66. Remarkable perpendicularities in a triangle.

by Virgil Nicula, Jul 22, 2010, 3:09 PM

PP1. Let $\triangle ABC$ with incenter $I$ and circumcenter $O$ . Consider $E\in (AB)$ , $F\in (AC)$ so that $BE=CF$ . Denote the second

intersection $X$ between circumcircles of $AEC$ , $AFB$ . Prove that $X\in AI$ , $XO\perp EF$ and $\frac {CE+BF}{XE+XF}=2\cos\frac A2$ (constant).


Proof. Denote $BE=CF=x$ , i.e. $AE=c-x$ , $AF=b-x$ . Using power of $E$ , $F$ w.r.t. circumcircle $C(O,R)$ obtain $\left\|\begin{array}{c}
R^2-OE^2=EA\cdot EB\\\\
R^2-OF^2=FA\cdot FC\end{array}\right\|\implies$ $OE^2-OF^2=$ $FA\cdot FC-EA\cdot EB=$ $x(b-x)-x(c-x)$ $\implies$ $\boxed {OE^2-OF^2=x(b-c)}\ (1)$ . Since quadrilaterals $AEXC$ , $AFXB$ are cyclically obtain $\left\|\begin{array}{c}
\widehat{BEX}\equiv\widehat {FCX}\\\\
\widehat {EBX}\equiv\widehat{CFX}\end{array}\right\|$ .

Since $BE=FC$ obtain (s.a.s.) $BEX\equiv FCX$ , i.e. and $EX=CX$ , $BX=FX$ . If denote projections $U\in AB$ , $V\in AC$ of $X$ on this sidelines, then from upper equivalence obtain $XU=XV$

(i.e. $X$ belongs to $A$-bisector) , $AU=AV$ and $BU=FV$ , $EU=CV$ . Therefore, $XE^2-XF^2=$ $\left(XU^2+EU^2\right)-\left(XV^2+FV^2\right)=$ $EU^2-FV^2=$ $VC^2-VF^2=$

$(CV+VF)(CV-BU)=$ $x[(b-AV)-(c-AU)]$ $\implies$ $\boxed {XE^2-XF^2=x(b-c)}\  (2)$ . From relations $(1)$ , $(2)$ obtain $OE^2-OF^2=XE^2-XF^2$ , i.e. $OX\perp EF$ .

Remark. Observe that $2\cdot AU=b+c-x$ . Apply Ptolemy's theorem to $ACXE$ , $AFXB$ and obtain $\begin{array}{c}(b+c-x)\cdot  XE=AX\cdot CE\\\
(b+c-x)\cdot XF=AX\cdot BF\end{array}\implies$

$\frac {CE+BF}{XE+XF}=$ $\frac {b+c-x}{AX}=$ $\frac {2\cdot AU}{AX}$ $\implies$ $\frac {CE+BF}{XE+XF}=2\cos\frac A2$ - constant for any $x$ .


PP2. Let $ABC$ be a triangle with incenter $I$ and circumcenter $O$ . Consider $E\in (AB)$ , $F\in AC$ , $C\in (AF)$ so that $BE=CF$ . Denote the second

intersection $X$ between circumcircles of $AEC$ , $AFB$ . Prove that $X$ belongs to exterior $A$-bisector, $XO\perp EF$ and $\frac {CE+BF}{XE+XF}=2\sin\frac A2$ (constant).


Proof. Prove easily that $XF^2-XE^2=OF^2-OE^2=x(b+c)$ and $AU=AV=\frac 12\cdot (b-c+x)$ , where $x=BE=CF$ and $U$ , $V$ are the projections of $X$ to $AB$ , $AC$ respectively.


PP3. Let $\triangle ABC$ with the circumcircle $\alpha =C(O,R)$ , the incircle $w=C(I,r)$ and $a\not\in\{ b,c\}$ . Let $E\in (BA$ and $F\in (CA$ such that $BE=CF=a$ . Prove that $EF\perp OI$ and $R\cdot EF=a\cdot OI$ .

Proof. Suppose w.l.o.g. $a>b$ and $a>c$ . In this case $AE=a-c$ , $AF=a-b$ .

$\blacktriangleright\ EO^2-FO^2=\left(R^2+EA\cdot EB\right)-\left(R^2+FA\cdot FC\right)=$ $EA\cdot EB-FA\cdot FC=$ $(a-c)a-(a-b)a\implies$ $\boxed{EO^2-FO^2=a(b-c)}\ (1)$ .

Denote the tangent points $X$ , $Y$ of the incircle of $\triangle ABC$ with $AB$ , $AC$ respectively. Thus, $EX=EB-XB=$ $a-(s-b)=s-c$ and $FY=FC-YC=$ $a-(s-c)=s-b$ . Obtain that

$EI^2-FI^2=\left(r^2+EX^2\right)-\left(r^2-FY^2\right)=$ $EX^2-FY^2=$ $(s-c)^2-(s-b)^2=a(b-c)\implies$ $\boxed{EI^2-FI^2=a(b-c)}\ (2)$ . From the relations $(1)$ , $(2)$ obtain that $EF\perp OI$ .

$\blacktriangleright$ Apply the generalized Pythagoras' theorem to the triangle $EAF\ :\ bc\left(a^2-EF^2\right)=$ $bc\left[a^2-(a-b)^2-(a-c)^2+2(a-b)(a-c)\cos A\right]=$

$bc\left\{a^2-\left[(a-b)-(a-c)\right]^2-2(a-b)(a-c)+2(a-b)(a-c)\cos A\right\}=$ $bc\left[a^2-(b-c)^2-4(a-b)(a-c)\sin^2\frac A2\right]=$ $4bc(s-b)(s-c)-4((a-b)(a-c)(s-b)(s-c)=$ $4(s-b)(s-c)\left(ab+ac-a^2\right)=$ $8a(s-a)(s-b)(s-c)$ . Therefore, $a^2-EF^2=\frac {8a^2s(s-a)(s-b)(s-c)}{abcs}=$

$\frac {8a^2Ssr}{4RSs}=\frac {2a^2r}{R}$ . In conclusion, $EF^2=a^2\left(1-\frac {2r}{R}\right)$ , i.e. $\boxed{EF=a\cdot\sqrt {1-\frac {2r}{R}}}\ (3)$ . Since $OI^2=R^2-2Rr$ obtain from the relation $(3)$ that $R\cdot EF=a\cdot OI$ .

Remark. If denote the length $\rho$ of $\triangle ABC$ , then $EF=2\rho\cdot \sin A=$ $2\rho\cdot\frac {a}{2R}$ $\implies$ $R\cdot EF=a\rho\implies$ $\boxed{\ \rho=OI\ }$ .



PP4. Consider $\triangle ABC$ with $1 < \frac cb < \frac{3}{2}$ . Let $\left|\begin{array}{c}
M\in (AB)\\\
N\in (AC)\end{array}\right|$ be two mobile points different from $A$ , such that $\frac{MB}{AC} - \frac{NC}{AB} = 1$ . Show that the circumcircle of $\triangle AMN$ pass through a fixed point different from $A$ .

Proof. The common point (say $L$) is actually the reflection of point $A$ about the perpendicular to $BC$ at the point $K$ given by $BK - CK = {AB\cdot AC \over BC}$ , or $BK = {AB\cdot AC + BC^2 \over {2\cdot BC}}$ . Let $O$ be the center of the circumcircle

of $AMN$ (of radius $R$) and $K$ the foot of the perpendicular from $O$ to $BC$ . Then the given expression is equivalent to $BA\cdot BM - CA\cdot CN = AB\cdot AC$ or (using the power of $B$ and $C$ around circle $O$)

$(BO^2 - R^2) - (CO^2 -R^2) = AB\cdot AC$, or $BK^2 - CK^2 = AB\cdot AC ={\rm constant}$. That is, $K$ is a fixed, given point on $BC$ . All circumcenters belong on the perpendicular to $BC$ at $K$. This perpendicular

bisects the common chords $AL$ of all circumcircles $AMN$, and thus $L$ is the reflection of $A$ about this perpendicular. It is interesting to examine some limiting cases. If $C_1$ is on $AB$ so that $BC_1= AC$ then $AC_1 C$ is one limiting

case of $AMN$ with $M\rightarrow C_1$ and $N\rightarrow C$ . Indeed, in this case, $MB / AC \rightarrow 1$ and $NC/AM \rightarrow 0$. On the other hand, in the limiting case of $M \rightarrow A$ , we get $CN \rightarrow (AB-AC)\cdot AB/AC < AC$ .

To make sure that this is possible, we note that the previous quadratic in $AC$ has a solution if $AB \le {{\sqrt{5}+1}\over 2}\cdot AC$ which is allowed by the given condition that $AB < {3\over 2}\cdot AC$ .
This post has been edited 19 times. Last edited by Virgil Nicula, Nov 23, 2015, 4:08 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a