"ll use the remarkable relation $\boxed{2Rh_a=bc}\ (*)$ in any triangle $ABC$ (standard notations). Denote $AB=a$ , $BC=b$ , $CD=c$ ,

$DA=d$ , $AC=e$ , $BD=f$ . Therefore, the relation $(*)\ \implies\ \frac {AM}{ad}=\frac {AN}{ae}=\frac {AP}{de}=\frac {1}{2R}$ . So the proposed relation becomes

$\frac {f}{ad}=\frac {b}{ae}+\frac {c}{de}$ which is equivalently with the Ptolemy's relation $ef=ac+bd$ . Observe that $P\in MN$ - the Simson's line of $A$ w.r.t. $\triangle BCD$ .



Proposed problem 4. Let $\triangle ABC$ with $\begin{array}{c}
\mathrm{orthocenter\ H}\\\
\mathrm{circumcenter\ O}\end{array}$ . Denote the midpoint $M$ of $[AH]$ and $\begin{array}{c}
P\in AB\\\
Q\in AC\end{array}$ for which $\begin{array}{c}
M\in PQ\\\
OM\perp PQ\end{array}$ . Prove that $OP=OQ$.

Proof. Denote the midpoints $E , F$ of $[AC] , [AB]$ respectively. Observe that the quadrilaterals $PMOF$ and $QMOE$ are cyclically $\implies$

$\widehat{MPO}\equiv \widehat{MFO}$ ,$\widehat{MQO}\equiv\widehat{MEO}$ . Since $OE\parallel BH\parallel FM$ , $OF\parallel CH\parallel EM$ obtain that the quadrilateral $MEOF$

is a parallelogram. In conclusion, $\widehat{MEO}\equiv\widehat{MFO}$ $\implies$ $\widehat{MQO}\equiv\widehat{MPO}$ $\implies$ $OP=OQ$ .



Proposed problem 5. Let $ABCD$ be a convex quadrilateral for which $AB\perp AC\ ,\ \begin{array}{c}
m\left(\widehat {DBA}\right)=30^{\circ}\\\
m\left(\widehat {DBC}\right)=15^{\circ}\end{array}$ and $C=120^{\circ}$ . Prove that $AB=AD$ .

Proof 1 (synthetic). Observe that $ABC$ is $A$-right and isosceles triangle. Denote $E\in BD$ for which $AE\perp BC$ .

Observe that $m\left(\widehat{CAE}\right)=m\left(\widehat{CDE}\right)=45^{\circ}$ , i.e. the quadrilateral $ADCE$ is cyclically. Since $m\left(\widehat{ACE}\right)=30^{\circ}$

obtain that $m\left(\widehat{ADB}\right)=$ $m\left(\widehat{ADE}\right)=30^{\circ}$ . In conclusion, $m\left(\widehat{ABD}\right)=m\left(\widehat{ADB}\right)=30^{\circ}$ $\implies$ $AB=AD$ .


Proof 2 (trigonometric). Denote $m\left(\widehat{ADB}\right)=x$ .Apply the trigonometric form of Ceva's theorem in the convex quadrilateral $ABCD\ :$

$\sin 30^{\circ}\sin (60^{\circ}-x)\sin^245^{\circ}=\sin 15^{\circ}\sin 90^{\circ}\sin x\sin 75^{\circ}$ $\iff$ $\sin (60^{\circ}-x)=4\sin 15^{\circ}\sin 75^{\circ}\sin x\iff$

$\sin (60^{\circ}-x)=2\sin x\left(\cos 60^{\circ}-\cos 90^{\circ}\right)$ $\iff \sin (60^{\circ}-x)=\sin x$ $\iff x=30^{\circ}$ $\iff$ $AB=AD$ .



Proposed problem 6 (IMO 1985). A circle $w=C(O,r)$ has center on the side $[AB]$ of the cyclical $ABCD$.

The other three sides are tangent to the circle. Prove that $AD + BC = AB$ .


Proof 1 (trigonometric). Denote the tangent points $E\ ,\ F\ ,\ G$ of $w$ with $AD\ ,\ DC\ ,\ CB$ resperctively and $x =m\left(\widehat{BAD}\right)\ ,\  y=m\left(\widehat{ABC}\right)$ .

Suppose w.l.o.g. that $r=1$ . Prove easily that $\left\|\begin{array}{ccc}
AO = \frac{1}{\sin x} & ; & BO = \frac{1}{\sin y}\\\\
AE = \cot x & ; & BG = \cot y\\\\
DE=DF= \tan\frac x2 & ; & CG =CF=\tan\frac x2\end{array}\right\|$ . Therefore, $AB = AD + BC$ $\iff$

$AO + BO = $ $AE + DE + BG + CG$ $\iff$ $\frac{1}{\sin x} + \frac{1}{\sin y} = \cot x + \cot y + \tan \frac{x}{2} + \tan \frac{y}{2}$ , which is truly because

$\frac{1}{\sin x}= \cot x +\tan \frac{x}{2}$ (prove easily). From the remarks $\left\|\begin{array}{c}
AO=AE+CF\\\
BO=BG+DF\end{array}\right\|$ can find a synthetical proof of this problem.

Proof 2 (synthetic). ?!



Proposed problem 7. $n\in\mathbb N\ ,\ n\ge 2\ ,\ \left\{a_1\ ,\ a_2\ ,\ \ldots\ ,\ a_n\right\}\subset \mathbb R^*$ and $\sum_{k=1}^n a_k=1\ \implies\ \sum_{i=1}^{n}\left(a_i+\frac{1}{a_i}\right)^2 \ge \frac{(1+n^2)^2}{n}$ .

Proof. $\sum_{i=1}^{n}\left(a_i+\frac{1}{a_i}\right)^2 \ge \frac{1}{n} \cdot \left[ \sum_{i=1}^{n}\left(a_i+\frac{1}{a_i}\right) \right]^2=$ $\frac{1}{n}\cdot  \left(1+\sum_{i=1}^n\frac{1}{a_i}\right)^2\ge $ $\frac 1n\cdot \left(1+\frac{n^2}{a_1+a_2+\ldots a_n}\right)^2=\frac{(1+n^2)^2}{n}$ .


Proposed problem 8. Let $ABC$ be an $A$-isosceles such that the orthocentre lies on its incircle $w=C(I,r)$ . Ascertain $\angle BAC$ .

Proof. Denote the midpoint $D$ of the side $[BC]$ . Show easily that $\left\|\begin{array}{ccc}
m\left(\widehat{IBD}\right)=45^{\circ}-\frac A4 & \implies & \tan\left(45^{\circ}-\frac A4\right)=\frac {2r}{a}\\\\
m\left(\widehat{HBD}\right)=\frac A2 & \implies & \tan\frac A2=\frac {4r}{a}\end{array}\right\|$ .

Denote $A=4\phi$ . Thus, $\tan\frac A2=2\cdot\tan\left(45^{\circ}-\frac A4\right)$ $\implies$ $\tan 2\phi=2\cdot\tan\left(45^{\circ}-\phi\right)$ $\implies$ $\tan\phi =(1-\tan\phi )^2<1$ $\implies$

$\tan^2\phi -3\tan\phi +1=0$ $\implies$ $\tan\phi =\frac {3-\sqrt 5}{2}$ $\implies$ $\tan 2\phi =\frac {2\sqrt 5}{5}$ $\implies$ $\tan A=\tan 4\phi =4\sqrt 5$ $\implies$ $A=\arctan 4\sqrt 5$ .



Proposed problem 9. Let $P$ be an arbitrary point in $\triangle ABC$ . Through $P$ construct $DE\parallel BC$ , $IJ\parallel CA$ and $FG\parallel AB$ , where $\{G, J\}\subset BC$ ,

$ \{E, F\}\subset CA$ and $\{D, I\}\subset AB$ . Prove that $[AIPF] + [BGPD] + [CEPJ] \le \frac{2}{3}\cdot [ABC] $ , where through $[T]$ denote area of $T$ .


Proof. Denote $BG=DP=x$ , $GJ=y$ and $JC=PE=z$ .Observe that $x+y+z=a$ and $\frac {[PDI]}{[ABC]}+\frac {[PGJ]}{[ABC]}+\frac {[PFE]}{[ABC]}=$

$\left(\frac xa\right)^2+\left(\frac ya\right)^2+\left(\frac za\right)^2=$ $\frac {x^2+y^2+z^2}{(x+y+z)^2}\ \stackrel{(C.B.S.)}{\ge}\  \frac 13\implies $ $[PDI]+[PGJ]+[PFE]\ge $ $\frac 13\cdot [ABC]$ . In conclusion,

$[AIPF] + [BGPD] + [CEPJ]=$ $[ABC]-\left([PDI]+[PGJ]+[PFE]\right)\ \le\ [ABC]-\frac 13\cdot [ABC]=\frac{2}{3}\cdot [ABC] $ .



Proposed problem 10. Prove that $2a^2=b^2+c^2\ \implies\ \cot^2A\ \ge\ \cot B\cdot\cot C$ .

Proof. I"ll use the well-known relation $4S=\left(b^2+c^2-a^2\right)\cdot\tan A$ a.s.o. Therefore, $\cot^2A\ge\cot B\cdot\cot C$ $\iff$

$\left(b^2+c^2-a^2\right)^2\ge\left(a^2+c^2-b^2\right)\cdot\left(a^2+b^2-c^2\right)$ $\iff$ $\left(b^2+c^2\right)^2\ge 4\cdot b^2c^2$ $\iff$ $\left(b^2-c^2\right)^2\ge 0$ .



Proposed problem 11. Let $a$ and $b$ be two positive real numbers. Prove the inequality $\frac{(a+b)^2}{2} + \frac{a+b}{4} \ge a \sqrt{b} + b \sqrt{a}$ .

Proof. $\frac{(a+b)^2}{2} + \frac{a+b}{4}\geq2\sqrt{\frac{(a+b)^3}{8}}=\sqrt{2(a+b)\cdot\frac{(a+b)^2}{4}}\ge$ $\sqrt{(\sqrt{a}+\sqrt{b})^2ab}= a \sqrt{b} + b \sqrt{a}$ .


PP11. Let $ABCD$ be a trapezoid with $AB\parallel CD$ . Denote the midpoints $M$ , $N$ of $[AB]$ , $[CD]$ and $I\in AC\cap BD$ , $E\in AD\cap BC$ . Prove that $\{I,E\}\subset MN$ .

Proof[/u].[/b] Denote $I_1\in AC\cap MN$ and $I_2\in BD\cap MN$ . Observe that $\frac {I_1M}{I_1N}=\frac {MA}{NC}$ and $\frac {I_2M}{I_2N}=\frac {MB}{ND}$ . Since $\frac {MA}{NC}=\frac {MB}{ND}$

obtain that $\frac {I_1M}{I_1N}=\frac {I_2M}{I_2N}$ , i.e. $I_1\equiv I_2\iff$ $I\in MN$ . Analogously denote $E_1\in AD\cap MN$ and $E_2\in BC\cap MN$ .

Observe that $\frac {E_1M}{E_1N}=\frac {MA}{ND}$ and $\frac {E_2M}{E_2N}=\frac {MB}{NC}$ . Since $\frac {MA}{ND}=\frac {MB}{NC}$ obtain that $\frac {E_1M}{E_1N}=\frac {E_2M}{E_2N}$ , i.e. $E_1\equiv E_2\iff$

$E\in MN$ . In conclusion, $\{I,E\}\subset MN$ and $\frac {IM}{IN}=\frac {EM}{EN}=\frac {AB}{CD}$ and/or $\frac {NE}{NI}=\frac {ME}{MI}=\frac {AB+CD}{|AB-CD|}$ .



PP12. Let $ABC$ be a triangle. Prove that $\boxed{\ A=2B\ \iff\ a^2=b(b+c)\ }$ .

Proof 1. $DA=DB=x\ \wedge\ \triangle CAD\sim\triangle CBA\iff$ $\frac {b}{a}=\frac {x}{c}=\frac {a-x}{b}\iff$ $\frac {b}{a}=\frac {x}{c}=\frac {a-x}{b}=\frac {a}{b+c}\iff$ $a^2=b(b+c)$ .

Proof 2. $E\in AB$ so that $A\in (BE)$ $\implies$ $CB=CE$ and $\triangle EAC\sim\triangle  ECB$ $\iff$ $EC^2=EA\cdot EB\iff$ $a^2=b(b+c)$ .

Proof 3. $F\in AD$ so that $F\not\equiv A$ and $CF=CA\implies$ $AC=CF=FB$ and $CF\parallel AB$ . Prove easily that in the isosceles trapezoid have

$BC^2=AC^2+AB\cdot CF$ , i.e. $a^2=b(b+c)$ . Otherwise, note $CD=x$ and from $\frac {CD}{CF}=\frac {DB}{AB}$ obtain that $\frac {x}{b}=\frac {a-x}{c}=\frac {a}{b+c}\iff$

$x=\frac {ab}{b+c}$ . Since $\triangle CAD\sim\triangle CBA$ obtain $CA^2=CD\cdot CB$ , i.e. $b^2=\frac {ab}{b+c}\cdot a\iff$ $a^2=b(b+c)$ .



PP13. Let an equilateral $\triangle ABC$ and for a point $M\in (BC)$ construct the parallelogram $MNAP$ , where $\left\{\begin{array}{ccc}
N\in (AC) & ; & MN\parallel AB\\\\
P\in (AB) & ; & MP\parallel AC\end{array}\right\|$ . Denote the

projections $(X,Y,Z)$ of the points $(B,C,A)$ on the line $NP$ respectively and $BX=a\ ,\ CY=b ,\ AZ=h$ . Prove that $h^2=ab$ and find $BC=f(a,b)$ .


Proof. Let $PN=l$ and $\left\{\begin{array}{ccc}
MB=x\\\
MC=y\end{array}\right\|$ , i.e. $BC=x+y$ . Apply theorem of Sines to $[NP]$ in $\triangle NAP\ :\l^2=x^2+y^2-xy$ and $\left\{\begin{array}{ccc}
AZ\parallel BX & \implies & \frac ha=\frac yx\\\\
AZ\parallel CY & \implies & \frac hb=\frac xy\end{array}\right\|$ $\implies$

$\left\{\begin{array}{ccc}
h^2 & = & ab\\\\
\frac x{\sqrt a} & = & \frac y{\sqrt b}\end{array}\right\|\implies$ exists $k>0$ so that $k=\frac x{\sqrt a}=\frac y{\sqrt b}=\frac {x+y}{\sqrt a+\sqrt b}\ .$ Since $2\cdot [NAP]=MN\cdot MP\cdot\sin\widehat{NMP}=lh$ get $xy\sqrt 3=2hl\implies$

$3x^2y^2=4ab\left(x^2+y^2-xy\right)\implies$ $3k^2=4\left(a+b-\sqrt {ab}\right)\implies$ $k=2\cdot\sqrt{\frac {a+b-\sqrt{ab}}3}$ and $BC=x+y=k\left(\sqrt a+\sqrt b\right)\implies$

$BC=2\cdot\sqrt{\frac{\left(\sqrt a+\sqrt b\right)\left(a\sqrt a+b\sqrt b\right)}3}\implies$ $\boxed{BC=2\cdot\sqrt{\frac {a^2+b^2+(a+b)\sqrt{ab}}3}}$ .
This post has been edited 106 times. Last edited by Virgil Nicula, Nov 26, 2015, 7:04 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a