310. Some properties of the tangential quadrilateral.

by Virgil Nicula, Aug 16, 2011, 1:25 PM

PP1. Let convex $ABCD$ with inscribed circle $w$ so that $\left\{\begin{array}{ccccc}
E\in AB\cap w & ; & F\in BC\cap w & ; & Y\in HF\cap EG\\\\
G\in CD\cap w & ; & H\in DA\cap w & ; & X\in  EF\cap  HG\end{array}\right\|$ . Prove that $Y\in AC\cap BD$ , $X\in AC$ and $\frac {YA}{YC}=\frac {XA}{XC}$ .

Proof. Let $\left\{\begin{array}{c}
Y_1=EG\cap AC\\\\
Y_2\in FH\cap AC\end{array}\right|$ . Apply the Sinus' theorem $:\ \left\{\begin{array}{ccc}
\triangle Y_1CG\ : & \frac {Y_1C}{\sin \widehat{Y_1GC}}=\frac {GC}{\sin\widehat{GY_1C}}\\\\
\triangle Y_1AE\ : & \frac {Y_1A}{\sin \widehat{Y_1EA}}=\frac {EA}{\sin\widehat{EY_1A}}\end{array}\right|$ . Since $\left\{\begin{array}{c}
\widehat{GY_1C}\equiv\widehat{EY_1A}\\\\
m\left(\widehat{Y_1GC}\right)+m\left(\widehat{Y_1EA}\right)=180^{\circ}\end{array}\right|$ obtain that $\frac {Y_1A}{Y_1C}=\frac {EA}{GC}$ .

Apply the Sines' theorem $:\ \left\{\begin{array}{ccc}
\triangle Y_2CF\ : & \frac {Y_2C}{\sin \widehat{Y_2FC}}=\frac {FC}{\sin\widehat{FY_2C}}\\\\
\triangle Y_2AH\ : & \frac {Y_2A}{\sin \widehat{Y_2HA}}=\frac {HA}{\sin\widehat{HY_2A}}\end{array}\right|$ . Since $\left\{\begin{array}{c}
\widehat{FY_2C}\equiv\widehat{HY_2A}\\\\
m\left(\widehat{Y_2FC}\right)+m\left(\widehat{Y_2HA}\right)=180^{\circ}\end{array}\right|$ obtain that $\frac {Y_2A}{Y_2C}=\frac {HA}{FC}$ . Since $\left\{\begin{array}{c}
CG=CF\\\\
AE=AH\end{array}\right|$ obtain that

$\frac {Y_1A}{Y_1C}=\frac {EA}{GC}=$ $\frac {HA}{FC}=\frac {Y_2A}{Y_2C}$ , i.e. $\frac {Y_1A}{Y_1C}=\frac {Y_2A}{Y_2C}$ $\implies$ $Y_1\equiv Y_2\equiv Y$ and $\frac {YA}{YC}=\frac {HA}{FC}$ . Hence the diagonal $AC$ pass through $Y\in GE\cap FH$ . Prove analogously that and the

diagonal $BD$ pass through same $Y$ . Hence $Y\in AC\cap BD\cap GE\cap FH$ (the Newton's point). Let $X_1\in AC\cap HG$ and $X_2\in AC\cap EF$ . Apply the Menelaus' theorem to

$:\ \left\{\begin{array}{cccc}
\overline {X_1GH}/\triangle ADC\ : & \frac {X_1C}{X_1A}\cdot\frac {HA}{HD}\cdot\frac {GD}{GC}=1 & \implies & \frac {X_1A}{X_1C}=\frac {HA}{GC}\\\\
\overline {X_2FE}/\triangle ABC\ : & \frac {X_2C}{X_2A}\cdot\frac {EA}{EB}\cdot\frac {FB}{FC}=1 & \implies & \frac {X_2A}{X_2C}=\frac {EA}{FC}\end{array}\right|$ . Since $\left\{\begin{array}{c}
CG=CF\\\\
AE=AH\end{array}\right|$ obtain that $\frac {X_1A}{X_1C}=\frac {HA}{GC}=$ $\frac {EA}{FC}=\frac {X_2A}{X_2C}$ , i.e. $\frac {X_1A}{X_1C}=\frac {X_2A}{X_2C}$ $\implies$

$X_1\equiv X_2\equiv X$ and $\frac {XA}{XC}=\frac {HA}{GC}$ , i.e. $HG\cap EF\cap AC\ne\emptyset$ . Hence $\frac {XA}{XC}=\frac {YA}{YC}$ .
See here.


PP2 (Generalization). Let the incircle $w=C(I,r)$ of the cyclical convex quadrilateral $ABCD$ and $\left|\begin{array}{cc}
M\in w\cap AB\ ; & N\in w\cap BC\\\\
P\in w\cap CD\ ; & Q\in w\cap DA\end{array}\right|$ . For $S\in \overarc[]{MQ}$ denote

$\left\{\begin{array}{ccc}
X\in AB\ ,\ SX\perp AB & ; & SX=x\\\\
Y\in BC\ ,\ SY\perp BC & ; & SY=y\end{array}\right\|$ and $\left\{\begin{array}{ccc}
Z\in CD\ ,\ SZ\perp CD & ; & SZ=z\\\\
T\in DA\ , \ ST\perp DA & ; & ST=t\end{array}\right\|$ . Prove that $\boxed{\sqrt{yz}\cos\frac A2=\sqrt {zt}\cos\frac B2+\sqrt{xt}\cos \frac C2+\sqrt {xy}\cos\frac D2}$ ..


Proof. Let $\left\{\begin{array}{c}
U\in AB\cap CD\\\\
V\in AD\cap BC\end{array}\right\|$ . Thus, $\left\{\begin{array}{cccc}
MN=2r\cos\frac B2\ ; & NP=2r\cos \frac C2\ ; & PQ=2r\cos \frac D2\\\\
QM=2r\cos\frac A2\ ; & MP=2r\cos\frac U2\ ; & NQ=2r\cos\frac V2\end{array}\right\|\implies$ $\frac {MN}{\cos\frac B2}=\frac {NP}{\cos\frac C2}=\frac {PQ}{\cos\frac D2}=\frac {QM}{\cos \frac A2}=\frac {MP}{\cos \frac U2}=\frac {NQ}{\cos\frac V2}\ (1)$ .

Apply upper lemma to the trapezoids $:\ \left\{\begin{array}{cc}
SXMI\ : & SM^2=2xr\\\\
SYNI\ : & SN^2=2ry\\\\
SZPI\ : & SP^2=2rz\\\\
STQI\ : & SQ^2=2rt\end{array}\right\|\implies$ $\frac {SM}{\sqrt x}=\frac {SN}{\sqrt y}=\frac {SP}{\sqrt z}=\frac {SQ}{\sqrt t}=\sqrt {2r}\ (2)$ . I"ll use the proportions $(1)$ and $(2)$ after the application of the

Ptolemy's theorem to $:$ $\left\{\begin{array}{ccccc}
SMNP\ : & SN\cdot MP=SM\cdot NP+SP\cdot MN & \implies & \sqrt y\cos \frac U2=\sqrt x\cos\frac C2+\sqrt z\cos\frac B2 & (3)\\\\
SMNQ\ : & SN\cdot MQ=SM\cdot NQ+SQ\cdot MN & \implies & \sqrt y\cos \frac A2=\sqrt x\cos\frac V2+\sqrt t\cos\frac B2 & (4)\\\\
SMPQ\ : & SP\cdot MQ=SM\cdot PQ+SQ\cdot MP & \implies & \sqrt z\cos\frac A2=\sqrt x\cos\frac D2+\sqrt t\cos \frac U2 & (5)\\\\
SNPQ\ : & SP\cdot QN=SQ\cdot NP+SN\cdot PQ & \implies & \sqrt z\cos \frac V2=\sqrt t\cos\frac C2+\sqrt y\cos\frac D2 & (6)\end{array}\right\|$ . Eliminate $\cos\frac U2$ between $(3)$ , $(5)$ and

eliminate $\cos\frac V2$ between $(4)$ , $(6) \ :\ \left\{\begin{array}{c}
\sqrt{yz}\cos\frac A2=\sqrt {xy}\cos\frac D2+\sqrt t\left(\sqrt x\cos\frac C2+\sqrt z\cos\frac B2\right)\\\\
\sqrt {yz}\cos \frac A2=\sqrt x\left(\sqrt t\cos\frac C2+\sqrt y\cos\frac D2\right)+\sqrt {tz}\cos\frac B2\end{array}\right\|\implies$ $\boxed{\ \sqrt{yz}\cos\frac A2=\sqrt {zt}\cos\frac B2+\sqrt{xt}\cos \frac C2+\sqrt {xy}\cos\frac D2\ }\ (*)$ .

If eliminate $\cos\frac A2$ between $(4)$ , $(5)$ or eliminate $\cos\frac C2$ between $(3)$ , $(6)$ , then obtain same relation $:\ \boxed{\ \sqrt{yt}\cos\frac U2-\sqrt {xz}\cos\frac V2=\sqrt{zt}\cos \frac B2-\sqrt {xy}\cos\frac D2\ }$ .

If eliminate $\cos\frac B2$ between $(3)$ , $(4)$ or eliminate $\cos\frac D2$ between $(5)$ , $(6)$ , then obtain same relation $:\ \boxed{\ \sqrt{yt}\cos\frac U2+\sqrt {xz}\cos\frac V2=\sqrt{xt}\cos \frac C2+\sqrt {yz}\cos\frac A2\ }$ .

Remark. If $D\in (CA)$ , then $z=t$ and the relation $(*)$ becomes the proposed problem PP7 from
here.[/size]
This post has been edited 31 times. Last edited by Virgil Nicula, Nov 20, 2015, 10:19 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a