40. Lema lui Haruki.

by Virgil Nicula, May 29, 2010, 6:04 PM

See : here and here.

Lemma 1. Let $ABCD$ be a cyclic quadrilateral with $I\in AC\cap BD$ , $J\in AB\cap CD$ , $K\in AD\cap BC$ and $AB=a$ , $BC=b$ , $CD=c$ ,

$DA=d$ , $AC=e$ , $BD=f$ . Then $\boxed {\frac {IA}{ad}=\frac {IB}{ab}=\frac {IC}{bc}=\frac {ID}{cd}}$ , $\boxed {\frac {JA}{de}=\frac {JB}{bf}=\frac {JC}{be}=\frac {JD}{df}}$ and $\boxed {\frac {KA}{ae}=\frac {KB}{af}=\frac {KC}{ce}=\frac {KD}{cf}}$ .



Haruki's lemma. Let $ABCD$ be a convex cyclical quadrilateral and let $P$ be a variable point on the arc $AB$ which doesn't contain the points $C$ and $D$ .

Denote $E\in PD\cap AB$ and $F\in PC\cap AB$ . Prove that the ratios $\frac {EA\cdot FB}{EF}$ and $\frac {EB\cdot FA}{EF}$ don't depend on the position of the variable point $P$ on the arc $AB$ .


Original proof. Define $G$ where $AB$ cut again the circumcircle of $\triangle PEC$ . Observe that $\widehat{ EGC}\equiv \widehat{EPC}$ and so these angles remain constant as $P$

varies on the arc $AB$. Hence, for all positions of $P$ the value of $\widehat{EGC}$ remains constant. Hence $G$ remains fixed on $AB$ . So the length of $[BG]$ is constant.

Applying the intersecting chords theorem to $PC$ and $AG$ in the two circles, we obtain $AF\cdot FB = PF\cdot FC$ and $EF\cdot FG = PF\cdot FC$ $\implies$

$(AE + EF)\cdot FB =$ $ EF\cdot (FB + BG)$ $\implies$ $AE\cdot FB = EF\cdot BG$ . In conclusion we have obtained $\frac {EA\cdot FB}{EF}=BG$ which is constant.


Proof 1 - metric (own). Denote $\left\{\begin{array}{c}
PA=x\\\\
PB=y\end{array}\right\|$ . Apply first lemma in the cyclical quadrilaterals $:\ \left\{\begin{array}{cccc}
APBD\ : & \frac {EA}{dx}=\frac {EB}{fy}=\frac {a}{dx+fy} & \implies & \left|\begin{array}{c}
EA=\frac {adx}{dx+fy}\\\\
EB=\frac {afy}{dx+fy}\end{array}\right|\\\\
BPAC\ : & \frac {FB}{by}=\frac {FA}{ex}=\frac {a}{by+ex} & \implies & \left|\begin{array}{c}
FA=\frac {aex}{ex+by}\\\\
FB=\frac {aby}{by+ex}\end{array}\right|\end{array}\right\|$ $\implies$

$EF=AF-AE=\frac {aex}{ex+by}-\frac {adx}{dx+fy}=$ $ax\cdot\left(\frac {e}{ex+by}-\frac {d}{dx+fy}\right)=$ $\frac {axy(ef-bd)}{(dx+fy)(by+ex)}\ \implies$ $\boxed {EF=\frac {a^2cxy}{(dx+fy)(by+ex)}}$ .

I used the Ptolemy's relation $ef=ac+bd$ . From the upper relations obtain easily that $\boxed {\begin{array}{c}
\frac {EA\cdot FB}{EF}=\frac {bd}{c}=\frac {AD\cdot BC}{DC}\\\\
\frac {EB\cdot FA}{EF}=\frac {ef}{c}=\frac {CA\cdot DB}{CD}\end{array}\ }$ . Observe that $\boxed{\frac {EA\cdot FB}{AD\cdot BC}=\frac {EB\cdot FA}{AC\cdot BD}=\frac {EF}{CD}}$ .

Proof 2 - trigonometric (own). Denote $\left\{\begin{array}{c}
m(\angle EPA)=\alpha\\\\
m(\angle FPE)=\beta\\\\
m(\angle BPF)=\gamma\end{array}\right|$ and $\left\{\begin{array}{c}
m(\angle PAB)=x\\\\
m(\angle PBA)=y\end{array}\right|$ . Suppose w.l.o.g. $2R=1$ . Thus, $\left\{\begin{array}{c}
PA=\sin y\\\
PB=\sin x\end{array}\right|$ . Apply the Sinus' theorem in triangles :

$\blacktriangleright\ \triangle APE\ :\ \frac {AE}{\sin\alpha}=\frac {EP}{\sin x}=\frac {\sin y}{\sin (x+\alpha )}\implies$ $\left\{\begin{array}{c}
AE=\frac {\sin \alpha\sin y}{\sin (x+\alpha )}\\\\
EP=\frac {\sin x\sin y}{\sin (x+\alpha )}\end{array}\right\|$ .

$\blacktriangleright\ \triangle BPF\ :\ \frac {FB}{\sin\gamma}=\frac {\sin x}{\sin (y+\gamma )}\implies$ $FB=\frac {\sin \gamma\sin x}{\sin (y+\gamma )}$ .

$\blacktriangleright\ \triangle EPF\ :\ \frac {EF}{\sin\beta}=\frac {EP}{\sin (y+\gamma )}=\frac {\sin x\sin y}{\sin (x+\alpha )\sin (y+\gamma )}\implies$ $EF=\frac {\sin x\sin y\sin \beta}{\sin (x+\alpha )\sin (y+\gamma )}$ .

Therefore, $\frac {EA\cdot FB}{EF}=\frac {\sin\alpha \sin y}{\sin (x+\alpha )}\cdot\frac {\sin \gamma \sin x}{\sin (y+\gamma )}\cdot$ $\frac {\sin (x+\alpha )\sin (y+\gamma )}{\sin x\sin y\sin\beta}\iff$ $\frac {EA\cdot FB}{EF}=\frac {\sin\alpha\sin\gamma}{\sin\beta}=\frac {bd}{c}=\frac {BC\cdot AD}{DC}$ .

Observe that $\frac {EB\cdot FA}{EF}=\frac {(EF+FB)(FE+EA)}{EF}=$ $\frac {EA\cdot FB}{EF}+(AE+EF+FB)=$ $\frac {bd}{c}+a=\frac {bd+ac}{c}=\frac {ef}{c}=\frac {CA\cdot DB}{DC}$ .



Lemma 2. Let $ABC$ be a triangle and a point $M$ which belongs to the sideline $BC$ . Then exists the relation $\boxed {\frac {MB}{MC}=\frac {AB}{AC}\cdot\frac {\sin \widehat {MAB}}{\sin\widehat {MAC}}}$ .


An easy extension. Let a convex cyclical $ABCD$ and let a variable $P$ on its circumcircle. Denote $\left\{\begin{array}{c}
E\in PD\cap AB\\\\
F\in PC\cap AB\end{array}\right\|$ . Prove that $\frac {EB\cdot FA}{EF}=\frac {ef}{c}$ and $\frac {EA\cdot FB}{EF}=\frac {bd}{c}$ .

Proof. $\left\{\begin{array}{cccc}
\triangle APF\ ,\ E\in AF\ : & \frac {EA}{EF}=\frac {PA}{PF}\cdot\frac {\sin \widehat {EPA}}{\sin\widehat {EPF}} & \implies & \frac {EA}{EF}=\frac {PA}{PF}\cdot \frac dc\\\\
\triangle BCF\sim PAF\ : & \frac {FB}{BC}=\frac {FP}{PA} & \implies & FB=\frac {PF}{PA}\cdot b\end{array}\right\|\bigodot$ $\implies\ \boxed {\frac {EA\cdot FB}{EF}=\frac {bd}{c}=\frac {AD\cdot BC}{DC}}$ .

$\left\{\begin{array}{cccc}
\triangle APE\ ,\ F\in AE\ : & \frac {FA}{FE}=\frac {PA}{PE}\cdot\frac {\sin \widehat {FPA}}{\sin\widehat {FPE}} & \implies & \frac {FA}{FE}=\frac {PA}{PE}\cdot\frac ec\\\\
\triangle BDE\sim PAE\ : & \frac {EB}{BD}=\frac {EP}{PA} & \implies & EB=\frac {PE}{PA}\cdot f\end{array}\right\|\bigodot$ $\implies\ \boxed {\frac {EB\cdot FA}{EF}=\frac {ef}{c}=\frac {CA\cdot DB}{CD}}$ .



Proposed problem.

Let $ABCD$ be a cyclical quadrilateral which is inscribed in the circle $w$. Denote $M\in DD\cap AB$ , $N\in CC\cap AB$ si $P\in CD\cap AB$ .

Prove that the relations $\frac {AM\cdot AN}{BM\cdot BN}=\left(\frac {PA}{PB}\right)^2$ and $\frac {MA\cdot MB}{NA\cdot NB}=\left(\frac {PM}{PN}\right)^2$ . I denote $XX$ - the tangent in the point $X\in w$ .


Proof 1. Apply a well-known relation in a triangle $ABC$ , i.e. $M\in BC\ \implies\ \frac {MB}{MC}=\frac {AB}{AC}\cdot\frac {\sin\widehat {MAB}}{\sin\widehat{MAC}}$ .

$\left\{\begin{array}{ccc}
\triangle ACP : & \left\{\begin{array}{cc}
N\in AP\implies & \frac {NA}{NP}=\frac {CA}{CP}\cdot\frac {\sin\widehat {NCA}}{\sin\widehat{NCP}}=\frac {e}{CP}\cdot\frac {\sin\widehat{ABC}}{\sin\widehat {CAD}}=\frac {e}{CP}\cdot\frac ec\\\\
B\in AP\implies & \frac {BP}{BA}=\frac {CP}{CA}\cdot\frac {\sin\widehat {BCP}}{\sin\widehat{ACB}}=\frac {CP}{e}\cdot\frac {\sin\widehat{BCD}}{\sin\widehat {ACB}}=\frac {CP}{e}\cdot\frac fa\end{array}\right\|\implies & \frac {NA}{NP}\cdot BP=\frac {ef}{c}\\\\
\triangle BDP : & \left\{\begin{array}{cc}
A\in BP\implies & \frac {AP}{AB}=\frac {DP}{DB}\cdot\frac {\sin\widehat {ADP}}{\sin\widehat{ADB}}=\frac {DP}{f}\cdot\frac {\sin\widehat{CAD}}{\sin\widehat {ADB}}=\frac {DP}{f}\cdot\frac ea\\\\
M\in BP\implies & \frac {MB}{MP}=\frac {DB}{DP}\cdot\frac {\sin\widehat {MDB}}{\sin\widehat{MDP}}=\frac {f}{DP}\cdot\frac {\sin\widehat{BCD}}{\sin\widehat {CAD}}=\frac {f}{DP}\cdot\frac fc\end{array}\right\|\implies & \frac {MB}{MP}\cdot AP=\frac {ef}{c}\end{array}\right\|$ $\implies\boxed {\frac {PA}{PB}\cdot\frac {PN}{PM}=\frac {AN}{BM}}$ .

$\left\{\begin{array}{ccc}
\triangle BCP : & \left\{\begin{array}{cc}
N\in BP\implies & \frac {NB}{NP}=\frac {CB}{CP}\cdot\frac {\sin\widehat {NCB}}{\sin\widehat{NCP}}=\frac {b}{CP}\cdot\frac {\sin\widehat{BAC}}{\sin\widehat {CAD}}=\frac {b}{CP}\cdot\frac bc\\\\
A\in BP\implies & \frac {AP}{AB}=\frac {CP}{CB}\cdot\frac {\sin\widehat {ACP}}{\sin\widehat{ACB}}=\frac {CP}{b}\cdot\frac {\sin\widehat{ACD}}{\sin\widehat {ACB}}=\frac {CP}{b}\cdot\frac da\end{array}\right\|\implies & \frac {NB}{NP}\cdot AP=\frac {bd}{c}\\\\
\triangle ADP : & \left\{\begin{array}{cc}
B\in AP\implies & \frac {BP}{BA}=\frac {DP}{DA}\cdot\frac {\sin\widehat {BDP}}{\sin\widehat{ADB}}=\frac {DP}{d}\cdot\frac {\sin\widehat{BAC}}{\sin\widehat {ADB}}=\frac {DP}{d}\cdot\frac ba\\\\
M\in AP\implies & \frac {MA}{MP}=\frac {DA}{DP}\cdot\frac {\sin\widehat {MDA}}{\sin\widehat{MDP}}=\frac {d}{DP}\cdot\frac {\sin\widehat{ABD}}{\sin\widehat {CAD}}=\frac {d}{DP}\cdot\frac dc\end{array}\right\|\implies & \frac {MA}{MP}\cdot BP=\frac {bd}{c}\end{array}\right\|$ $\implies\boxed {\frac {PA}{PB}\cdot\frac {PM}{PN}=\frac {AM}{BN}}$ .

From the last two relations obtain (divide and multiply !) the required conclusion.


Proof 2. Apply a remarkable Haruki's lemma for the points $:$

$\blacktriangleright\ X:=C\ \implies\left\{\begin{array}{ccc}
\frac {PA\cdot NB}{PN} & = & \frac {bd}{c}\\\\
\frac {PB\cdot NA}{PN} & = & \frac {ef}{c}\end{array}\right\|$ .

$\blacktriangleright\ X:=D\ \implies\left\{\begin{array}{ccc}
\frac {MA\cdot PB}{MP} & = & \frac {bd}{c}\\\\
\frac {MB\cdot PA}{MP} & = & \frac {ef}{c}\end{array}\right\|$ .

Therefore, $\left\{\begin{array}{ccc}
\frac {PA\cdot NB}{PN} & = & \frac {MA\cdot PB}{MP}\\\\
\frac {PB\cdot NA}{PN} & = & \frac {MB\cdot PA}{MP}\end{array}\right\|$ $\implies$ $\left\{\begin{array}{c}
\frac {AM\cdot AN}{BM\cdot BN}=\left(\frac {PA}{PB}\right)^2\\\\
\frac {MA\cdot MB}{NA\cdot NB}=\left(\frac {PM}{PN}\right)^2\end{array}\right\|$ .


Proposed problem. The convex quadrilateral $ABCD$ is inscribed in the circle $w$. Let $I\in AC\cap BD$ and a line $\Delta$ for which $I\in\Delta$ cut

$AB$, $CD$ at $M$, $N$ respectively and cut $w$ at $P$, $Q$ respectively, where $M\in IQ$ and $N\in IP$ . Prove that $\frac{1}{IM}+\frac{1}{IP}=\frac{1}{IN}+\frac{1}{IQ}\ .$
This post has been edited 64 times. Last edited by Virgil Nicula, Nov 27, 2015, 8:17 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a