220. Some nice geometry problems from contest.

by Virgil Nicula, Feb 4, 2011, 6:43 PM

Proposed problem 1 (Poland, 2000). Let $ABC$ be an $A$-isosceles triangle and $P$ be an interior point such

that $\widehat{PBC}\equiv\widehat{PCA}$ . Let $M$ be the midpoint of $[BC]$ . Prove that $\left(\widehat{BPM}\right) +\left(\widehat{APC}\right) = 180^{\circ}$ .


Proof 1 (synthetic). Observe that $AB=AC\implies \widehat{PBA}\equiv\widehat {PCB}$ . Thus $AB$ , $AC$ are tangent to the circumcircle $w$ of $\triangle BPC$ . Denote the second intersection

$R$ of $AP$ with $w$ . From an well-known property (or prove easily) results that $BPCR$ is harmonically. Indeed, $\frac {BP}{BR}=$ $\frac {AP}{AR}=$ $\frac {CP}{CR}\implies$ $BP\cdot CR=BR\cdot CP$ .

The ray $[PR$ is $P$-symmedian in $\triangle BPC$ . Indeed, $\frac {NB}{NC}=\frac {BP\cdot BR}{CP\cdot CR}=\left(\frac {PB}{PC}\right)^2$ . Therefore, $\widehat{MPB}\equiv\widehat{RPC}$ $\implies$ $\left(\widehat{BPM}\right) +\left(\widehat{APC}\right) = 180^{\circ}$ .



Proposed problem 2 (own). Let $ABC$ be an $A$-right-angled triangle. Denote $\left\|\begin{array}{ccc}
D\in BC & ; & AD\perp BC\\\
M\in (AD) & ; & MA=MD\\\
E\in CM & ; & EB\perp BC\end{array}\right\|$ . Prove that $EA=EB$ .

Proof. Let $F\in AB\cap CM$ . Thus, that $\triangle CDA\sim \triangle CAB$ and $MA=MD$ $\implies$ the ray $[CF$ is $C$-symmedian in $\triangle ABC$ . Since $EB\perp BC$ obtain that $EB$

is tangent to the circumcircle of $\triangle ABC$ . In conclusion (from well-known property of symmedian), and $EA$ is tangent to the circumcircle of $\triangle ABC$ , i.e. $EA=EB$ .

Remark. $M$ is the symmedian point (Lemoine) of $\triangle ABC$ because $AD$ is $A$-symmedian in given triangle.



Proposed problem 3. Let $ABC$ be a triangle with $b\ne c$ . Consider the points $\{P,Q,R,S\}\subset BC$ such that $P$ is the

midpoint of $[BC]$ , the ray $[AQ$ bisects $\angle BAC$ , $AR\perp BC$ and $AS\perp AQ$ . Prove that $PR \cdot QS=AB\cdot AC$ .


Proof 1 (metric). $\left\|\begin{array}{ccc}
RC^2-RB^2=b^2-c^2 & \implies & PR=\frac {|b^2-c^2|}{2a}\\\\
\frac {QC}{b}=\frac {QB}{c}=\frac {a}{b+c} & \implies & QB=\frac {ac}{b+c}\\\\
\frac {SC}{b}=\frac {SB}{c}=\frac {a}{|b-c|} & \implies & SB=\frac {ac}{|b-c|}\end{array}\right\|$ $\implies$ $QS=\frac {2abc}{|b^2-c^2|}\implies$ $PR\cdot QS=bc$ .

Proof 2 (synthetic). Denote the second intersection $T$ of $AQ$ with the circumcircle of $\triangle ABC$ . Prove easily that $\frac {AQ}{QS}=\cos\widehat {AQS}=\frac {PR}{AT}\implies$

$PR\cdot QS=AQ\cdot AT$ and $\triangle ABT\sim\triangle AQC\implies$ $\frac {AB}{AQ}=\frac {AT}{AC}$ $\implies$ $AQ\cdot AT=bc$ . In conclusion, $PR\cdot QS=AQ\cdot AT=bc$ .

Quote:
An easy extension. Let $ABC$ be a triangle with the circumcircle $w$ and $b\ne c$ . Consider the points $\{P,Q,R,S\}\subset BC$ and $\{A,T\}=AQ\cap w$

such that $AR\perp BC$ , $PT\perp BC$ and $AS\perp AQ$ . Prove that $PR \cdot QS=bc\cdot\frac {\sin (B+y)}{\sin (B+x)}$ , where $\left\|\begin{array}{c}
x=m\left(\widehat{QAB}\right)\\\
y=m\left(\widehat{QAC}\right)\end{array}\right\|$ .
Remark. For $x=y=\frac A2$ obtain the proposed problem. Nice problem !


Proposed problem 4 (INMO, 2011). Let $D$ , $E$ , $F$ be points on the sides $[BC]$ , $[CA]$ , $[AB]$ respectively of

$\triangle ABC$ such that $BD=CE=AF$ and $\widehat{BDF}\equiv \widehat{CED}\equiv\widehat{AFE}$ . Show that $\triangle ABC$ is equilateral.


Proof 1. Denote $BD=CE=AF=x$ and $ m(\angle BDF)=m(\angle CED)=m(\angle AFE)=\theta$ . Observe that $\Delta ABC\sim \Delta EFD$ . Thus

exists $k\in \mathbb R^*_+$ so that $\frac {DE}{b}=\frac {EF}{c}=\frac {FD}{a}=k$ . Suppose w.l.o.g. that $a\ge b\ge c$ . Therefore $\frac{\sin A}{\sin\theta}\ge\frac{\sin B}{\sin\theta}$ and $\frac{c-x}{b-x}\ge \frac{a}{b}\ge 1\Longrightarrow$

$c\ge b$ . In conclusion, $c=b\Longrightarrow \sin A=\sin B$ and $ABC$ is equilateral.



Proposed problem 5. Let $ABC$ be a triangle. Consider the points $M\in (BC)$ , $N\in (CA)$ and $P\in (AB)$ so that $\frac {MB}{MC}=\frac {NC}{NA}=\frac {PA}{PB}$ .

Prove that for any interior point $X$ wr.t. $\triangle ABC$ there is the inequality $\boxed{\ XM^2+XN^2+XP^2\ge \frac {1}{12}\cdot\left(a^2+b^2+c^2\right)\ge r(R+r)\ }$ .


Proof. Denote $r=\frac {MB}{MC}$ . Apply the Stewart's theorem to $[XM]/\triangle BXC\ :\ XM^2=\frac {1}{r+1}\cdot XB^2+\frac {r}{r+1}\cdot XC^2-\frac {r}{(r+1)^2}\cdot a^2$ a.s.o. $\implies$

$\sum XM^2=\frac {1}{r+1}\cdot \sum XB^2+\frac {r}{r+1}\cdot\sum  XC^2-\frac {r}{(r+1)^2}\cdot \sum a^2=$ $\sum XA^2-\frac {r}{(r+1)^2}\cdot \sum a^2$ . Since $\sum XA^2=3\cdot XG^2+\frac 13\cdot\sum a^2$

where $G$ is the centroid of $\triangle ABC$ obtain that $\sum XM^2=3\cdot XG^2+\left[\frac 13-\frac {r}{(r+1)^2}\right]\cdot\sum a^2$ . Thus, $\sum XM^2\ge \frac {r^2-r+1}{3(r+1)^2}\cdot\sum a^2\implies$

$XM^2+XN^2+XP^2\ge \frac {1}{12}\cdot\left(a^2+b^2+c^2\right)$ because $\frac {r^2-r+1}{(r+1)^2}\ge\frac 14$ . We have equalitity if and only if $r=1$ and $X:=G$ . On other hand

$\boxed{\sum a^2}=2s^2-2r^2-8Rr\ge $ $2\left(16Rr-5r^2\right)-2r^2-8Rr=$ $12\left(2Rr-r^2\right)\ge$ $ \boxed{12r(R+r)}$ because $2R-r\ge R+r\iff R\ge 2r$ .



PP6 (Japan Mathematical Olympiad, 2011). For an acute $\triangle ABC$ with the orthocenter $H$ denote $\begin{array}{ccc}
M\in (BC) & ; & MB=MC\\\
P\in AM & ; & HP\perp AM\end{array}$ . Prove that $AM\cdot PM=BM^2$ .

Proof. Let $AD$ , $BE$ , $CF$ be the altitudes of $ABC$ , where $D\in BC$ , $E\in CA$ , $F\in AB$ . Prove easily that $AEPHF$ , $HPMD$ , $EFDM$

are cyclically and the radical axis $EF, PH, MD$ concur at $T$ . Since $APDT$ is cyclically obtain that $MA\cdot MP=MT\cdot MD$ .

Since the division $(B,D,C,T)$ is harmonically obtain that $MT\cdot MD=MB^2$ . In conclusion, $MA\cdot MP=MB^2$ .



Proposed problem 7. Let $\triangle ABC$ with $A=120^{\circ}$ , incenter $I$ and bisectors $AD$ , $BE$ , $CF$ , where $D\in BC$ , $E\in CA$ , $F\in AB$ . Prove that the $DE\perp DF$ .

Proof 1 (synthetic). Can show easily that $E$ is the $B$-exincentre of $\triangle ABD$ and $F$ is the $C$-exincentre of $\triangle ACD$ . Thus,

$DE$ and $DF$ are the $D$-bisectors in the triangles $ABD$ , $ACD$ respectively. In conclusion, $DE\perp DF$ .

Proof 2 (metric). From the well-known relation $AD=\frac {2bc\cdot\cos\frac A2}{b+c}$ obtain for $A=120^{\circ}$ that $AD=\frac {bc}{b+c}$ , i.e. $\frac {1}{AD}=\frac 1b+\frac 1c$ . Therefore,

$\begin{array}{ccc}
\frac {DA}{DC}=\frac {\frac {bc}{b+c}}{\frac {ab}{b+c}}=\frac {EA}{EC} & \implies & \widehat{EDA}\equiv\widehat{EDC}\\\\
\frac {DA}{DB}=\frac {\frac {bc}{b+c}}{\frac {ac}{b+c}}=\frac {FA}{FC} & \implies & \widehat{FDA}\equiv\widehat{FDB}\end{array}$ . In conclusion, $DE$ and $DF$ are $D$-bisectors in triangles $ABD$ , $ACD$ respectively $\implies$ $DE\perp DF$ .

Remark. Apply generalized Pytagoras' theorem : $\left\|\begin{array}{c}
DE^2=AD^2+AE^2-AD\cdot AE\\\
DF^2=AD^2+AF^2-AD\cdot AF\\\
EF^2=AE^2+AF^2+AE\cdot AF\end{array}\right\|$ . Thus, $DE\perp DF\iff$

$EF^2=DE^2+DF^2\iff$ $2\cdot AD^2=AE\cdot AF+AD\cdot (AE+AF)$ . In conclusion, $DE\perp DF\iff$

$3\cdot AD^2=(AD+AE)(AD+AF)$ . Can use the equivalence $\boxed{A=120^{\circ}\iff \frac {(a+b)(a+c)}{b+c}=a+b+c}$ .



PP8. Two circles $O$, $O'$ meet each other at points $A$ , $B$ . A line from $A$ intersects the circle $O$ at $C$ and the circle $O'$ at $D$ ($A$ is between $C$ and $D$) . Let

$M$ , $N$ be the midpoints of the arcs $BC$ , $ BD$ respectively (not containing $A$) and let $K$ be the midpoint of the segment $[CD]$ . Show that $KM\perp KN$ .


Proof. Let $L$ be the reflection of $M$ accross $K$ . Then $\triangle CKM\cong\triangle DKL$ . We have $DL=CM=BM$ and $DN=BN$ . Observe that

$\angle MBN=360^{\circ}-(\angle MBA+\angle ABN)=$ $\angle ACM+\angle NDA=$ $\angle KDL+\angle NDA=$ $\angle NDL$ $\implies$ $\angle MBN=\angle LDN\implies$

$\triangle MBN\cong\triangle LDN\implies$ $MN=LN$ . Since $MN=LN$ , $MK=KL\implies$ $NK\perp ML\implies$ $KM\perp KN$ .



PP9. Let $ABC$ be a triangle. For a point $E\in AD$ , where $D\in BC$ and $AD\perp BC$ define the points $F\in AC\cap BE$ and $G\in AB\cap CE$ . Prove that $\widehat{ADF}\equiv\widehat{ADG}$ .

Proof 1 (synthetic). Let $d\parallel BC$ be a line so that $A\in d$ and $K\in DF\cap d$ , $L\in DG\cap d$ . Thus, $\frac {FC}{FA}=\frac {DC}{AK}\ \ \wedge\ \ \frac {GA}{GB}=\frac {AL}{DB}\ \ (*)$ . Apply the Ceva's theorem to the point $E$ and $\triangle ABC\ :$

$\frac {DB}{DC}\cdot \frac {FC}{FA}\cdot\frac {GA}{GB}=1$ . From $(*)$ obtain that $\frac {DB}{DC}\cdot \frac {DC}{AK}\cdot\frac {AL}{DB}=1$ , i.e. $AK=AL$ , what means the triangle $KDL$ is isosceles because and $DA\perp KL$ . In conclusion, $\widehat{ADF}\equiv\widehat{ADG}$ .

Proof 2 (trigonometric). Note $\left\{\begin{array}{c}
m(\angle ADF)=x\\\\
m(\angle ADG)=y\end{array}\right|$ . Apply an well-known relation to the cevians : $\left\{\begin{array}{cccc}
DF/\triangle ADC\ : & \frac {FC}{FA}=\frac {DC}{DA}\cdot \frac {\sin\widehat{FDC}}{\sin\widehat{FDA}} & \implies & \frac {FC}{FA}=\frac {DC}{DA}\cdot \cot x\\\\
DG/\triangle ADB\ : & \frac {GA}{GB}=\frac {DA}{DB}\cdot \frac {\sin\widehat{GDA}}{\sin\widehat{GDB}} & \implies & \frac {GA}{GB}=\frac {DA}{DB}\cdot \tan y\end{array}\right|\ \ (1)$ .

Apply the Ceva's theorem to the point $E$ and $\triangle ABC\ :\ \frac {DB}{DC}\cdot \frac {FC}{FA}\cdot\frac {GA}{GB}=1$ . Using the relations from $(1)$ obtain easily that $\tan x=\tan y$ , i.e. $x=y\iff$ $\widehat{ADF}\equiv\widehat{ADG}$ .

Proof 3 (proiective). Let $S\in FG\cap AD$ and $P\in FG\cap BC$ . The division $(G,F;S,P)$ is harmonically, i.e. $\frac {SG}{SF}=\frac {PG}{PF}$ and from property $DS\perp DP\iff \widehat{SDF}\equiv\widehat{SDG}$ obtain the conclusion.



PP10. Let $ABC$ be a triangle with the incenter $I$ . Denote $E\in BI\cap AC$ and $F\in CI\cap AB$ . Prove that $A=60^{\circ}\iff$ $ BF+CE=BC$.

Proof. $A=60^{\circ}\iff$ $a^2=b^2+c^2-bc\iff$ $\frac {b}{a+c}+\frac {c}{a+b}=1\iff$ $\frac {ba}{a+c}+\frac {ca}{a+b}=a\iff$ $CE+BF=BC\iff$ $\frac {IE}{IB}+\frac {IF}{IC}=1$ .
This post has been edited 94 times. Last edited by Virgil Nicula, Nov 22, 2015, 3:11 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a