357. Morley theorem.

by Virgil Nicula, Sep 22, 2012, 8:05 AM

PP1 - Morley's trisector theorem. Prove that in any $\triangle ABC$ the three points of intersection of the adjacent angle trisectors form an equilateral triangle

called the first Morley triangle or simply the Morley triangle (this theorem was discovered in 1899 by Anglo-American mathematician Frank Morley)


Proof. Let circumradius $R$ of $\triangle ABC$ , $\left\{\begin{array}{c}
A=3x\\\\
B=3y\\\\
C=3z\end{array}\right\|$ where $x+y+z=60^{\circ}$ and Morley triangle $MNP$ , where $\left\{\begin{array}{c}
m\left(\widehat{BAP}\right) =m\left(\widehat{PAN}\right)=m\left(\widehat{NAC}\right)=x\\\\
m\left(\widehat{CBM}\right) =m\left(\widehat{MBP}\right)=m\left(\widehat{PBA}\right)=y\\\\
m\left(\widehat{ACN}\right) =m\left(\widehat{NCM}\right)=m\left(\widehat{MCB}\right)=z\end{array}\right\|$ .

The theorem of SINUS in $:\ \left\{\begin{array}{cccc}
\triangle ABP\ : & \frac {AP}{\sin y}=\frac {AB}{\sin (x+y)} & \implies & AP=\frac {2R\sin 3z\sin y}{\sin (60^{\circ} -z)}\\\\
\triangle ACN\ : & \frac {AN}{\sin z}=\frac {AC}{\sin (x+z)} & \implies & AN=\frac {2R\sin 3y\sin z}{\sin (60^{\circ}-y)}\end{array}\right\|$ and $\sin 3z=\sin (180^{\circ}-3z)=\sin 3(60^{\circ}-z)=$

$\sin (60^{\circ}-z)\left[3-4\sin^2\left(60^{\circ}-z\right)\right]=$ $\sin (60^{\circ}-z)\left[1+2\cos \left(120^{\circ}-2z\right)\right]=$ $\sin (60^{\circ}-z)\left[1+2\sin\left(2z-30^{\circ}\right)\right]$ . Thus, $AP=2R\sin y\left(1+\sqrt 3\sin 2z-\cos 2z\right)=$

$2R\sin y\left(2\sin^2z+2\sqrt 3\sin z\cos z\right)=$ $4R\sin y\sin z\left(\sin z+\sqrt 3\cos z\right)=$ $8R\sin y\sin z\cos\left(30^{\circ}-z\right)$ . Obtain analogously $AN$ . In conclusion,

$\left\{\begin{array}{c}
AP=k\cos \left(30^{\circ}-z\right)\\\\
AN=k\cos \left(30^{\circ}-y\right)\end{array}\right\|$ , where $k=8R\sin y\sin z$ . The generalized Pythagoras' theorem to the side $[NP]$ in the triangle $ANP\ :\ NP^2=$

$k^2\left[\cos^2(30^{\circ}-y)+\cos^2(30^{\circ} -z)-2\cos (30^{\circ}-y)\cos (30^{\circ}-z)\cos x\right]\implies$ $\frac {2}{k^2}\cdot NP^2=2+\cos(60^{\circ}-2y)+\cos (60^{\circ} -2z)-2\cos x\left[\cos x+\cos (y-z)\right]=$

$2+2\cos x\cos (y-z)-1-\cos 2x-\cos (x+y-z)-2\cos x\cos (y-z)=1-\cos 2x$ . In conclusion, $NP=k\sin x$ , i.e. $\underline{NP=8R\sin x\sin y\sin z}$ ,

what is a symmetrical expression of $(x,y,z)$ , i.e. $\boxed{NP=PM=MN=8R\sin x\sin y\sin z}\iff MNP$ is an equilateral triangle.



PP2. Let $\triangle ABC$ , $\{M,N\}\subset (BC)$ so that $M\in (BN)$ and $\widehat {BAM}\equiv\widehat{MAN}\equiv\widehat{NAC}$ . Prove that $\boxed{AM=\frac {bc\left(4\cos^2\theta -1\right)}{2b\cos\theta +c}}$ and $\boxed{AN=\frac {bc\left(4\cos^2\theta -1\right)}{2c\cos\theta +b}}$ , where $A=3\theta$ .

Proof 1. $[ABM]+[AMC]=[ABC]\iff$ $c\cdot AM\cdot \sin \theta +b\cdot AM\cdot\sin 2\theta =bc\sin 3\theta\iff$ $AM=\frac {bc\sin3\theta}{c\sin\theta+b\sin 2\theta}=$ $\frac {bc\sin\theta\left(3-4\sin^2\theta\right)}{c\sin\theta+2b\sin \theta\cos\theta}=$

$\frac {bc\left(4\cos^2\theta -1\right)}{c+2b\cos\theta}\implies$ $AM=\frac {bc\left(4\cos^2\theta -1\right)}{2b\cos\theta +c}$ . Obtain similarly that $AN=\frac {bc\left(4\cos^2\theta -1\right)}{2c\cos\theta +b}$ . Observe that $\frac {AM}{AN}=\frac {2c\cos \theta +b}{2b\cos\theta +c}=\frac {\sin (C+\theta)}{\sin (B+\theta)}$ .

Proof 2. $\frac {MB}{MC}=\frac {AB\cdot \sin \widehat{MAB}}{AC\cdot \sin\widehat{MAC}}\iff$ $\frac {MB}{MC}=\frac {c\sin\theta}{b\sin 2\theta}=\frac {c}{2b\cos\theta}\iff$ $\frac {MB}{c}=\frac {MC}{2b\cos\theta}=\frac {a}{2b\cos\theta +c}\implies$ $\boxed{MB=\frac {ac}{2b\cos\theta +c}}\ (*)$ . Apply the theorem

of Sinus
in $\triangle ABM\ :\ \frac {AM}{\sin B}=\frac {MB}{\sin \theta}\implies$ $AM\ \stackrel{(*)}{=}\ \frac {\sin B}{\sin\theta}\cdot\frac {ac}{2b\cos\theta +c}\iff$ $AM=\frac {bc\sin 3\theta}{\sin\theta (2b\cos\theta +c)}=$ $\frac {bc\left(3-4\sin^2\theta\right)}{2b\cos\theta +c}\implies$ $\boxed{AM=\frac {bc\left(4\cos^2\theta -1\right)}{2b\cos\theta +c}}$ .


Remark. Apply the theorem of Sinus's in the triangle $MAN\ :\ \frac {AM}{AN}=$ $\frac {\sin\widehat{MNA}}{\sin\widehat{NMA}}\iff$ $\boxed{\frac {2c\cos \theta +b}{2b\cos\theta +c}=\frac {\sin (C+\theta)}{\sin (B+\theta)}}\ (*)$ . I'll prove directly the relation $(*)$ .

Indeed, $\frac {2c\cos \theta +b}{2b\cos\theta +c}=\frac {\sin (C+\theta)}{\sin (B+\theta)}\iff$ $\sin (B+\theta )(2\sin C\cos\theta +\sin B)=$ $\sin (C+\theta )(2\sin B\cos \theta +\sin C)\iff$ $\sin C[\sin (B+2\theta )+\sin B]+$

$\frac 12\cdot [\cos \theta -\cos (2B+\theta )]=$ $\sin B[\sin (C+2\theta )+\sin C]+$ $\frac 12[\cos\theta -\cos (2C+\theta )]\iff$ $2\sin C\sin (B+2\theta )-\cos (2B+\theta )=$ $2\sin B\sin (C+2\theta )-$

$\cos (2C+\theta )\iff$ $2\sin C\sin (C+\theta )-\cos (2B+\theta )=$ $2\sin B\sin (B+\theta )-\cos (2C+\theta )\iff$ $\cos \theta -\cos (2C+\theta ) -\cos (2B+\theta )=$

$\cos\theta -\cos (2B+\theta )-\cos (2C+\theta )$ , what is truly. Otherwise, $\frac {2c\cos \theta +b}{2b\cos\theta +c}=\frac {\sin (C+\theta)}{\sin (B+\theta)}\iff$ $2\cos\theta=\frac {b\sin (B+\theta )-c\sin (C+\theta )}{b\sin(C+\theta )-c\sin (B+\theta )}=$

$\frac {\sin B\sin (B+\theta )-\sin C\sin (C+\theta )}{\sin B\sin(C+\theta )-\sin C\sin (B+\theta )}=$ $\frac {[\cos\theta -\cos (2B+\theta )]-[\cos\theta -\cos (2C+\theta )]}{[\cos (C+\theta -B)-\cos (B+C+\theta )]-[\cos (B+\theta -C )-\cos (B+C+\theta )]}=$ $\frac {\cos (2C+\theta )-\cos (2B+\theta )}{\cos (C+\theta -B)-\cos (B+\theta -C)}=$

$\frac {\sin (B+C+\theta )\sin (B-C)}{\sin\theta \sin (B-C)}=$ $\frac {\sin (A-\theta )}{\sin\theta}\ \stackrel{A=3\theta}{=}\ \frac {\sin 2\theta}{\sin \theta}$ , i.e. $2\cos\theta =\frac {\sin 2\theta}{\sin \theta}\iff$ $2\sin\theta\cos\theta =\sin2\theta$ , what is truly.
This post has been edited 38 times. Last edited by Virgil Nicula, Nov 16, 2015, 5:21 PM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Morley's Miracle! This is one of my favorites :)

by doctorwhofan883, Sep 22, 2012, 3:32 PM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a