338. ROU National Math Olympiad 2012.

by Virgil Nicula, Apr 3, 2012, 11:58 PM

See here (<== click) - Rou O.N.M. , Constanta.

PP1 (Grade IX). $n\in \Bbb{N},\ n\ge 2$ and $\left\{x_k\right|\left| k\in\overline{1,n}\right\|\subset\mathbb R^*_+$ . Prove that $4\left(\dfrac{x_1^3-x_2^3}{x_1+x_2}+\dfrac{x_2^3-x_3^3}{x_2+x_3}+\ \ldots\ +\dfrac{x_n^3-x_1^3}{x_n+x_1}\right)\ \le\ (x_1-x_2)^2+$ $(x_2-x_3)^2+\ \ldots\ +(x_n-x_1)^2$

Proof. $4\sum_{k=1}^n\frac {x_k^3-x_{k+1}^3}{x_k+x_{k+1}}=$ $4\sum \frac {\left(x_k-x_{k+1}\right)\left(x_k^2+x_{k+1}^2+x_kx_{k+1}\right)}{x_k+x_{k+1}}=$ $4\sum \frac {\left(x_k-x_{k+1}\right)\left[\left(x_k+x_{k+1}\right)^2-x_kx_{k+1}\right]}{x_k+x_{k+1}}=$

$4\sum_{k=1}^n\left(x_k^2-x_{k+1}^2\right)-4\sum\frac {x_xx_{k+1}\left(x_k+x_{k+1}-2x_{k+1}\right)}{x_k+x_{k+1}}=$ $-4\sum_{k=1}^nx_kx_{k+1}+2\sum_{k=1}^n\frac {4x_kx_{k+1}\cdot x_{k+1}}{x_k+x_{k+1}}\stackrel{(*)}{\le}$

$-4\sum_{k=1}^nx_kx_{k+1}+2\sum x_{k+1}\left(x_k+x_{k+1}\right)=$ $2\sum_{k=1}^nx_k^2-2\sum_{k=1}^nx_kx_{k+1}=$ $\sum_{k=1}^n\left(x_k-x_{k+1}\right)^2$ .

Remark. I used the simple inequality $\boxed{\frac {4xy}{x+y}\le x+y}\ (*)$ , where $x>0$ and $y>0$ .



PP2 (grade IX). Let $ABC$ be a triangle with $AB\perp AC$ . Consider the altitude $AH$ , the $B$-angle bisector $BD$ and the $C$-angle bisector $CE$ , where $H\in BC$ ,

$D\in AC$ and $E\in AB$ . Denote the intersections $P\in AH\cap CE$ , $Q\in AH\cap BD$ and the midpoints $M$ , $N$ of $[QD]$ , $[PE]$ respectively. Prove that $MN\parallel BC$ .


Proof. Choose origin $A$ and let $\overline {AX}=X$ . Thus, $B\circ C=0$ , $\frac {HB}{HC}=\frac {c^2}{b^2}$ and $\left\{\begin{array}{ccc}
\frac {DA}{c}=\frac {DC}{a}=\frac {AC}{a+c} & \implies & \boxed{D=\frac {c}{a+c}\cdot C}\ (1)\\\\
\frac {EA}{b}=\frac {EB}{a}=\frac {AB}{a+b} & \implies & \boxed{E=\frac {b}{a+b}\cdot B}\ (2)\end{array}\right\|$ . Menelaus' theorem

to the transversals : $\blacktriangleright\ \overline{AQH}/\triangle BCD\ :\ \frac {AD}{AC}\cdot$ $\frac {HC}{HB}\cdot\frac {QB}{QD}=1\implies$ $\frac {QB}{QD}=\frac {a+c}{c}\cdot\frac {c^2}{b^2}=\frac {c}{a-c}\implies$ $Q=\frac {a-c}{a}\cdot B+\frac ca\cdot D\stackrel{(1)}{\implies}$ $Q=\frac {b^2\cdot B+c^2\cdot C}{a(a+c)}$ .

Therefore, $2\cdot M=Q+D=\frac {b^2\cdot B+c^2\cdot C}{a(a+c)}+\frac {c}{a+c}\cdot C=$ $ \frac {\left(a^2-c^2\right)\cdot B+c(a+c)\cdot C}{a(a+c)}\implies$ $\boxed{2\cdot M=\frac {(a-c)\cdot B+c\cdot C}{a}}\ (3)$ .

$\blacktriangleright\ \overline{APH}/\triangle BCE\ :\ \frac {AE}{AB}\cdot$ $\frac {HB}{HC}\cdot\frac {PC}{PE}=1\implies$ $\frac {PC}{PE}=\frac {a+b}{b}\cdot\frac {b^2}{c^2}=\frac {b}{a-b}\implies$ $P=\frac {a-b}{a}\cdot C+\frac ba\cdot E\stackrel{(2)}{\implies}$ $P=\frac {c^2\cdot C+b^2\cdot B}{a(a+b)}$ .

Therefore, $2\cdot N=P+E=\frac {c^2\cdot C+b^2\cdot B}{a(a+b)}+\frac {b}{a+b}\cdot B=$ $ \frac {\left(a^2-b^2\right)\cdot C+b(a+b)\cdot B}{a(a+b)}\implies$ $\boxed{2\cdot N=\frac {(a-b)\cdot C+b\cdot B}{a}}\ (4)$ .

In conclusion, $2\cdot\overline {MN}=2\cdot(N-M)=2\cdot N-2\cdot M=$ $\frac {b\cdot B+(a-b)\cdot C}{a}-\frac {(a-c)\cdot B+c\cdot C}{a}\implies$ $\overline{MN}=\frac {b+c-a}{2a}\cdot \overline{CB}\implies$ $MN\parallel BC$ .



PP3 (grade VII). Let $P$ be an interior point of the square $ABCD$ so that $PA=1\ ,\ PB=\sqrt 2\ ,\ PC=\sqrt 3$ . Ascertain the length of $[PD]$ and $m\left(\widehat{APB}\right)$ .

Proof 1. Let projections $M$ , $N$ of $P$ on $AB$ , $CD$ respectively. So $1=PB^2-PA^2=MB^2-MA^2=NC^2-ND^2=$

$PC^2-PD^2=3-PD^2\implies$ $\boxed{PD=\sqrt 2}\implies$ $PB=PD\implies$ $P\in AC\implies$ $m\left(\widehat{MPA}\right)=45^{\circ}$ and $PM=\frac {\sqrt 2}{2}=$

$\frac 12\cdot PB\implies$ $m\left(\widehat{MPB}\right)=60^{\circ}$ . Thus, $m\left(\widehat{APB}\right)=m\left(\widehat{MPA}\right)+m\left(\widehat{MPB}\right)\implies \boxed{m\left(\widehat{APB}\right)=105^{\circ}}$ .

Proof 2. Let $O\in AC\cap BD$ and $\left\{\begin{array}{c}
4\cdot PO^2=2\left(PA^2+PC^2\right)-AC^2\\\\
4\cdot PO^2=2\left(PB^2+PD^2\right)-BD^2\end{array}\right\|\implies$ $PA^2+PC^2=PB^2+PD^2\implies$ $1+3=2+PD^2\implies$ $\boxed{PD=\sqrt 2}\implies$ $PB=PD$

i.e. $m\left(\widehat{MPA}\right)=45^{\circ}$ . Let $\left\|\begin{array}{c}
AB=x\\\
\phi =m\left(\widehat{APB}\right)\end{array}\right\|$ . Thus, $\cos\phi +\cos \widehat {BPC}=0\implies$ $\frac {3-x^2}{2\sqrt 2}+\frac {5-x^2}{2\sqrt 6}=0\implies$ $x^2=\frac {5+3\sqrt 3}{1+\sqrt 3}\implies$ $x^2=2+\sqrt 3\implies$ $x=\sqrt {2+\sqrt 3}=$

$\sqrt {\frac 32}+\sqrt {\frac 12}\implies$ $\boxed{AB=\frac {\sqrt 2\left(1+\sqrt 3\right)}{2}}$ . Therefore, $MA=MP=\frac {\sqrt 2}{2}$ and $MB=\frac {\sqrt 6}{2}$ . Hence $2\cdot MP=AP\implies$ $m\left(\widehat{MPB}\right)=60^{\circ}\implies$ $\boxed{m\left(\widehat{APB}\right)=105^{\circ}}$ .

Remark. $\cos\widehat{ABP}=\frac {x^2+1}{2x\sqrt 2}=$ $\frac {3+\sqrt 3}{2\sqrt 2\cdot\frac {\sqrt 2\left(1+\sqrt 3\right)}{2}}=\frac {\sqrt 3}{2}\implies$ $m\left(\widehat{ABP}\right)=30^{\circ}$ . Since $m\left(\widehat{MPA}\right)=45^{\circ}$ obtain that $m\left(\widehat{APB}\right)=105^{\circ}$ .

Generally. $P$ is interior w.r.t. $B$-right and isosceles $\triangle ABC$ , where $MA=a$ , $MB=b$ , $MC=c\implies$ $\boxed{2\cdot AB^2=a^2+c^2+4\sigma (b\sqrt 2,a,c)}$ . In our particular case

obtain $2x^2=1+3+4\sigma (2,1,\sqrt 3)=4+4\cdot\frac {1\cdot\sqrt 3}{2}=4+2\sqrt 3\implies$ $x^2=2+\sqrt 3$ . I denoted $\sigma (u,v,w)$ - the area of the triangle with lengths of the sides $\{u,v,w\}$ .


PP4 (grade VII). In the $A$-right-angled triangle $ABC$ consider the points $D\in (AC)$ and $E\in (BD)$ so that $\widehat{ABC}\equiv\widehat{ECD}\equiv\widehat{CED}$ . Prove that $BE=2\cdot AD$ .

Proof 1 (synthetic). Let $D'$ be symmetric of $D$ w.r.t. $A$ . Thus, $\triangle DBD'$ is $B$-isosceles , i.e. $m\left(\widehat{BD'D}\right)=m\left(\widehat{BDD'}\right)=2B$ .

So $m\left(\widehat{CBD'}\right)=m\left(\widehat{CBA}\right)+m\left(\widehat{ABD'}\right)=$ $B+\left(90^{\circ}-2B\right)=$$90^{\circ}-B=m\left(\widehat{BCD'}\right)$ , i.e. $\triangle CBD'$ is $D'$-isosceles.

From $DC=DE$ , $D'C=D'B=DB$ obtain $BE=BD-DE=CD'-DC=DD'=2\cdot AD$ , i.e. $\boxed{BE=2\cdot AD}$ .

Proof 2 (metric). Denote $F\in CE\cap AB$ . Observe that $\left\{\begin{array}{cccccc}
m\left(\widehat{ACF}\right)=B & \implies & \triangle ACF\sim\triangle ABC & \implies & \frac {b}{c}=\frac {CF}{a}=\frac {AF}{b} & \begin{array}{cc}
\nearrow & CF=\frac {ab}{c}\\\\
\searrow & AF=\frac {b^2}{c}\end{array}\\\\
m\left(\widehat{FEB}\right)=B & \implies & \triangle FBE\sim\triangle FCB & \implies & \frac {FB}{FC}=\frac {BE}{a}=\frac {FE}{FB} & \begin{array}{cc}
\rightarrow &  BE=\frac {c^2-b^2}{b}\end{array}\end{array}\right\|$ $\implies$

$c^2+AD^2=BD^2=(BE+ED)^2=$ $(BE+DC)^2=[(BE+b)-AD]^2\implies$ $c^2=\left(\frac {c^2}{b}\right)^2-2AD\cdot \left(\frac {c^2}{b}\right)\implies$ $AD=\frac {c^2-b^2}{2b}\implies$ $BE=2\cdot AD$ .
This post has been edited 57 times. Last edited by Virgil Nicula, Nov 18, 2015, 12:51 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a