387. Algebra (II).

by Virgil Nicula, Sep 27, 2013, 6:10 AM

PP13. Prove that $\odot\begin{array}{ccccc}
\nearrow & \tan x+\tan y & = & 2 & \searrow\\\\
\searrow & \frac 1{\cos x}+\frac 1{\cos y} & = & 3 & \nearrow\end{array}\odot\ \implies\ \sin x+\sin y=\frac {48}{41}$ .

Proof. Denote $\left\{\begin{array}{c}
\tan\frac x2=a\\\\
\tan\frac y2=b\end{array}\right\|\ \ \wedge\ \ \left\{\begin{array}{ccc}
a+b & = & S\\\\
ab & = & P\end{array}\right\|$ and $\left\{\begin{array}{ccccc}
A & = & \tan x+\tan y & = & 2\\\\
B & = & \frac 1{\cos x}+\frac 1{\cos y} & = & 3\end{array}\right\|$ . Therefore:

$\blacktriangleright\ \frac 23=\frac AB=\frac {\sin (x+y)}{\cos x+\cos y}=$ $\frac {2\sin\frac {x+y}2\cos\frac {x+y}2}{2\cos\frac {x+y}2\cos\frac {x-y}2}=$ $\frac {\sin\frac {x+y}2}{\cos\frac {x-y}2}=$ $\frac {\sin\frac x2\cos\frac y2+\sin\frac y2\cos\frac x2}{\cos\frac x2\cos\frac y2+\sin\frac x2\sin\frac y2}=$ $\frac {\tan\frac x2+\tan\frac y2}{1+\tan\frac x2\tan\frac y2}=$ $\frac {a+b}{1+ab}=\frac {S}{1+P}\ ;\ \boxed{3S=2(1+P)}\ (1)$ .

$\blacktriangleright\ 5=A+B=\frac {1+\sin x}{\cos x}+\frac {1+\sin y}{\cos y}=$ $\frac {\left(\cos\frac x2+\sin\frac x2\right)^2}{\cos^2\frac x2-\sin^2\frac x2}+\frac {\left(\cos\frac y2+\sin\frac y2\right)^2}{\cos^2\frac y2-\sin^2\frac y2}=$ $\frac {\cos\frac x2+\sin\frac x2}{\cos\frac x2-\sin\frac x2}+\frac {\cos\frac y2+\sin\frac y2}{\cos\frac y2-\sin\frac y2}=$ $\frac {1+a}{1-a}+\frac {1+b}{1-b}=\frac{2(1-P)}{1-S+P}\ ;\ \boxed{5S=7P+3}\ (2)$

Hence $(1)\ \wedge\ (2)\ \implies\ \left\{\begin{array}{ccc}
S & = & \frac 8{11}\\\\
P & = & \frac 1{11}\end{array}\right\|\ \implies\ 11t^2-8t+1=0$ $\odot\begin{array}{ccccc}
\nearrow & a & \implies & 11a^2=8a-1 & \searrow \\\\
\searrow & b & \implies & 11b^2=8b-1 & \nearrow\end{array}\odot$ . In conclusion, $\sin x+\sin y=$ $\frac {2\tan\frac x2}{1+\tan^2\frac x2}+\frac {2\tan\frac y2}{1+\tan^2\frac y2}=$

$2\cdot\left(\frac {a}{1+a^2}+\frac b{1+b^2}\right)=$ $2\cdot\left(\frac {11a}{8a+10}+\frac {11b}{8b+10}\right)=$ $11\cdot\left(\frac a{4a+5}+\frac b{4b+5}\right)=$ $11\cdot\frac {8P+5S}{16P+20S+25}=$ $11\cdot\frac {8\cdot\frac 1{11}+5\cdot\frac 8{11}}{16\cdot\frac 1{11}+20\cdot \frac 8{11}+25}=$ $\frac {48}{25+\frac {176}{11}}=\frac {48}{25+16}=\frac {48}{41}$ .



PP14. Find all pairs (x,y) of real numbers such that $16^{x^{2}+y} + 16^{x+y^{2}} = 1$

Proof. $x^2 + x + \frac{1}{4} + y^2 + y +\frac{1}{4} = \left(x + \frac{1}{2}\right)^2  +  \left(y + \frac{1}{2}\right)^2\ge 0\implies$ $x^2 + y + y^2 + $ $x \ge -\frac{1}{2}\ \stackrel{(AM-GM)}{\implies}\ 1 = $ $16^{x^2+y} + 16^{x+y^2} \ge $ $2\cdot \left[16^{\left(x^2+y\right)+\left(y^2+x\right)}\right]^{\frac{1}{2}} \ge $

$2\cdot \left(16^{-\frac{1}{2}}\right)^{\frac{1}{2}} = 1$ . This gives the case of equality so that $\left(x+\frac{1}{2}\right)^2 + \left(y+\frac{1}{2}\right)^2 = 0$. So, $(x,y) = \left(-\frac{1}{2}, -\frac{1}{2}\right)$ which is true when put into the original equation.



PP15. Find real numbers $x$ so that $2^x+2^{\sqrt{1-x^2}}=3$ .

Proof. Denote the set $\mathbb S$ of the zeroes of $f(x)=3$ , where $f(x)=2^x+2^{\sqrt{1-x^2}}\ ,\ x\in[0,1]$ . Thus, $f(0)=f(1)=3$ , i.e. $\{0,1\}\subset \mathbb S\subset[0,1]$ . Let $x\in (0,1)\cap \mathbb S$ . Thus,

$\left\{\begin{array}{cccccccc}
f(x)=2\cdot 2^{x-1}+2^{\sqrt{1-x^2}} & \implies & 3\ge 3\cdot\sqrt[3]{2^{2(x-1)+\sqrt{1-x^2}}} & \implies & 2(x-1)+\sqrt{1-x^2}\le 0  & \implies & x\le \frac 35\\\\
f(x)=2^x+2\cdot 2^{\sqrt{1-x^2}-1} & \implies & 3\ge 3\cdot\sqrt[3]{2^{x+2\left(\sqrt{1-x^2}-1\right)}} & \implies & x+2\left(\sqrt{1-x^2}-1\right)\le 0  & \implies & x\ge\frac 45\end{array}\right\|$ $\implies x\in \left(0,\frac 35\right]\cap\left[\frac 45,1\right)=\emptyset$ , i.e. $\mathbb S=\{0,1\}$ .



PP16. Let $f(x)\equiv x^3-21x+35=0\ \odot\begin{array}{ccc}
\nearrow & a & \searrow\\\\
\rightarrow & b & \rightarrow\\\\
\searrow & c & \nearrow\end{array}\odot$ . Prove that $a^2+2a-14\in\{b,c\}$ .

Proof 1. $f(x)=(x-a)g(x)\ ,\ g(x)=\left[x^2+ax+\left(a^2-21\right)\right]$ . Thus, $a^2+2a-14\in\{b,c\}\iff$ $g\left(a^2+2a-14\right)=0\iff$

$ \left(a^2+2a-14\right)^2+a\left(a^2+2a-14\right)+\left(a^2-21\right)=0\iff$ $\left(a^2+2a-14\right)\left(a^2+3a-14\right)+\left(a^2-21\right)=0\iff$

$\left(a^2-14\right)^2+5a\left(a^2-14\right)+6a^2+\left(a^2-21\right)=0\iff$ $a^4+5a^3-21a^2-70a+175=0\iff$ $(a+5)\left(a^3-21a+35\right)=0$ , O.K.

Proof 2. Observe that $\boxed{b+c=-a}$ and $-21=bc+a(b+c)=bc-a^2\implies$ $\boxed{bc=a^2-21}$ . Denote $\left\{\begin{array}{ccc}
a^2+2a-14 & = & u\\\\
-\left(a^2+3a-14\right) & = & v\end{array}\right\|$ . Therefore, $\boxed{u+v=b+c=-a}$

and $bc-uv=\left(a^2-21\right)+\left(a^2+2a-14\right)\left(a^2+3a-14\right)=$ $\left(a^2-21\right)+\left[\left(a^2-14\right)^2+5a\left(a^2-14\right)+6a^2\right]=$ $\left(a^2-21\right)+\left(a^4+5a^3-22a^2-70a+196\right)=$

$a^4+5a^3-21a^2-70a+175=$ $(a+5)\left(a^3-21a+35\right)=0\implies uv=bc$ . In conclusion, $\left\{\begin{array}{ccccc}
u+v & = & b+c & = & -a\\\\
uv & = & bc & = & a^2-21\end{array}\right\|\iff$ $\{u,v\}=\{b,c\}$ , i.e. $f(u)=f(v)=0$ .

Proof 3. Denote $f(x)\equiv x^3-21x+35$ where $f(x)=0\odot\begin{array}{ccc}
\nearrow & a & \searrow\\\\
\rightarrow & b & \rightarrow\\\\
\searrow & c & \nearrow\end{array}\odot$ and $m=a^2+2a-14$ . Thus, $\left\{\begin{array}{c}
a^3-21a+35=0\\\\
a^2+2a-(m+14)=0\end{array}\right|\begin{array}{cc}
(-1) & \searrow \\\\
a & \nearrow\end{array}\bigoplus\implies$

$\left\{\begin{array}{c}
2a^2+(7-m)a-35=0\\\\
a^2+2a-(m+14)=0\end{array}\right|\begin{array}{c}
\searrow\\\\
\nearrow\end{array}\odot$ have at least one common root $\iff$ $\left|\begin{array}{cc}
2 & -35\\\\
1 & -(m+14)\end{array}\right|^2=\left|\begin{array}{cc}
2 & 7-m\\\\
1 & 2\end{array}\right|\cdot\left|\begin{array}{cc}
7-m & -35\\\\
2 & -(m+14)\end{array}\right|\iff$

$\left(-2m-28+35\right)^2=(4-7+m)\left(m^2+7m-98+70\right)\iff$ $(2m-7)^2=(m-3)\left(m^2+7m-28\right)\iff$

$4m^2-28m+49=m^3+4m^2-49m+84\iff$ $m^3-21m+35=0\iff$ $f(m)=0\iff$ $m\in\{a,b.c\}$ .


Proof 4. Observe that $\boxed{b+c=-a}$ and $-21=bc+a(b+c)=bc-a^2\implies$ $\boxed{bc=a^2-21}$ . Thus, $a^2+2a-14\in\{b,c\}\iff$

$\left(a^2+2a-14\right)^2-(b+c)\left(a^2+2a-14\right)+bc=0\iff$ $\left(a^2+2a-14\right)^2+a\left(a^2+2a-14\right)+\left(a^2-21\right)=0\iff$

$\left(a^2+2a-14\right)\left(a^2+3a-14\right)+\left(a^2-21\right)=0\iff$ $\left[\left(a^2-14\right)^2+5a\left(a^2-14\right)+6a^2\right]+\left(a^2-21\right)=0\iff$ $a^4+5a^3-21a^2-70a+175=0\iff$

$a\left(a^3-21a+35\right)+5a^3-35a-70a+175=0\iff$ $a\left(a^3-21a+35\right)+5\left(a^3-21a+35\right)=0\iff$ $(a+5)\left(a^3-21a+35\right)=0$ , what is truly.

Proof 5. Observe that $\boxed{b+c=-a}$ and $-21=bc+a(b+c)=bc-a^2\implies$ $\boxed{bc=a^2-21}$ . Thus, $x^3-21x+35=(x-2)(x^2+2x-14)-(3x-7)$ and for

$x:=a\ ,\ f(a)=0$ obtain that $(a-2)(a^2+2a-14)-(3a-7)=0\implies$ $\boxed{a^2+2a-14=\frac {3a-7}{a-2}}$ . In conclusion, $a^2+2a-14\in\{b,c\}\iff$

$\frac {3a-7}{a-2}\in \{b,c\}\iff$ $\left(\frac {3a-7}{a-2}\right)^2-(b+c)\cdot \frac {3a-7}{a-2}+bc=0\iff$ $(3a-7)^2+a(3a-7)(a-2)+(a-2)^2(a^2-21)=0\iff$

$a^4-a^3-21a^2+56a-35=0\iff$ $(a-1)(a^3-21a+35)=0$ , what is truly because $a\ne 1$ and $f(a)=a^3-21a+35=0$ .

Remark. $\frac {3a-7}{a-2}=a^2+2a-14\in\{b,c\}\iff$ $f\left(\frac {3a-7}{a-2}\right)=0\iff$ $(3a-7)^3-21(3a-7)(a-2)^2+35(a-2)^3=0\iff$ $a^3-21a+35=0$ what is truly.



PP17. Let $\{a,b,c,x,y,z\}\subset\mathbb R$ such that $\left|\begin{array}{ccc}
x+y+z & \ge & 0\\\\
xy+yz+zx & > & 0\end{array}\right|$. Prove that that $x(b-c)^2 + y(c-a)^2 + z(a-b)^2 \ge 0$ .

Proof 1. If all of $x,y,z$ are non-negative, then the inequality is obvious. Suppose w.l.o.g. that $x<0$ . Then $y + z \geq -x > 0$ . Write the inequality as $ a^2 (y + z) +  a (-2 c y - 2 b z) + $

$b^2 x - 2 b c x + c^2 x + c^2 y + b^2 z \geq 0$ . This is a convex quadratic in $a$ because $y + z > 0$ . The inequality is true $\iff $ $\Delta^{\prime}_a\le 0$ . But $-\Delta^{\prime}_a = -(b - c)^2 (x y + x z + y z) \leq 0$

because $xy + xz + yz > 0$ , so we are done.

Proof 2. $0\le \left[(bz+cy)-a(y+z)\right]^2+(b-c)^2(xy+yz+zx)=$ $\left[y(a-c)+z(a-b)\right]^2+(b-c)^2(xy+yz+zx)=$

$a^2(y+z)^2+b^2(z+x)(z+y)+c^2(y+x)(y+z)-$ $2bcx(y+z)-2acy(y+z)-2abz(y+z)=$

$(y+z)\left[a^2(y+z)+b^2(z+x)+c^2(y+x)-2bcx-2acy-2abz\right]=(y+z)\left[x(b-c)^2 + y(c-a)^2 + z(a-b)^2 \right]$ and $y+z\ge 0$ a.s.o.



PP18. Prove that for any real $x$ there is the equivalence $\sqrt{5+2x}-\sqrt {1-2x}\le$ $ (1+x)^2\ \iff\ x\in\left[-\frac 52,-1\right]\cup\left\{\sqrt 2-1\right\}$ .

Proof. Observe that $x\in\left[-\frac 52,\frac 12\right]$ , i.e. $|x+1|\le\frac 32$ . Denote $x+1=y$ , where $|y|\le\frac 32$ . Our inequation becomes $\boxed{\sqrt{2y+3}-\sqrt{3-2y}\le y^2}\ (*)$ , where $|y|\le\frac 32$ . Since

$\sqrt{2y+3}\le\sqrt{3-2y}\iff $ $2y+3\le 3-2y\iff y\le 0$ , then for any $y\in\left[-\frac 32,0\right]$ the inequality $(*)$ is truly. Suppose that $y\in \left(0,\frac 32\right]$ . In this case, $\sqrt{2y+3}-\sqrt{3-2y}>0$

and the inequality $(*)$ is equivalently with $\left(\sqrt{2y+3}-\sqrt{3-2y}\right)^2\le y^4\iff$ $6-2\sqrt{9-4y^2}\le y^4\iff$ $6-y^4\le 2\sqrt{9-4y^2}\iff$ $y^8-12y^4+16y^2\le 0\iff$

$y^6-12y^2+16\le 0\iff$ $\left(y^2+4\right)\left(y^2-2\right)^2\le 0\iff$ $y^2=2\iff$ $y\in \left\{\pm\sqrt 2\right\}$ and $y>0\iff$ $y=\sqrt 2$ . In conclusion, $y\in\left[-\frac 32,0\right]\cup \left\{\sqrt 2\right\}$ , i.e.

$x\in\left[-\frac 52,-1\right]\cup\left\{\sqrt 2-1\right\}$ .


PP19. Let $\{a,b,c,d\}\subset\mathbb R^*_+$ so that $\left\{\begin{array}{ccc}
a^2+b^2& = & c^2+d^2\\\\
a^3+b^3 & = & c^3+d^3\end{array}\right\|$ . Prove that $ab=cd$ .

Proof 1. Denote $ab=u\ ,\ cd=v$ . Thus, $\left\{\begin{array}{c}
a^2+b^2=c^2+d^2\\\\
a^3+b^3=c^3+d^3\end{array}\right\|\implies$ $\left(a^2+b^2\right)^3-\left(a^3+b^3\right)^2=\left(c^2+d^2\right)^3-\left(c^3+d^3\right)^2\implies$ $3a^2b^2\left(a^2+b^2\right)-2a^3b^3=$

$3c^2d^2\left(c^2+d^2\right)-2c^3d^3\implies$ $3u^2\left(a^2+b^2\right)-2u^3=3v^2\left(c^2+d^2\right)-2v^3\implies$ $3\left(a^2+b^2\right)\left(u^2-v^2\right)=2\left(u^3-v^3\right)$ . Suppose that $u\ne v$ .

Thus, $3\left(a^2+b^2\right)(u+v)=2\left(u^2+uv+v^2\right)\implies$ $\frac {2\left(u^2+uv+v^2\right)}{3(u+v)}=$ $\left\{\begin{array}{c}
a^2+b^2\ge 2ab=2u\\\\
c^2+d^2\ge 2cd=2v\end{array}\right\|\implies$ $\frac {u^2+uv+v^2}{3(u+v)}\ge\max\{u,v\}\ge\frac {u+v}2\implies$

$2\left(u^2+uv+v^2\right)\ge 3(u+v)^2\implies$ $u^2+4uv+v^2\le 0$ , what is falsely. In conclusion, $u=v$ , i.e. $ab=cd$ .

Proof 2. $\left\{\begin{array}{cc}
x^2-mx+n=0 & \odot\begin{array}{cc}
\nearrow & a\\\\
\searrow & b\end{array}\\\\
x^2-px+q=0 & \odot\begin{array}{cc}
\nearrow & c\\\\
\searrow & d\end{array}\end{array}\right\|$ , where $\left\{\begin{array}{ccc}
a+b=m & ; & ab=n\\\\
c+d=p & ; & cd=q\end{array}\right\|$ . Thus, $\left\{\begin{array}{ccc}
a^2+b^2=c^2+d^2 & \iff & m^2-2n=p^2-2q\\\\
a^3+b^3=c^3+d^3 & \iff & m^3-3mn=p^3-3pq\end{array}\right\|\implies$

$\boxed{m^2=p^2+2(n-q)}\ (1)\implies$ $m\left[p^2+2(n-q)\right]-3mn=p^3-3pq\implies$ $m=\frac {p\left(p^2-3q\right)}{p^2-(n+2q)}\stackrel{(1)}{\implies}$ $\left[\frac {p\left(p^2-3q\right)}{p^2-(n+2q)}\right]^2=p^2+2(n-q)\implies$

$p^2\left(p^2-3q\right)^2=\left[p^2+2(n-q)\right]\cdot\left[p^2-(n+2q)\right]^2\implies$ $\boxed{3\left(n^2-q^2\right)p^2=2(n-q)(n+2q)^2}$ . Suppose w.l.o.g. that $n\ne q$ . Thus,

$3(n+q)p^2=2(n+2q)^2\ \wedge\ 3(n+q)m^2=2(q+2n)^2\implies$ $\frac {2(n+2q)^2}{3(n+q)} +\frac {2(q+2n)^2}{3(n+q)}=p^2+m^2\ge 4(q+n)\implies$ $(n+2q)^2+(q+2n)^2\ge $

$6(n+q)^2\implies$ $n^2+q^2+4nq\le 0$ , what is falsely. In conclusion, $n=q$ , i.e. $ab=cd$ .

Proof 3. $\left\{\begin{array}{c}
\{a,b,c,d\}\subset\mathbb R^*_+\\\\
a^2+b^2=c^2+d^2\end{array}\right\|\implies$ $(\exists )\ r\in\mathbb R^*_+$ and $\{\phi ,\psi\}\subset \left(0,\frac {\pi}{2}\right)$ so that $\left\{\begin{array}{c}
a^2+b^2=c^2+d^2=r^2\\\\
a=r\cos\phi\ ;\ b=r\sin\phi\\\\
c=r\cos\psi\ ;\ d=r\sin\psi\end{array}\right\|$ . Observe that $\left\{\begin{array}{c}
2ab=r^2\sin 2\phi\\\\
2cd=r^2\sin 2\psi\end{array}\right\|$ and

$\boxed{ab=cd\iff \sin 2\phi =\sin 2\psi\iff \phi =\psi\ \vee\ \phi +\psi =\frac {\pi}2}\ (*)$ . Denote the function $f(x)=\sin^3x+\cos^3x\ , x\in\left(0,\frac {\pi}2\right)$ . Prove easily that

$(\forall )\ x\in \left(0,\frac {\pi}2\right)$ we have $f\left(\frac {\pi}2-x\right)=f(x)$ , i.e. the line $x=\frac {\pi}4$ is symmetry axis for the graph $G_f$ and on $\left(0,\frac {\pi}4\right)$ the function $f$ is decreasing $(\searrow )$ .

In conclusion, $a^3+b^3=c^3+d^3\iff \cos^3\phi +\sin^3\phi =\cos^3\psi +\sin^3\psi$ , where $\{\phi ,\psi\}\subset \left(0,\frac {\pi}{2}\right)\iff$ $f(\phi )=f(\psi )\iff$ $\phi =\psi\ \vee\ \phi +\psi =\frac {\pi}2\stackrel{(*)}{\iff}ab=cd$ .



PP20. Let $p(x)=x^5+x^2+1=0$ with the roots $x_k\ ,\ k\in\overline{1,5}$ . Denote $y_k=x_k^2-2$ , where $k\in\overline{1,5}$. Determine the product $\prod_{k=1}^5 y_k$ .

Proof 1 (mavropnevma). Let $p(x) = x^5+x^2+1 = \prod_{k=1}^5\left(x-x_k\right)$ . Then $t(x) = p(x)p(-x) = \prod_{k=1}^5\left(x_k^2 - x^2\right)$ . So $t\left(\sqrt{2}\right) = \prod_{k=1}^5\left(r_k^2 - 2\right) = \prod_{k=1}^5q\left(x_k\right)$ .

But $t(x) = p(x)p(-x) = \left(x^5+x^2+1\right)\left(-x^5+x^2+1\right) = -x^{10} + \left(x^2+1\right)^2$ . So $t\left(\sqrt{2}\right) = -2^5 + (2+1)^2 = -23$ .


Proof 2. I"ll ascertain the equation with the roots $y_k\ ,\ k\in\overline{1,5}$ . Eliminate the variable $x$ between the relations $p(x)=0$ and $y=x^2-2$ . Therefore, $x^2=y+2$ and

$x^5+x^2+1=0\implies$ $x^2=y+2$ and $x\cdot \left(x^2\right)^2+\left(x^2\right)+1=0\implies$ $x(y+2)^2+(y+2)+1=0\implies$ $x=-\frac {y+3}{(y+2)^2}$ . Hence $x^2=y+2\implies$

$\left[-\frac {y+3}{(y+2)^2}\right]^2=y+2\implies$ the equation $g(y)\equiv (y+2)^5-(y+3)^2=0$ has the roots $y_k\ ,\ k\in\overline{1,5}$ . In conclusion, $\prod_{k=1}^5 y_k=-g(0)=-23$ .



PP21. Let $p(x)=x^5+x^2+1=0$ with the roots $x_k\ ,\ k\in\overline{1,5}$ . Find the equation with the roots $y_k=x_k^2+x_k+1$ , where $k\in\overline{1,5}$ and $\prod_{k=1}^5 y_k$ .

Proof 1 (mavropnevma). Let $p(x) = x^5+x^2+1 = \prod_{k=1}^5\left(x-x_k\right)$ . Take $\omega$ a primitive complex $3$-root of unity. Thus $\omega^3=\overline{\omega}^3 = \omega\overline{\omega} =1$ and $\omega + \overline{\omega} =-1$ .

Then $p(\omega)p\left(\overline{\omega}\right) =$ $ \left[\prod_{k=1}^5\left(\omega-x_k\right)\right] \left [\prod_{k=1}^5\left(\overline{\omega}-x_k\right)\right] =$ $  \prod_{k=1}^5\left(\omega-x_k\right)\left(\overline{\omega} - x_k\right) =$ $  \prod_{k=1}^5\left(1+x_k+x_k^2\right) =$ $ \prod_{k=1}^5 y_k$ . But $p(\omega)p\left(\overline{\omega}\right) = \left(2\omega^2+1\right)\left(2\overline{\omega}^2+1\right) = 3$ .

Proof 2. Eliminate $x$ between the relations $\left\{\begin{array}{ccc}
x^5+x^2+1 & = & 0\\\\
x^2+x+(1-y) & = & 0\end{array}\right\|$ and obtain the following chain: $\left\{\begin{array}{c}
x^5+x^2+1\\\\
x^2+x+(1-y)\end{array}\right|\left|\begin{array}{cc}
\odot & -1\\\\
\odot & x^3\end{array}\right\|\ \bigoplus\implies$

$\left\{\begin{array}{c}
x^4+(1-y)x^3-x^2-1\\\\
x^2+x+(1-y)\end{array}\right|\left|\begin{array}{cc}
\odot & -1\\\\
\odot & x^2\end{array}\right\|\ \bigoplus\implies$ $\left\{\begin{array}{c}
yx^3+(2-y)x^2+1\\\\
x^2+x+(1-y)\end{array}\right|\left|\begin{array}{cc}
\odot & 1\\\\
\odot & -yx\end{array}\right\|\ \bigoplus\implies$ $\left\{\begin{array}{c}
2(1-y)x^2-y(1-y)x+1\\\\
x^2+x+(1-y)\end{array}\right|$ .

Now see PP12 from
here. The equations $\left\{\begin{array}{ccc}
2(1-y)x^2-y(1-y)x+1 & = & 0\\\\
x^2+x+(1-y) & = & 0\end{array}\right|$ have at least one common root $\iff$

$\left|\begin{array}{cc}
2(1-y) & 1\\\\
1 & 1-y\end{array}\right|^2=\left|\begin{array}{cc}
2(1-y) & -y(1-y)\\\\
1 & 1\end{array}\right|\cdot\left|\begin{array}{cc}
-y(1-y) & 1\\\\
1 & 1-y\end{array}\right|^2\iff$ $\left[2(y-1)^2-1\right]^2+(1-y)(2+y)\left[y(1-y)^2+1\right]=0\implies$

$\boxed{y^5-5y^4+13y^3-14y^2+7y-3=0}$ , what is the equation with the roots $y_k=x_k^2+x_k+1\ ,\ k\in\overline{1,5}$ and $\boxed{\ \prod_{k=1}^5 y_k=3\ }$ .



PP22. Let $f(x)=x^3+3x+1=0\begin{array}{ccc}
\nearrow & x_1 & \searrow\\\\
\rightarrow & x_2 & \rightarrow\\\\
\searrow & x_3 & \nearrow\end{array}\odot$ , i.e. $(\forall ) k\in\overline{1,3}\ ,\ x_k^3+3x_k+1=0$ . Evaluate $p=\prod_{k=1}^3(x_k^2+x_k+1)$ .

Proof 1. Denote $y_k=x_k^2+x_k+1\ ,\ k\in\overline{1,3}$ . Observe that $f(x)=x^3+3x+1=\prod_{k=1}^3\left(x-x_k\right)$ and $(\forall ) k\in\overline{1,3}\ ,\ x_k\ne 1$ and $y_k=\frac {x_k^3-1}{x_k-1}=$ $\frac {-(3x_k+1)-1}{x_k-1}=$

$\frac {3x_k+2}{1-x_k}\implies$ $\boxed{y_k=(-3)\cdot\frac {-\frac 23-x_k}{1-x_k}}$ . Thus, $p=\prod_{k=1}^3y_k=\prod_{k=1}^3\left[(-3)\cdot\frac {-\frac 23-x_k}{1-x_k}\right]\implies$ $p=(-3)^3\cdot\frac {\prod\limits_{k=1}^3\left(-\frac 23-x_k\right)}{\prod\limits_{k=1}^3\left(1-x_k\right)}\implies$ $p=\frac {-27\cdot f\left(-\frac 23\right)}{f(1)}\implies$ $\boxed{p=7}$ .

Proof 2. Let $f(x) = x^3+3x+1 = \prod_{k=1}^3\left(x-x_k\right)$ . Take $\omega$ a primitive complex $3$-root of unity. Thus $\omega^3=\overline{\omega}^3 = \omega\overline{\omega} =1$ and $\omega + \overline{\omega} =-1$ . Then $f(\omega)f\left(\overline{\omega}\right) =$

$ \left[\prod_{k=1}^3\left(\omega-x_k\right)\right] \left [\prod_{k=1}^3\left(\overline{\omega}-x_k\right)\right] =$ $  \prod_{k=1}^3\left(\omega-x_k\right)\left(\overline{\omega} - x_k\right) =$ $  \prod_{k=1}^3\left(1+x_k+x_k^2\right) =$ $ \prod_{k=1}^3 y_k$ . But $f(\omega)f\left(\overline{\omega}\right) = \left(3\omega +2\right)\left(3\overline{\omega}+2\right)=9w\overline w+6(w+\overline w)+4=7\implies$ $p =7$

Proof 3 (general). Eliminate $x$ between $\left\{\begin{array}{ccc}
x^3+3x+1=0\\\\
x^2+x+(1-y)=0\end{array}\right\|$ . I"ll obtain the equation with the roots $y_k\ ,\ k\in\overline{1,3}\ :\ \left\|\begin{array}{ccccc}
x^3+3x+1 & = & 0  & \odot & (-1)\\\\
x^2+x+(1-y) & = & 0 & \odot & x\end{array}\right\|\ \bigoplus$ $\implies$

$x^2-(y+2)x-1=0\implies$ $\left\|\begin{array}{ccccc}
x^2-(y+2)x-1 & = & 0\\\\
x^2+x+(1-y) & = & 0\end{array}\right\|$ . Thus, equations have at least a common root $\iff$ $\left|\begin{array}{cc}
1 & -1\\\\
1 & 1-y\end{array}\right|^2=$ $\left|\begin{array}{cc}
1 & -(y+2)\\\\
1 & 1\end{array}\right|\cdot\left|\begin{array}{cc}
-(y+2) & -1\\\\
1 & 1-y\end{array}\right|$

$\iff$ $(y-2)^2=(y+3)(y^2+y-1)$ $\iff$ $y^3+3y^2+6y-7=0\begin{array}{ccc}
\nearrow & y_1 & \searrow\\\\
\rightarrow & y_2 & \rightarrow\\\\
\searrow & y_3 & \nearrow\end{array}\odot$ $\implies$ $\prod_{k=1}^3(x_k^2+x_k+1)=$ $\prod_{k=1}^3y_k$ $\implies$ $\boxed{p=7}$ .


An easy extension. Consider the equation $f(x)\equiv x^3+mx+1=0\begin{array}{ccc}
\nearrow & x_1 & \searrow\\\\
\rightarrow & x_2 & \rightarrow\\\\
\searrow & x_3 & \nearrow\end{array}\odot$ , where $m\in\mathbb R$ . Denote $(\forall ) k\in\overline{1,3}$

$y_k=x_k^3+3x_k+1$ . Prove that $(\forall )m\in\mathbb R\ ,\ \prod_{k=1}^3y_k=m^2-2m+4$ and $y_1y_2+y_2y_3+y_3y_1=6$ (constant).


Remark. Can prove that the equation with the roots $y_k\ ,\ k\in\overline{1,3}$ is $\boxed{y^3+(2m-3)y^2+6y-\left(m^2-2m+4\right)=0}$ .


PP23. Let $\{x,y,z\}\subset\mathbb R$ for which $\left\{\begin{array}{ccc}
x+y+z & = & 7\\\\
xy+yz+zx & = & 11\end{array}\right\|$ . Prove that $\{x,y,z\}\subset \left[-\frac 13,5\right]$ .

Proof 1. $\left\{\begin{array}{ccc}
x+y & = & 7-z\\\\
xy & = & 11-z(7-z)\end{array}\right\|$ . Since $(x+y)^2\ge 4xy$ obtain that $(7-z)^2\ge 4\left(z^2-7z+11\right)\iff$ $3z^2-14z-5\le 0\iff$ $\{x,y,z\}\subset \left[-\frac 13,5\right]$ .

Proof 2. Denote $\left\{\begin{array}{ccccccc}
x+y=S & \implies & S & = & x+y & = & 7-z\\\\
xy=P  & \implies & P & = & xy & = & 11-z(7-z)\end{array}\right\|$ . Therefore, $t^2-(7-z)t+\left(z^2-7z+11\right)=0\begin{array}{ccc}
\nearrow & x & \searrow\\\\
\searrow & y & \nearrow\end{array}\odot$ . Thus,

$\Delta (z)\ge 0\iff$ $4\left(z^2-7z+11\right)-(z-7)^2\le 0\iff$ $3z^2-14z-5\le 0\iff$ $z\in \left[-\frac 13,5\right]$ and by symmetry obtain that $\{x,y,z\}\subset \left[-\frac 13,5\right]$ .

Proof 3. Denote the equation $f(t)\equiv t^3-7t^2+11t-m=0\begin{array}{ccc}
\nearrow & x & \searrow\\\\
\rightarrow & y & \rightarrow\\\\
\searrow & z & \nearrow\end{array}\odot$ with $f'(x)=3t^2-14t+11=0\begin{array}{ccc}
\nearrow & 1 & \searrow\\\\
\searrow & \frac {11}3 & \nearrow\end{array}\odot$ . Observe that $\left\{\begin{array}{ccc}
f\left(1\right) & = & 5-m\\\\
f\left(\frac {11}3\right) & = & -\frac {121}{27}-m\end{array}\right\|$

and $\{x,y,z\}\subset\mathbb R\iff$ $-\frac {121}{27}-m\le 0\le 5-m$ , i.e. $-\frac {121}{27}\le m\le 5$ . Since $f\left(-\frac 13\right)=f\left(\frac {11}3\right)=-\frac {121}{27}-m$ and $f(5)=f(1)=5-m$ obtain that

$\{x,y,z\}\subset \left[-\frac 13,5\right]$ because $\left\{\begin{array}{ccccccccccccc}
x & \parallel & -\infty & & -\frac 13 &  & 1 &  & \frac {11}3 & & 5 & + & \\\\
f'(x) & \parallel & & + & + & + & 0 & - & 0 & + & + & + & \\\\
f(x) & \parallel & -\infty & \nearrow & -\frac {121}{27}-m<0 & \nearrow & 5-m>0 & \searrow & -\frac {121}{27}-m<0 & \nearrow & 5-m & \nearrow & \infty\end{array}\right\|$



PP24. Find $ax^5 + by^5$ if the numbers $\{a,b,x,y\}\subset\mathbb R$ satisfy the equations $\left\{\begin{array}{ccccccc}
 ax + by & = & 3 & ; & ax^2 + by^2 & = & 7\\\\
ax^3 + by^3 & = & 16 & ; & ax^4 + by^4 & = & 42\end{array}\right\|$

Proof 1. Set $\left\{\begin{array}{ccc}
x+y & = & S\\\\
xy & = & P\end{array}\right\|$ and denote $f_k= ax^k+by^k\ ,\ (\forall )\ k\in\mathbb N^*$ . Thus, $\left\{\begin{array}{ccccccc}
f_1 & = & 3 & ; & f_2 & = & 7\\\\
f_3 & = & 16 & ; & f_4 & = & 42\end{array}\right\|$

I"ll use the identity $(x+y)\cdot \left(ax^n+by^n\right) =\left(ax^{n+1}+by^{n+1}\right)+xy\cdot \left(ax^{n-1}+by^{n-1}\right)$ , i.e. $\boxed{S\cdot f_n=f_{n+1}+P\cdot f_{n-1}}\ (*)$ . Therefore,

$\left\{\begin{array}{ccccccc}
n:=2 & \implies & S\cdot\left(ax^2+by^2\right) & = & \left(ax^3+by^3\right) & + & P\cdot(ax+by)\\\\
n:=3 & \implies & S\cdot \left(ax^3+by^3\right) & = & \left(ax^4+by^4\right) & + & P\cdot \left(ax^2+by^2\right)\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
7S & = & 16+3P\\\\
16S & = & 42+7P\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
S & = & -14\\\\
P & = & -38\end{array}\right\|\ .$

In conclusion, $S\cdot f_4=f_5+P\cdot f_3\implies$ $42S=f_5+16P\implies$ $-42\cdot 14=f_5-38\cdot 16\implies$ $f_5=20\implies$ $\boxed{ax^5+by^5=20}$ .

Proof 2. The homogeneous system $\left\{\begin{array}{ccccc}
ax+by-3c & = & 0\\\\
ax^2+by^2-7c & = & 0\\\\
ax^3+by^3-16c & = & 0\\\\
ax^4++by^4-42c & = & 0\end{array}\right\|$ with the variables $\{a,b,c\}$ is compatibly, where $c=1\ne 0\ \implies\left|\begin{array}{ccc}
1 & 1 & -3\\\\
x & y & -7\\\\
x^2 & y^2 & -16\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & -7\\\\
x & y & -16\\\\
x^2 & y^2 & -42\end{array}\right|=0$ a.s.o.
This post has been edited 229 times. Last edited by Virgil Nicula, Feb 11, 2018, 3:10 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404397
  • Total comments: 37
Search Blog
a