445. Mathematics "instant" for the high school.

by Virgil Nicula, Jun 8, 2016, 5:07 PM

P0. $\boxed{\ \{a,b\}\subset\mathrm R^*_+\ \implies\ \min\{a,b\}\ \le\ \left|\begin{array}{cccc}
\underline{\mathrm{Harmonic}} & \mathrm{H} & = & \frac {2ab}{a+b}\\\\
\underline{\mathrm{Geometric}} & \mathrm{G} & = &  \sqrt {ab}\\\\
\underline{\mathrm{Arithmetic}} & \mathrm{A} & = & \frac {a+b}2\\\\
\underline{\mathrm{Quadratic}} & \mathrm{Q} & = & \sqrt{\frac {a^2+b^2}2}\end{array}\right|\ \le\ \max\{a,b\}\ \implies\ \left\{\begin{array}{cccccccc}
\mathrm{H} & \le & \mathrm{G} & \le & \mathrm{A} & \le & \mathrm{Q} & (1)\\\\
\mathrm{H} & + & \mathrm{Q} & \ge & \mathrm{G} & + & \mathrm{A} & (2)\end{array}\right\|\ }$

Proof. Prove easily that $\left\{\begin{array}{cccccc}
AH=G^2 & \implies & \frac {A+H}2\ge \sqrt{AH}=G & \implies & \frac {A+H}2\ge G & (*)\\\\
G^2+Q^2=2A^2 & \implies & (G+Q)^2\le 2\left(G^2+Q^2\right)=4A^2 & \implies & \frac {G+Q}2\le A & (**)\end{array}\right\|\ .$ Thus, $\boxed{H+Q\ge G+A}\iff$

$Q-G\ge A-H\iff$ $Q^2-G^2\ge (A-H)(Q+G)\iff$ $\frac {a^2+b^2}2-ab\ge $ $\left(\frac{a+b}2-\frac {2ab}{a+b}\right)\cdot (G+Q)\iff$ $\frac {(a-b)^2}2\ge \frac {(a-b)^2}{2(a+b)}\cdot (G+Q)\iff$

$a+b\ge G+Q\iff$ $G+Q\le 2A\ ,$ i.e. the relation $(**)$ what is true. Thus, $\mathrm{H}\ \le\ \mathrm{G}\ \stackrel{(*)}{\le}\ \frac {H+A}2\ \le\ \boxed{\frac {G+A}2\ \le\ \frac {H+Q}2}\ \le\ \frac {G+Q}2\ \stackrel{(**)}{\le}\ \mathrm{A}\ \le\ \mathrm{Q}\ .$

Geometrical interpretation 1. Let an $A$-right $\triangle ABC$ with the circumcircle $w=\mathbb C(O)\ .$ Let $:$ the $A$-altitude $AD\ ,$ where $D\in (BC)\ ;$ $N\in w$ so that $BC$ doesn't separates $A$

and $N\ ,\ NO\perp BC\ ;$ $K\in AA$ so that $DK\perp AA\ ,$ where $AA$ is the tangent to $w$ at $A\in w\ .$ Prove easily that $KB\perp BC$ and $OK\perp AB\ .$ Let $DB=x$ and $DC=y\ .$ Relations

$AD=\sqrt{xy}$ and $ON=\frac {x+y}2$ are true and $DK\le AD\le ON\le DN\ .$ Prove easily that $\left\{\begin{array}{ccccc}
DK=\frac {2xy}{x+y} & \iff & \mathrm{H.M}\\\\
AD=\sqrt {xy} & \iff &  \mathrm{G.M}\end{array}\right\|$ and $\left\{\begin{array}{ccccc}
ON=\frac {x+y}2 & \iff & \mathrm{A.M}\\\\
DN=\sqrt{\frac {x^2+y^2}2} & \iff & \mathrm{Q.M}\end{array}\right\|\ .$ Indeed,

$\blacktriangleright\ \triangle ADO\sim\triangle DKA\iff$ $\frac {AD}{DK}=\frac {AO}{DA}\iff $ $AD^2=DK\cdot AO\iff $ $G^2=H\cdot A \iff$ $ H=\frac{G^2}A\iff$ $DK=\frac {\left(\sqrt{xy}\right)^2}{\frac {x+y}2}\iff$ $\boxed{DK=\frac {2xy}{x+y}}\ (3)\ .$

$\blacktriangleright\ AD^2+DN^2=$ $\left(AD^2+OD^2\right)+ON^2=$ $OA^2+ON^2\iff G^2+Q^2=2\cdot A^2\iff$ $Q^2=2\left(\frac {x+y}2\right)^2-xy\iff$ $\boxed{DN=\sqrt{\frac {x^2+y^2}2}}\ (4)\ .$
Very nice !

Geometrical interpretation 2 (Rachid Moussaoui): sursa.

P1 (Sunken Rock). In $\triangle ABC\ ,$ $BD$ and $CE$ are the bisectors of $\widehat{ABC}$ and $\widehat{ACB}\ ,$ where $D\in (AC)$ and $E\in (AB)$

respectively. Prove that the circumcenters of $\triangle ACE$ and $\triangle ABD$ lie on $DE\iff m\left(\widehat{BAC}\right)=60^\circ\ .$


Proof. The circumcenters of $\triangle ACE$ and $\triangle ABD$ lie on $DE\ \Longleftrightarrow$ $\left\|\begin{array}{c}
m\left(\widehat{ADE}\right)=90^{\circ}-\frac B2\\\
m\left(\widehat{AED}\right)=90^{\circ}-\frac C2\end{array}\right\|\ \Longrightarrow$ $A=\frac {B+C}{2}\Longrightarrow A=60^{\circ}$

$\implies$ $AEID$ is cyclic $\implies$ $m(\widehat{EDB})=m(\widehat{DEC})=30^{\circ}=90^{\circ}-A$ $\implies$ the circumcenters of $\triangle ACE$ and $\triangle ABD$ lie on $DE\ .$


P2. Let $G$ be the centroid of $\triangle ABC$ and $M\in (AB)$ , $N\in (AC)$ so that $G\in MN\ .$ Prove that $[AMN]=[BMN]+[CMN]\ .$ Denoted $[XYZ]$ - the area of $\triangle XYZ\ .$

Extension. Let $P$ be an interior $\triangle ABC\ ,$ $M\in (AB)$ , $N\in (AC)$ so that $P\in MN$ and $R\in AP\cap BC\ .$

Prove that $[AMN]\cdot\frac {PR}{PA}=[BMN]\cdot\frac {RC}{BC}+[CMN]\cdot\frac {RB}{BC}\ .$ Denoted $[XYZ]$ - the area of $\triangle XYZ\ .$


Proof. I"ll use an well known the Cristea's identity $:\ \boxed{\frac {PR}{PA}\cdot BC=\frac {MB}{MA}\cdot RC+\frac {NC}{NA}\cdot RB}\ (*)\ .$ Indeed, the relation

$(*)\iff$ $\frac {PR}{PA}\cdot BC=\frac {[BMN]}{[AMN]}\cdot RC+\frac {[CMN]}{[AMN]}\cdot RB\iff$ $[AMN]\cdot\frac {PR}{PA}=[BMN]\cdot\frac {RC}{BC}+[CMN]\cdot\frac {RB}{BC}\ .$

Remark. An equivalent form of this identity is $\boxed{[AMN]\cdot\frac {AR}{AP}=[ABN]\cdot\frac {CR}{CB}+[ACM]\cdot\frac {BR}{BC}}\ (**)\ .$

See
here the proof of the Cristea's identity (third relation from PP1).

Cazuri particulare.

$\mathrm{P:=G}$ - centrul de greutate $\Longrightarrow\ [AMN]=[BMN]+[CMN]\ .$

$\mathrm{P:=I}$ - centrul centrului inscris $\Longrightarrow\ a\cdot [AMN]=b\cdot [BMN]+c\cdot [CMN]\ .$


P3. Prove that $\{a,b,c\}\subset\mathrm R_+^*\ \Longrightarrow\ \sum\frac {a^2}{bc}\ge \left(\frac s{R+r}\right)^2$ and $\frac{(x+y+z)^2}{3}\geq x\sqrt{yz}+y\sqrt{zx}+z\sqrt{xy}\ .$

Proof. $\sum\frac {a^2}{bc}\ \stackrel{\mathrm{C.B.S.}}{\ge}\ \frac {\left(\sum a\right)^2}{\sum bc}=$ $\frac {4s^2}{s^2+r^2+4Rr}\ge$ $\frac {4s^2}{\left(4R^2+4Rr+3r^2\right)+r^2+4Rr}=$ $\frac {4s^2}{4R^2+8Rr+4r^2}=$ $\frac {s^2}{(R+r)^2}$ $\implies$ $\sum\frac {a^2}{bc}\ge $ $\left(\frac s{R+r}\right)^2\ .$

Let $\sqrt x=u\ ,$ $\sqrt y=v\ ,$ $\sqrt z=w\ .$ Therefore, $\left(\sum x\right)^2=\left(\sum u^2\right)^2\ge$ $ 3\sum v^2w^2=3\sum (vw)^2\ge$ $3\sum \left(uw\cdot uv\right)=$ $3\sum u^2vw=3\sum x\sqrt {yz}\ .$


P4. Prove easily that $\{a,b,c\}\subset\mathrm R_+^*\Longrightarrow\left\|\begin{array}{c}
\frac{a^2+b^2+c^2}{ab+bc+ca}\ge 1\\\\
\frac{8abc}{(a+b)(b+c)(c+a)}\le 1\end{array}\right\|\ .$ Show that $\{a,b,c\}\subset\mathrm R_+^*\ \Longrightarrow\frac {a^2+b^2+c^2}{ab+bc+ca}+$ $\frac {8abc}{(a+b)(b+c)(c+a)}\ge 2\ \left(\begin{array}{ccc}
\mathrm{Jack\ Garfunkel}\\\
\mathrm{Pham\ Kim\ Hung}\end{array}\right)\ .$

Proof 1 (mudok). Suppose w.l.o.g. that $a\ge b\ge c\ .$ Prove easily that $\frac{8abc}{(a+b)(b+c)(c+a)}\ge \frac{4ac}{(a+c)^2}$ and $\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{4ac}{(a+c)^2}\ge 2 \ \ \iff  \ \ \ (a^2+c^2-ab-bc)^2\ge 0\ .$

Proof 2 (own). $\frac {\sum a^2}{\sum bc}+\frac {8abc}{\prod (b+c)}\ge 2\iff$ $\frac {2\left(s^2-r^2-4Rr\right)}{s^2+r^2+4Rr}+\frac {32Rrs}{2s\left(s^2+r^2+2Rr\right)}\ge 2\iff$ $\frac {s^2-r^2-4Rr}{s^2+r^2+4Rr}+\frac {8Rr}{s^2+r^2+2Rr}\ge 1\ \stackrel{\oplus\ 1}{\iff}\ \frac {2s^2}{s^2+r^2+4Rr}+$

$\frac {8Rr}{s^2+r^2+2Rr}\ge 2\iff$ $\frac {s^2}{\left(s^2+r^2\right)+4Rr}$ $+\frac {4Rr}{\left(s^2+r^2\right)+2Rr}\ge 1\iff$ $s^2\left(s^2+r^2+2Rr\right)+$ $4Rr\left(s^2+r^2+4Rr\right)\ge$ $\left(s^2+r^2\right)^2+6Rr\left(s^2+r^2\right)+8R^2r^2\iff$

$\cancel{\underline{s^2\left(s^2+r^2\right)}}+\cancel{\underline{\underline{2s^2Rr}}}+\cancel{\underline{\underline{4s^2Rr}}}+\underline{\underline{\underline{4Rr^3}}}+\underline{\underline{\underline{\underline{16R^2r^2}}}}\ge \cancel{\underline{s^2\left(s^2+r^2\right)}}+r^2\left(s^2+r^2\right)+\cancel{\underline{\underline{6s^2Rr}}}+\underline{\underline{\underline{6Rr^3}}}+\underline{\underline{\underline{\underline{8R^2r^2}}}}\iff$ $8R^2r^2\ge r^2\left(s^2+r^2\right)+2Rr^3\iff$

$\boxed{s^2+r^2+2Rr\le 8R^2}\ (*)\ .$ I"ll use Gerretsen's $:\ \boxed{s^2\le 4R^2+4Rr+3r^2}\ .$ Indeed, $\boxed{4R^2+4Rr+3r^2\le 8R^2-2Rr-r^2}\ (2)\iff$ $2R^2-3Rr-2r^2\ge 0\iff$

$(R-2r)(2R+r)\ge 0\ ,$ i.e. the relation $(2)$ is true. In conclusion, $s^2\le 8R^2-2Rr-r^2 \implies$ $s^2+2Rr+r^2\le 8R^2\ ,$ i.e. the relation $(*)\ .$


P5. For $\triangle ABC$ are well known the inequalities $\left\|\ \begin{array}{ccccc}
 A & = & (b+c)(c+a)(a+b)-8abc & \ge  & 0\\\\
 B & = & abc-(b+c-a)(c+a-b)(a+b-c) & \ge & 0\end{array}\ \right\|\ .$ Prove that $A\ge B\ge 0\ ,$

adica $9abc\ \stackrel{(1)}{\le}\ \prod (b+c)+\prod (b+c-a)\ \stackrel{(2)}{\le}\  (a+b+c)(ab+bc+ca)$ (Virgil Nicula & Cosmin Pohoata, Mathematical Reflections).


Proof. Exist $\{x,y,z\}\subset\mathbb R^*_+$ so that $\left\{\begin{array}{ccccccc}
a & = & x+y & ; & b & = & x+z\\\
c & = & x+y & ; & s & = & x+y+z\end{array}\right\|\ .$ The first inequality is equivalent with $(s+x)(s+y)(s+z)+8xyz\ge $

$9(s-x)(s-y)(s-z)\iff$ $s^3+9xyz\ge 4s(xy+yz+zx)$ what is the Schur's inequality under another form. The second inequality is equivalent with

$\prod (s+x)+8xyz\leq 2s\cdot \left[s^2 +\sum (xy)\right]\iff$ $ s^3 +s\cdot\sum (xy)+s^3 +9xyz\leq 2s^3 +2s\cdot\sum (xy)\Longleftrightarrow$ $9xyz\leq (x+y+z)(xy + yx+ xz)$ $\iff$

$z(x-y)^2 +x(y-z)^2 +y(z-x)^2 \geq 0\ .$ Otherwise. $\left\{\begin{array}{ccc}
x+y+z & \ge & 3\sqrt [3]{xyz}\\\\
xy+yz+zx & \ge & 3\sqrt [3]{x^2y^2z^2}\end{array}\right\|\ \bigodot$ $\implies$ $(x+y+z)(xy+yz+zx)\ge 9xyz\ .$


P6. Prove that $(\forall )$ $\triangle ABC$ there are two equivalent inequalities $\boxed{\tan^2\frac A2+\tan^2\frac B2+\tan^2\frac C2+8\sin\frac A2\sin\frac B2\sin\frac C2\ge 2}$ $\iff$ $\boxed{\left(\frac {4R+r}s\right)^2+\frac {2r}R\ge 4}\ (1)\ .$

Proof. $\boxed{\sum\tan^2\frac A2+8\prod\sin\frac A2\ge 2}\iff$ $\sum\left(\frac r{s-a}\right)^2+8\prod\sqrt{\frac {(s-b)(s-c)}{bc}}\ge 2\iff$ $r^2\cdot\sum \frac {r_a^2}{S^2}+\frac {8(s-a)(s-b)(s-c)}{abc}\ge 2\iff$

$\frac 1{s^2}\cdot\sum r_a^2+\frac {8sr^2}{4Rrs}\ge 2\iff$ $\frac 1{s^2}\cdot\left[\left(r_a+r_b+r_c\right)^2-2\left(r_ar_b+r_br_c+r_cr_a\right)\right]+\frac {2r}{R}\ge 2\iff$ $\frac 1{s^2}\cdot\left[(4R+r)^2-2s^2\right]+\frac {2r}{R}\ge 2\iff$ $\boxed{\left(\frac {4R+r}s\right)^2+\frac {2r}{R}\ge 4}\ .$

Now I"ll give a short geometrical proof of the second inequality $\left(\frac {4R+r}s\right)^2+\frac {2r}R\ge 2\ .$ If $H$ is the orthocenter and $\Gamma$ is the Gergonne's point, then is well known that

$H\Gamma^2 =4R^2\cdot\left[1-\frac {2s^2(2R-r)}{R(4R+r)^2}\right]\ge 0\implies$ $\left(\frac{4R+r}s\right)^2\ge \frac {2(2R-r)}R\implies$ $\left(\frac {4R+r}s\right)^2+\frac {2r}{R}\ge \frac {2(2R-r)}R+\frac {2r}R=4\ ,$ i.e. $\left(\frac {4R+r}s\right)^2+\frac {2r}R\ge 2\ .$


P7.Let $\Delta ABC$ with incircle $w=\mathbb C(I,r)$ what is tangent to $BC$ in $D\ ,$ the $A$-excircle $w_a=\mathbb C\left(I_a,r_a\right)$ and midpoint $M$ of the $A$-altitude $[AS]$ where $S\in BC\ .$ Prove that $D\in MI_a\ .$

Proof 1. Let $D_1\in BC\cap w_a\ .$ Thus, $D\in MI_a\Longleftrightarrow$ $\frac {MS}{D_1I_a}=\frac {DS}{DD_1}\Longleftrightarrow$ $\frac {h_a}{2r_a}=\frac {p-a}{a}$ $\Longleftrightarrow ah_a=2(p-a)r_a$ what is true.

Proof 2. Let $D_1\in BC\cap w_a\ ,$ $\{D,L\}=DI\cap w$ and $\{D_1,L_1\}=D_1I_a\cap w_a\ .$ Hence $DL\parallel D_1L_1\ .$ Consider the homothety with the center $A$ what transforms incircle

in $A$-excircle, i.e. $\left(A,L,D_1\right)$ and $\left(A,D,L_1\right)$ are collinear. $\triangle DD_1L_1\ ,$ $\triangle DSA$ are homothetic and $I_1$ is the midpoint of $[D_1L_1]\ ,$ then $DI_1$ pass by the midpoint of $[AS]\ .$


P8 (Sergey Yurin, Kvant). Let $\triangle ABC$ with $AB=AC$ and $A=20^{\circ}$ . Consider $D\in (AB)$ for which $AD=BC$ . Find $m(\angle BDC)$ .

Proof 1 Proof 2 Proof 3 Proof 4 Proof 5 Proof 6 Proof 7 Proof 8 Proof 9 Proof 10 Proof 11

P9 (J. C. Miranda). Let $\triangle ABC$ with $a>b\ .$ Denote $M\in (BC)$ so that $MC=b$ and the midpoint $P$ of $[AM]\ .$ Ascertain the length of the segment $[BP]$ (standard notations).

Proof. Observe that $\triangle MAC$ is $C$-isosceles, $BM=a-b$ and $\boxed{AM=2b\sin\frac C2}\ (*)\ .$ Apply the theorem of median $[BP]$ in $\triangle ABM\ ,$ where denote $BP=x\ .$

Therefore, $4\cdot BP^2=2\cdot\left[BA^2+BM^2\right]-AM^2\ \stackrel{(*)}{\iff}\ 4x^2=$ $2\left[c^2+(a-b)^2\right]-4b^2\sin^2\frac C2=$ $2c^2+2(a-b)^2-\frac {4b(s-a)(s-b)}{a}\iff$

$4ax^2=2ac^2+2a(a-b)^2-b\left[c^2-(a-b)^2\right]\iff$ $4ax^2=2ac^2+2a(a-b)^2-bc^2+b(a-b)^2\iff$ $\boxed{4ax^2=(2a-b)c^2+(2a+b)(a-b)^2}\ .$

Particular case $:\ (a,b,c)=(14,13,15)\implies$ $x=\sqrt {61}\ ,$ $\sin C=\frac {12}{13}$ and $AM=4\sqrt {13}\ .$


P10 (Kadir Altintas - Turkey). Let $ABCD$ be a rectangle with the center $O\ .$ Denote $E\in BC$ so that $AE\perp BD$ and $F\in AE\cap BD\ .$ Denote

the incircles $w_1=\mathbb C\left(I_1,r_1\right)\ ,$ $w_2=\mathbb C\left(I_2,r_2\right)$ and $w=\mathbb C\left(I,r\right)$ of the triangles $BFE\ ,$ $AFO$ and $COD$ respectively. Prove that $r_1+r_2=r\ .$


Proof. Let the midpoint $M$ of $[CD]$ and $\phi =m\left(\widehat{ACB}\right)\ .$ Therefore, $\widehat{ACB}\equiv\widehat{COM}\ ,$ $\tan\phi =\frac {BA}{BC}$ and $2r=(OC+OD-CD)\cdot \tan\widehat{COM}=$ $(AC-AB)\cdot \tan\phi$ $\implies$

$\boxed{2r=(AC-AB)\cdot\tan\phi}\ (1)\ .$ On other hand, $\left\{\begin{array}{ccc}
2r_1 & = & FB+FE-BE\\\\
2r_2 & = & FA+FO-AO\end{array}\right\|\bigoplus\implies$ $2\left(r_1+r_2\right)=$ $(FA+FE)+(FB+FO)-BE-AO=$

$AE+BO-BE-AO=$ $AE-BE\implies$ $\boxed{2\left(r_1-r_2\right)=AE-BE}\ (2)\ .$ Observe that $\triangle ABE\sim\triangle CBA\iff$ $\frac {AB}{CB}=\frac {BE}{BA}=\frac {AE}{CA}=\frac {AE-BE}{CA-AB}\iff$

$AE-BE=(CA-AB)\cdot\tan\phi\ \stackrel{1\wedge 2}{\iff}\ 2(r_1+r_2)=2r\iff$ $r_1+r_2=r\ .$


P11 (Conc.Saraghin 2014). Let $\triangle ABC\ ;$ the feet $E\ ,$ $F$ of the $B$-altitude and the $C$-altitude $;$ the feet $L\ ,$ $K$ of the $B$-bisector and the $C$-bisector. Prove that $EF\parallel LK\iff$ $b=c\ .$

Proof. $EF\parallel LK\iff$ the line $LK$ is antiparallel direction to $BC\iff$ $BCLK$ is cyclic $\iff$ $AL\cdot AC=AK\cdot AB\iff$ $\frac{bc}{a+c}\cdot b=\frac {cb}{a+b}\cdot c\iff$ $b=c\ .$

P12 (Queensland Australia). Solve the following system $:\ \left\{\begin{array}{cccccc}
S_1 & = & x+y+z & = & -2 & (1)\\\\
S_2 & = & x^2+y^2+z^2 & = & 122 & (2)\\\\
S_3 & = & x^3+y^3+z^3 & = & 142 & (3)\end{array}\right\|\ .$

Proof 1. Let $\left\{\begin{array}{ccc}
s_1 & = & x+y+z\\\\
s_2 & = & xy+yz+zx\\\\
s_3 & = & xyz\end{array}\right\|\ .$ Prove easily $S_2+2s_2=s_1^2\iff$ $122+2s_2=4\iff$ $\boxed{s_2=-59}\ (*)$ and $S_3=\sum x\sum x^2-\sum yz(y+z)=$ $s_1\left(s_1^2-2s_2\right)-$ $\sum yz\left(s_1-x\right)\implies$ $\boxed{S_3=s_1^3-3s_1s_2+3s_3}$ i.e. $142=-8-6\cdot 59+3s_3\iff$ $504=3s_3\implies \boxed{s_3=168}\ .$ Thus$,\ t^3+2t^2-59t-168=0\begin{array}{cccc}
\nearrow & t_1=-7 & \searrow\\\\
\rightarrow & t_2=-3 & \rightarrow\\\\
\searrow & t_3=8 & \nearrow\end{array}\odot$

P13. Let the functions $f:\mathbb{R}\rightarrow\mathbb{R}$ where $f(x)=x^2+ax+b$ and $g:\mathbb{R}\rightarrow\mathbb{R}$ where $g(x)=x^2+cx+d\ .$ Let the real roots

$\{m,n\}$ of the equation $f(x)=0$ and the real roots $\{p,r\}$ of the equation $g(x)=0\ .$ Prove that $f(p)+f(r)+g(m)+g(n)\ge 0\ .$


Proof.

$\blacktriangleright\ f(x)=x^2+ax+b=0\begin{array}{cc}
\nearrow & m\\\\
\searrow & n\end{array}\implies$ $\left\{\begin{array}{ccc}
m+n & = & -a\\\\
m\cdot n & = & b\end{array}\right|$ $\implies$ $f(x)=(x-m)(x-n)\ .$

$\blacktriangleright\ g(x)=x^2+cx+d=0\begin{array}{cc}
\nearrow & p\\\\
\searrow & r\end{array}\implies$ $\left\{\begin{array}{ccc}
p+r & = & -c\\\\
p\cdot r & = & d\end{array}\right|$ $\implies$ $g(x)=(x-p)(x-r)\ .$

$\blacktriangleright\ f(p)+f(r)+g(m)+g(n)=$ $\underline{(p-m)(p-n)}+\underline{\underline{(r-m)(r-n)}}+$ $\underline{(m-p)(m-r)}+\underline{\underline{(n-p)(n-r)}}=$ $(m-p)\underline{[(m-r)-(p-n)]}+$

$(n-r)\underline{[(n-p)-(r-m)]}=$ $[(m+n)-(p+r)][(m-p)+(n-r)]=$ $[(m+n)-(p+r)]^2=(a-c)^2\ .$ In conclusion, $f(p)+f(r)+g(m)+g(n)\ge 0\ .$


P14. Prove that for any $\{a,b,c\}\subset (0,\infty )$ so that $a+b+c=3$ there is the inequality $\frac a{\sqrt{a+2b}}+\frac b{\sqrt{b+2c}}+\frac c{\sqrt{c+2a}}\ge \sqrt 3\ .$

Proof. $\frac a{\sqrt{a+2b}}+\frac b{\sqrt{b+2c}}+\frac c{\sqrt{c+2a}}\ge \sqrt {3}  \Longleftrightarrow \sum\limits_{cyc}{\left(\dfrac{a}{3}* \dfrac{3}{\sqrt{a+2b}}\right)} \ge \sqrt{3}\ .$ The real function $f(x)=\frac{3}{\sqrt{x}}\ ,\ x>0$ is convex and

$a/3 +b/3 + c/3 =1\ .$ Hence from the Jensen's inequality obtain that $\sum\limits_{cyc}\left(\frac{a}{3}\cdot \frac{3}{\sqrt{a+2b}}\right)= $ $\sum\limits_{cyc}\frac{a}{3}\cdot f(a+2b) \ge$ $ f\left[\sum\limits_{cyc}\frac{a}{3}\cdot (a+2b) \right]=\sqrt{3}\ .$


P15. Let an acute $\triangle ABC$ with the orthocenter $H\ .$ Let $[AD\ ,$ $[HE$ be the bisectors of $\widehat{BAC}\ ,$ $\widehat{BHC}$ respectively , where $\{D,E\}\subset (BC)\ .$ Denote

the projections $P\ ,$ $Q$ of the point $E$ on $AB\ ,$ $AC$ respectively and the projections $S\ ,$ $T$ of the point $D$ on $BH\ ,$ $CH$ respectively. Prove that $PT = QS\ .$


Proof. Let $X\in BH\cap AC$ and $Y\in CH\cap AB\ .$ Define the projections $M\ ,$ $N$ of $D$ on $AB\ ,$ $AC$ respectively and the projections $U\ ,$ $V$ of $E$ on $BH\ ,$

$CH$ respectively. Thus, $DM=DN\ ,$ $EU=EV$ and $DMYT\ ,$ $DNXS\ ,$ $EPYV\ ,$ $EQXU$ are rectangles. Hence $YT=DM=DN=XS\ ,$

$YP=EV=EU=XQ\ .$ In conclusion, $YT=XS$ and $XQ=YP\Longrightarrow$ $\triangle PYT\equiv\triangle QXS$ $\Longrightarrow$ $PT=QS\ .$


P16. Let $ABC$ be an $A$-right triangle with the altitude $AD\ ,$ where $D\in BC\ .$ Denote the incircles $w_1=C(I_1,r_1)\ ,$

$w_2=C(I_2,r_2)$ of $\triangle ABD\ ,$ $\triangle ACD$ respectively and $E\in AB\cap I_1I_2\ ,$ $F\in AC\cap I_1I_2\ .$ Prove that $AE=AF\ .$


Proof 1. Suppose w.l.o.g. that $c<b\ .$ $\triangle DBA\sim\triangle ABC\sim \triangle DAC\implies$ $\frac {r_1}{c}=\frac ra=\frac {r_2}{b}\ .$ Let $L\in BC\cap I_1I_2$ and $\phi =m\left(\widehat{FLC}\right)\ .$ Thus, $\tan \phi=\frac {\mathrm{pr}_{AD}\left(I_1I_2\right)}{\mathrm{pr}_{BC}\left(I_1I_2\right)}=$ $\frac {r_2-r_1}{r_1+r_2}$

$\Longrightarrow$ $\tan\phi =\frac {b-c}{b+c}\ .$ Thus, $m\left(\widehat{AEF}\right)=B-\phi$ $\implies\tan\widehat{AEF}=$ $\tan (B-\phi )=$ $\frac {\tan B-\tan\phi}{1+\tan B\tan\phi}=$ $\frac {\frac bc-\frac {b-c}{b+c}}{1+\frac bc\cdot\frac {b-c}{b+c}}=1\ ,$ i.e. $\widehat{AEF}=\widehat{AFE}=45^{\circ}\implies$ $AE=AF\ .$

Proof 2. $\left\{\begin{array}{ccc}
BA\perp AC\ \wedge\ \widehat{BAI_1}\equiv\widehat{ACI_2} & \Longrightarrow &  CI_2\perp AI_1\\\\
CA\perp AB\ \wedge\ \widehat{CAI_2}\equiv\widehat{ABI_1} & \Longrightarrow &  BI_1\perp AI_2\end{array}\right\|$ $\Longrightarrow$ $I\in BI_1\cap CI_2$ is the orthocenter of $\triangle I_1AI_2\ \Longrightarrow$ $AI\perp I_1I_2$ $\Longrightarrow$ $AE=AF\ .$

Remark. Suppose w.l.o.g. $c<b$ and denote $S\in EF\cap AD\ ,$ $L\in EF\cap BC$ and $AD=h=\frac {bc}{a}\ .$ Prove easily that $\left\|\begin{array}{c}
\frac {SA}{a}=\frac {SD}{b+c-a}=\frac {h}{b+c}\\\\
\frac {LD}{2rh}=\frac {LB}{c(a-b)}=\frac {LC}{b(a-c)}=\frac 1{b-c}\end{array}\right\|\ \ \wedge\ \left\|\begin{array}{c}
\frac {EA}{b}=\frac {EB}{a-b}=\frac ca\\\\
\frac {FA}{c}=\frac {FC}{a-c}=\frac ba\end{array}\right\|$

$\implies$ $\ \frac {1}{AS}=\frac 1b+\frac 1c$ and $AE=AF=AD=h\ .$ In conclusion, $m\left(\widehat{EDF}\right)=135^{\circ}$ and $\tan\phi =\frac {b-c}{b+c}\ ,$ where $\phi =m\left(\widehat{FLC}\right)\ .$ Thus, $\left\{\begin{array}{c}
m\left(\widehat{BDE}\right)=\frac C2\\\\
m\left(\widehat{CDF}\right)=\frac B2\end{array}\right|\ .$


P17. Let $\triangle ABC$ with the circumcircle $w=C(O)$ and $c<b\ .$ Let $D\in BC\cap AA$ and the points $\{E,F\}$ so that $\left\{\begin{array}{cc}
EA=EB\ ;\ EB\perp BC\\\\
FA=FC\ ;\ FC\perp BC\end{array}\right\|\ .$ Prove that $D\in EF\ .$

Proof. If $(M,N)$ are midpoints of $[AB]\ ,$ $[AC]$ respectively, then $\frac {BE}{CF}=\frac {BM}{\cos \widehat{ABE}}\cdot\frac {\cos\widehat{ACF}}{CN}=$ $\frac cb\cdot\frac {\sin C}{\sin B}\implies$ $\boxed{\frac {BE}{CF}=\frac {c^2}{b^2}}\ .$ Hence $\frac {SB}{SC}=\frac {BE}{CF}=\frac {c^2}{b^2}\implies D\in EF\ .$

Remark. I"ll prove the well-known relation $\boxed{\frac {SB}{SC}=\frac {c^2}{b^2}}\ (*)\ .$ Indeed, $\triangle DAB\sim\triangle DCA\iff$ $\frac {DA}{DC}=\frac {DB}{DA}=\frac {AB}{CA}\implies$ $\frac {DB}{DC}=\frac {\frac {AB\cdot DA}{CA}}{\frac {DA\cdot CA}{AB}}\implies$ $\frac {DB}{DC}=\left(\frac {AB}{AC}\right)^2\ .$


P18. Let $ABCD$ be an orthodiagonal and cyclical quadrilateral with the circumcircle $w=\mathbb C\left(O,R\right)\ .$ Let $E\in AC\cap BD\ ,$ the midpoints $M\ ,$ $N\ ,$ $P\ ,$ $Q$ of $[AB]\ ,$ $[BC]\ ,$ $[CD]\ ,$

$[DA]$ respectively and the projections $X\ ,$ $Y\ ,$ $Z\ ,$ $T$ of $E$ on $[AB]\ ,$ $[BC]\ ,$ $[CD]\ ,$ $[DA]$ respectively. Then $E\in MZ\cap NT\cap PX\cap QY\ ,$ $MNPQ$ is a rectangle and

the points $\{X,Y,Z,T\}$ belong to the circle with the diameter $[MP]$ and its center in the midpoint of $[OE]$ because the quadrilaterals $OMEP$ and $ONEQ$ are parallelograms.


P19. Prove that $(\forall )$ $\triangle ABC$ at least one from its medians has the length less than or equally to $\frac s{\sqrt 3}\ ,$ where $2s=a+b+c\ .$

Proof 1. Suppose w.l.o.g. $a=\max\{a,b,c\}\ ,$ i.e. $A\ge 60^{\circ}\iff \boxed{2\cos A\le 1}\ (*)$ and $(b+c)^2\le (a+a)(b+c)\le 2a(b+c)\ ,$ i.e. $\boxed{(b+c)^2\le 2a(b+c)}\ (**)\ .$

I"ll use the well-known identities $:\ \left\{\begin{array}{cccc}
a^2 & = & b^2+c^2-2bc\cos A & (1)\\\\
4m_a^2 & = & b^2+c^2+2bc\cos A & (2)\end{array}\right\|\ .$ Thus, $(b-c)^2+4bc\cdot 2\cos A\ \stackrel{*}{\le}\  (b-c)^2+$ $4bc=$ $(b+c)^2\ \stackrel{**}{\le}\ 2a(b+c)\ .$

Hence $(b-c)^2+4\cdot 2bc\cos A\le 2a(b+c)\ \stackrel{(1)}{\iff}\ \left(b^2+c^2\right)+$ $4\left(b^2+c^2-a^2\right)\le 2bc+2a(b+c)\iff$ $6\left(b^2+c^2\right)\le 4a^2+2a(b+c)+(b+c)^2\iff$

$6\left(b^2+c^2\right)-3a^2\le a^2+2a(b+c)+(b+c)^2\iff$ $3\left[2\left(b^2+c^2\right)-a^2\right]\le \left[a+(b+c)^2\right]\iff$ $3\cdot 4m_a^2\le (a+b+c)^2\iff$ $2m_a\sqrt 3\le 2s\iff$ $\boxed{m_a\le \frac s{\sqrt 3}}\ .$

Proof 2. Let $\{m,M\}$ be the smallest and the greatest medians of $\triangle ABC\ .$ Prove easily that $m^2\le \boxed{\frac {am_a^2+bm_b^2+cm_c^2}{a+b+c}=\frac {s^2+5r^2+2Rr}4}\le\frac {s^2}3\ .$

Prove similarly that $M^2\ge \boxed{\frac {am_a^2+bm_b^2+cm_c^2}{a+b+c}=\frac {s^2+5r^2+2Rr}4}\ge$ $\frac {18Rr}4$ $\implies$ $M\ge \frac 32\cdot \sqrt{2Rr}=$ $\frac 32\cdot\sqrt{\frac{4Rrs}{2s}}$ $\implies$ $\boxed{M\ge \frac 32\cdot\sqrt{\frac {abc}{a+b+c}}}\ .$


Proof 3. Prove easily that $a=\max\{a,b,c\}\iff$ $m_a=\min\{m_a,m_b,m_c\}\iff$ $A=\max\{A,B,C\}\implies$ $A\ge 60^{\circ}\iff$ $\cos A\le\frac 12\ (*)\ .$ Hence

$4m_a^2=b^2+c^2+2bc\cos A\ \stackrel{(*)}{\le}\ b^2+c^2+bc\le$ $a(b+c)+bc\le$ $\frac 13\cdot (a+b+c)^2=$ $\frac {4s^2}{3}\ .$ In conclusion, $m_a\le\frac {s}{\sqrt 3}\ .$ Prove similarly if $A\le 60^{\circ}$ , then

$4M_a^2\ge a(b+c)+bc=s^2+r^2+4Rr\ge 16Rr-5r^2+r^2+4Rr=20Rr-4r^2\implies$ $\boxed{M_a\ge\sqrt{r(5R-r)}}\ge \frac 32\cdot\sqrt{2Rr}\ .$


P20. Let $\triangle ABC$ with the orthocenter $H.$ Prove the chain of the equivalencies $:\ s=2R+r \iff ABC$ is $A$-right-angled triangle $\iff$ $HA+r_a=s$ (standard notations).


P21 (Adil Abdullayev). Prove that $(\forall )\ \triangle\ ABC\ \mathrm{there\ is\ the\  following\ inequality\ :}\ 3(\cos A+\cos B+\cos C)\ge 2(\sin A\sin B+\sin B\sin C+\sin C\sin A)$ .

Proof. I"ll use only the identity $\boxed{\cos A+\cos B+\cos C=1+\frac rR}\ (1)$ and the remarkable inequality $\boxed{s^2\le 4R^2+4Rr+3r^2}\ (*)\ .$ Thus, $3\cdot\sum\cos A\ge 2\sum\sin B\sin C\ \stackrel{(1)}{\iff}\ 3\cdot \left(1+\frac rR\right)\ge$

$2\cdot \sum\frac {bc}{4R^2}\iff$ $3(R+r)\ge \sum\frac {bc}{2R}\ \stackrel{(*)}{\iff}\ 6R(R+r)\ge s^2+r^2+4Rr\iff$ $s^2\le 6R^2+2Rr-r^2\ .$ Hence $\boxed{3\cdot\sum\cos A\ge 2\sum\sin B\sin C\iff s^2\le 6R^2+2Rr-r^2}\ (2)\ .$

From $\boxed{4R^2+4Rr+3r^2\le 6R^2+2Rr-r^2}\ (3)\iff$ $2R^2-2Rr-4r^2\ge 0\iff$ $R^2-Rr-2r\ge 0\iff$ $(R+r)(R-2r)\ge 0\iff$ $R-2r\ge 0$ obtain that the inequality $(3)$ is true.

In conclusion, $s^2\ \stackrel{(*)}{\le} 4R^2+4Rr+3r^2\ \stackrel{(3)}{\le}\ 6R^2+2Rr-r^2\implies$ $s^2\le 6R^2+2Rr-r^2\ \stackrel{(2)}{\iff}\ 3\cdot\sum\cos A\ge 2\sum\sin B\sin C\ .$


P22 (Miguel Ochoa SANCHEZ). Click => here.

Proof. $\left\{\begin{array}{cccccc}
\frac {MA}b=\frac {MB}a=\frac c{a+b} & \implies & MB=\frac {ac}{a+b} & \implies & \frac 1{MB}=\frac 1c+\frac b{ac} & (1)\\\\
\frac {NA}c=\frac {NC}a=\frac b{a+c} & \implies & NC=\frac {ab}{a+c} & \implies & \frac 1{NC}=\frac 1b+\frac c{ab} & (2)\end{array}\right\|\bigoplus\implies$ $\frac 1{MB}+\frac 1{NC}=\frac 1c+\frac b{ac}+ \frac 1b+\frac c{ab}=$ $\frac 1b+\frac 1c+\frac 1a\cdot\left(\frac bc+\frac cb\right)=$ $\frac 1b+\frac 1c+\frac 1a\cdot\frac {b^2+c^2}{bc}=$

$\frac 1b+\frac 1c+\frac 1{\cancel a}\cdot\frac {a\cancel{^2}}{bc}=$ $\frac 1b+\frac 1c+\frac 1h\implies$ $\boxed{\frac 1{MB}+\frac 1{NC}=\frac 1b+\frac 1c+\frac 1h}\ (1)\ ,$ where $h$ is the length of the $A$-altitude. From the theorem of Cathetus $\frac {HB}{c^2}=\frac {HC}{b^2}=\frac 1a$ obtain that $\left\{\begin{array}{ccc}
HB & = & \frac {c^2}a\\\\
HC & = & \frac {b^2}a\end{array}\right\|\ .$
Apply the Cristea's theorem $:\ \frac {MB}{MA}\cdot HC+\frac {NC}{NA}\cdot HB=\frac {PH}{PA}\cdot BC\iff$ $\frac ab \cdot \frac {b^2}a+\frac ac\cdot \frac {c^2}a=\frac {PH}{PA}\cdot a\iff$ $\frac {\cancel a}{\cancel b} \cdot \frac {b\cancel{^2}}{\cancel a}+\frac {\cancel a}{\cancel c}\cdot \frac {c\cancel{^2}}{\cancel a}=\frac {PH}{PA}\cdot a\iff$ $\frac {PH}{b+c}=\frac {PA}a=\frac h{a+b+c}\implies$

$\frac 1{PA}=\frac {a+b+c}{ah}=\frac 1h+\frac {b+c}{ah}=\frac 1h+\frac {b+c}{bc}=\frac 1h+\frac 1b+\frac 1c\implies$ $\boxed{\frac 1{PA}=\frac 1b+\frac 1c+\frac 1h}\ (2)\ .$ From the relations $(1\wedge 2)$ obtain the required identity, i.e. $\boxed{\frac 1{MB}+\frac 1{NC}=\frac 1b+\frac 1c+\frac 1h=\frac 1{PA}}\ .$



P23 (Kadir Altintas, Turkey). Let $\triangle ABC$ with incircle $w=\mathbb C(I,r)\ ,$ midpoint $M$ of $[BC]\ ,$ $A$-Gergonne's cevian $AT\ ,$ where $T\in (BC)\cap w$ and the midpoint $N$ of $[AT]\  .$ Prove $\boxed{\ I\in MN\ }\ (*)\ .$


Proof (Emil Stoyanov). Let $\{S,T\}=\{I,T\}\cap w$ and $R\in AS\cap BC\ ,$ where $AR$ is the Nagel's cevian. Thus, $\{M,I,N\}$ are the midpoints of segments $\{TR,TS,TA\}\ .$ Hence $I\in MN\ .$ Nice!
This post has been edited 313 times. Last edited by Virgil Nicula, Apr 19, 2018, 8:33 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a