441. LaTeX (common simbols).
by Virgil Nicula, Apr 7, 2016, 12:27 AM
LaTeX <= click => AoPS cyclic quadrilateral 


![$\begin{array}{ccccccccccccccccccccccccccccccccccccccc}
\pm & \mp & \times & \div & \cdot & \dots & \cdots & \ddots & \iddots & \ast & \star & \dagger & \ddagger & \amalg & \cap & \cup & \uplus & \sqcap & \sqcup & \vee & \wedge & \oplus & \ominus & \otimes\\\\
\circ & \bullet & \diamond & \lhd & \rhd & \unlhd & \unrhd &\oslash & \odot & \bigcirc & \triangleleft & \Diamond & \bigtriangleup & \bigtriangledown & \Box & \triangleright & \setminus & \wr & \sqrt{x} & x^{\circ} & \triangledown & \sqrt[n]{x} & a^x & a^{xyz} \end{array}$](//latex.artofproblemsolving.com/f/3/a/f3af211c329f83cb8062d7749d6d8932c8effe91.png)











Examples.


Casey's theorem
A
B
C
All the best !

P1.
Proof.
Thus, 





OFF-topic. In general in viata este mai usor sa gresesti decat sa intelegi unde si de ce ai gresit. Si in matematica se poate intampla sa gresesti, insa
astfel apare o noua problema - descoperirea greselii - care te proiecteaza spre alte metode sau chiar extinderea teoriei. Cu alte cuvinte, greseala in
matematica uneori este benefica. Insa aici in noua problema aparuta ai "dezavantajul" ca trebuie sa te descurci singur, cum de altfel s-a si intamplat.
P2. Fie triunghiul
cu
Punctele
,
si
sunt picioarele bisectoarelor din
pe
respectiv. Sa se arate ca 
Demonstratie. Notam incentrele
ale triunghiurilor
respectiv. Se observa ca
adica
este bisectoarea exterioara din varful 
in
ceea ce inseamna
Deci si
,
sunt bisectoarele (interioara si exterioara) din varful
in
asadar,
,
adica patrulaterul
este inscris in cercul de diametru
- concluzia problemei.
Generalizare. Fie
un triunghi pentru care
Consideram bisectoarea interioara
din varful 
unde
si punctul
pentru care
Sa se arate ca 
P3. Fie
si
,
ca
Notam
Sa se afle
astfel incat
Demonstratie. Alegem originea sistemului in
adica
si pentru orice
avem
Deci exista
ca 


exista
,
reale ca

si in acest caz
(prelucrare in general, fara a tine seama de relatia din ipoteza !).
si

P4. Sa se arate ca un triunghi
este dreptunghic 
Demonstratie 1. Folosim identitatile
Astfel egalitatea devine 

sau
sau
sau

Demonstratie 2. Se arata usor prin relatiile Viete ca ecuatia
admite radacinile 
Se observa ca
Asadar, 
Demonstratie 3.

Deci
Presupunem f.r.g.
, adica
In acest caz

sau
In concluzie, 
P5 (inegalitate cu medii). Daca
sa se arate ca 
Demonstratie.

Se observa ca

P6 (O.J.M). Notam in
mijlocul
al laturii
si piciorul
al bisectoarei din
Aratati ca 
Demonstratie 1. Fie
pentru care
Astfel,
adica
Din
obtinem
In concluzie, 
Demonstratie 2. Se arata usor ca
Voi folosi o relatia cunoscuta

Extindere. Notam in
piciorul
al bisectoarei din
si consideram un punct
pentru care
Aratati ca 
Generalizare. Fie
si
Sa se arate ca 
Proof. Denote
and apply the theorem of Sines in the triangles 




Therefore, 
![$\left[m(n+1)\left(a^2-c^2\right)+(mn+2n-m)b^2\right]\cdot\left[-(n+1)\left(a^2-c^2\right)+(1-n)b^2\right]\iff$](//latex.artofproblemsolving.com/d/4/4/d4454844a3a25273b8cb7b613992b7d6e0107de8.png)
![$m(n+1)^2\cdot \left[2\cdot\sum \left(b^2c^2\right)-\sum a^4+\left(a^2-c^2\right)^2\right]=(1-n)(mn+2n-m)b^4+\left[m\left(1-n^2\right)-(1+n)(mn+2n-m)\right]b^2\left(a^2-c^2\right)\iff$](//latex.artofproblemsolving.com/0/d/4/0d467b1e25fdc7cc1486e9d623edb9690a7a804b.png)
![$(1-n)(mn+2n-m)b^2+\left[m\left(1-n^2\right)-(1+n)(mn+2n-m)\right]\left(a^2-c^2\right)\iff$](//latex.artofproblemsolving.com/b/0/8/b08d36e8166d61a8d289ae3d6d583b10c6409dfe.png)

Caz particular. If
then
(urmeaza sa va "jucati" particularizand "m" si "n" pentru a obtine o relatie frumoasa intre a , b , c !
P7. Fiind dat
notam piciorul
al bisectoarei interioare din varful
si pentru un punct 
notam
Sa se arate ca
este bisectoarea unghiului 
Generalizare. Fie
un interior
si
si
Sa se arate 
Demonstratie : Aplicam teorema lui Ceva sub forma trigonometrica pentru punctul/triunghiul


Pe de alta parte avem : 
Asadar, din relatiile
si
P8. Fie
cu cercul inscris
si punctele

1. Notam
si
pentru care
Sa se arate ca 
2. Notam punctul
unde bisectoarea
taie a doua oara cercul circumscris
al
si punctele 
Sa se arate ca 
Demonstratie.
1. Notam
Din asemanarea
In
aplicam teorema bisectoarei 
si din
Aplicam teorema lui Menelaus transversalei
si

Acum, revenind in relatia
Analog se calculeaza si segmentul ![$[IY]\ .$](//latex.artofproblemsolving.com/b/6/5/b65dec5a079b15f70f9423e06a1a0dded2db357b.png)
2. Pentru a arata ca
se afla pe cercul circumscris
este suficient sa aratam ca
este inscriptibil. Astfel ne ramane sa demonstram ca
Din
este exterior
Dar
este inscriptibil
Deci
este isoscel cu
Acum din
si deoarece
este isoscel cu
este mediatoarea lui
este mediatoarea lui
Notam
Atunci
este dreptunghic in
si cum
este exterior
Asadar,
c.c.t.d. Se arata analog ca si
se afla pe cercul circumscris 
P9 (Ruben Dario). Fie punctele coliniare
in aceasta ordine astfel incat
este mijlocul lui
si
Consideram 
semicercul
cu diametrul
semicercul
cu centrul
si diametrul
semicercul
cu centrul
si diametrul
cercul
care este tangent exterior cercurilor
tangent interior semicercului
si tangent dreptei
in punctual
Intregul desen este situat in semiplanul
Sa se arate ca
si
Demonstratie. Se arata usor ca
Din diferenta relatiilor
si 
obtinem

Din produsul relatiilor
si
obtinem
Din raportul relatiilor
si
obtinem 
Nice problem!
P10 (M. O. Sanchez). Let
with the midpoint
of
the bisector
where 
and the Lemoine point
of
Prove that

Proof. Denote
Is well known that
and
Apply the Cristea's theorem

Otherwise. Let
so that
Observe that
and
i.e. the relation 
Particular case.
P11. Sa se arate ca in orice
exista inegalitatea 
Proof.

Retineti 
Aplicatie. Sa se arate ca
si

Demonstratie.


=====================================================================================================

P12. Sa se arate ca daca
este ascutitunghic atunci exista inegalitatea
(Walker).
Demonstratie 1. Inegalitatea este echivalenta cu
a carei demonstratie se gaseste aici.
Demonstratie 2. Identitati cunoscute


P13. Fie doua numere pozitive
si
Se arata usor ca
Intr-adevar, 
Sa se arate o "intarire" a acesteia 
Demonstratie. Notam
si

P14. Sa se arate ca daca
este un triunghi ascutitunghic, atunci ![$\sum\ \frac {b+c}{a}\ \ge\ \frac {(R+r)(R+2r)}{Rr}\ \ge\ 3\left(1+\sqrt[3]{\frac {R}{2r}}\right)\ .$](//latex.artofproblemsolving.com/3/b/5/3b5870960848abb698f7f57043490a832dffcac6.png)
Demonstratie. Obtinem succesiv
Folosind inegalitatea Walker
care se gaseste aici
vom obtine
Pentru partea a doua, notand cu
inegalitatea ![$\frac {(R+r)(R+2r)}{Rr}\ \ge\ 3\left(1+\sqrt[3]{\frac {R}{2r}}\right)$](//latex.artofproblemsolving.com/1/9/4/194af46143c2255c4131eba2a1428f88080a0e1c.png)
se scrie echivalent
echivalent cu
care reiese usor din inegalitatea mediilor.
P15. Sa se arate ca in orice
are loc relatia 
Demonstratie.
(se arata usor de la dreapta spre stanga !). Deoarece 
putem aplica lema de mai sus. Asadar

![$-2R\cdot\left[\frac {\sqrt 3}{2}\cdot\left(1+\frac rR\right)-\frac 12\cdot\frac pR\right]=p-\sqrt 3 \cdot(R+r)\ .$](//latex.artofproblemsolving.com/6/4/9/649f9f71b29fb81a5c28e19f880a8b871dd93897.png)
P16. Fie un triunghi
cu centrul de greutate
si centrul cercului inscris
Sa se arate ca exista inegalitatea 
Demonstratie. Se observa ca
Prin urmare va fi suficient sa aratam ca
Dar in orice
triunghi este adevarata inegalitatea
Intr-adevar,

Deci
Remarca. In rezolvarea problemei esentiala a fost inegalitatea
"mai tare" decat 
P17 (M.O. Sanchez). Let a right trapezoid
where
and
Suppose that exists
so that
is
equilateral. Denote
and
where
Prove that the area
where
is the area of 
Proof. Denote
the midpoint
of
and
Observe that
and
are cyclic quadrilaterals
and
is an equilateral triangle, i.e.
Apply the Ptolemy's theorem to the following quadrilaterals 

Let
so that
Thus,

Therefore,
Observe analogously that
In conclusion, ![$\frac {[CDE]}{[ABCD]}=\frac {m^3+n^3}{(m+n)\sqrt 3}\cdot\frac {2\sqrt 3}{(m+n)^2}\implies\ (*)\ .$](//latex.artofproblemsolving.com/b/0/e/b0e04c5c284b2559225b13b8f6043a233cee6678.png)
Extension. Let a right trapezoid
where
and
Suppose that exists
so that
is
-isosceles
with
Denote
and
where
Prove that the area ![$[CDE]=\frac {\sqrt 3\left(m^2+2mn\cos 2\phi +n^2\right)}{(m+n)^2\sin2\phi}\cdot S\ (*)$](//latex.artofproblemsolving.com/5/b/4/5b4d233c8bf9bce96a7596776c52211928261dc8.png)
Proof. Denote
the midpoint
of
and
Observe that
and
are cyclic
and
is a
-isosceles triangle, i.e.
Apply the Ptolemy's theorem to the following quadrilaterals 

Let
so that
Thus,
Therefore,
Observe
analogously that
In conclusion,
![$\frac {[CDE]}{[ABCD]}=\frac {\sqrt 3\left(m^2+2mn\cos 2\phi +n^2\right)}{4\sin^2\phi}\cdot\frac {2\tan\phi}{(m+n)^2}=\frac {\sqrt 3\left(m^2+2mn\cos 2\phi +n^2\right)}{(m+n)^2\sin2\phi}\implies\ (*)\ .$](//latex.artofproblemsolving.com/7/b/5/7b502018a92da33d51f278e8cca3685e5041c098.png)




![$\begin{array}{ccccccccccccccccccccccccccccccccccccccc}
\pm & \mp & \times & \div & \cdot & \dots & \cdots & \ddots & \iddots & \ast & \star & \dagger & \ddagger & \amalg & \cap & \cup & \uplus & \sqcap & \sqcup & \vee & \wedge & \oplus & \ominus & \otimes\\\\
\circ & \bullet & \diamond & \lhd & \rhd & \unlhd & \unrhd &\oslash & \odot & \bigcirc & \triangleleft & \Diamond & \bigtriangleup & \bigtriangledown & \Box & \triangleright & \setminus & \wr & \sqrt{x} & x^{\circ} & \triangledown & \sqrt[n]{x} & a^x & a^{xyz} \end{array}$](http://latex.artofproblemsolving.com/f/3/a/f3af211c329f83cb8062d7749d6d8932c8effe91.png)



























Examples.



























P1.

Proof.









OFF-topic. In general in viata este mai usor sa gresesti decat sa intelegi unde si de ce ai gresit. Si in matematica se poate intampla sa gresesti, insa
astfel apare o noua problema - descoperirea greselii - care te proiecteaza spre alte metode sau chiar extinderea teoriei. Cu alte cuvinte, greseala in
matematica uneori este benefica. Insa aici in noua problema aparuta ai "dezavantajul" ca trebuie sa te descurci singur, cum de altfel s-a si intamplat.
P2. Fie triunghiul












Demonstratie. Notam incentrele







in







adica patrulaterul

![$[RN]\ \Longrightarrow$](http://latex.artofproblemsolving.com/4/b/b/4bbf70ad63875d37317db591c97048d2a87d8aae.png)

Generalizare. Fie




unde




P3. Fie







Demonstratie. Alegem originea sistemului in







































P4. Sa se arate ca un triunghi


Demonstratie 1. Folosim identitatile











Demonstratie 2. Se arata usor prin relatiile Viete ca ecuatia


Se observa ca
![$f(1)=2[p-(2R+r)]\ .$](http://latex.artofproblemsolving.com/a/a/c/aacc2bccdf8fe10f07b5df1323868dbc7b44095f.png)

Demonstratie 3.




















P5 (inegalitate cu medii). Daca


Demonstratie.


Se observa ca


P6 (O.J.M). Notam in


![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)



Demonstratie 1. Fie









Demonstratie 2. Se arata usor ca







Extindere. Notam in






Generalizare. Fie



Proof. Denote



















![$\left[m(n+1)\left(a^2-c^2\right)+(mn+2n-m)b^2\right]\cdot\left[-(n+1)\left(a^2-c^2\right)+(1-n)b^2\right]\iff$](http://latex.artofproblemsolving.com/d/4/4/d4454844a3a25273b8cb7b613992b7d6e0107de8.png)
![$m(n+1)^2\cdot \left[2\cdot\sum \left(b^2c^2\right)-\sum a^4+\left(a^2-c^2\right)^2\right]=(1-n)(mn+2n-m)b^4+\left[m\left(1-n^2\right)-(1+n)(mn+2n-m)\right]b^2\left(a^2-c^2\right)\iff$](http://latex.artofproblemsolving.com/0/d/4/0d467b1e25fdc7cc1486e9d623edb9690a7a804b.png)
![$m(n+1)^2\cdot \left[2\left(a^2+c^2\right)-b^2\right]=$](http://latex.artofproblemsolving.com/d/8/8/d88e8b90718dc3aaeb352a3474c29ba2aca77bbd.png)
![$(1-n)(mn+2n-m)b^2+\left[m\left(1-n^2\right)-(1+n)(mn+2n-m)\right]\left(a^2-c^2\right)\iff$](http://latex.artofproblemsolving.com/b/0/8/b08d36e8166d61a8d289ae3d6d583b10c6409dfe.png)

Caz particular. If


P7. Fiind dat




notam



Generalizare. Fie






Demonstratie : Aplicam teorema lui Ceva sub forma trigonometrica pentru punctul/triunghiul











P8. Fie





1. Notam




2. Notam punctul









Demonstratie.
1. Notam

















Acum, revenind in relatia

![$[IY]\ .$](http://latex.artofproblemsolving.com/b/6/5/b65dec5a079b15f70f9423e06a1a0dded2db357b.png)
2. Pentru a arata ca



















![$[BI]$](http://latex.artofproblemsolving.com/6/4/6/646c73af6c80a0d6b7254a3e6ec3646cbbb99845.png)

![$[BI]\ .$](http://latex.artofproblemsolving.com/9/3/6/93627b8cd17db5cb5ecabb1eb997a6d1f962f450.png)










P9 (Ruben Dario). Fie punctele coliniare


![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)





semicercul

![$[AB]\ ;$](http://latex.artofproblemsolving.com/e/e/b/eebbfc5f3a16247cdad15483c5ae381a89c531b6.png)


![$[AC]\ ;$](http://latex.artofproblemsolving.com/4/a/8/4a8c6a4d9fc8777ce8e38db8437564176b6bd2a3.png)


![$[BD]\ ;$](http://latex.artofproblemsolving.com/b/2/a/b2ab194035f32287166af0f0345a84d4ef6a2014.png)









Demonstratie. Se arata usor ca



obtinem






Din produsul relatiilor









P10 (M. O. Sanchez). Let


![$[AC]\ ,$](http://latex.artofproblemsolving.com/6/e/1/6e12d67d19cbed5cac0510150cbffc8f6fdc8ce9.png)


and the Lemoine point




Proof. Denote

























Particular case.



P11. Sa se arate ca in orice


Proof.









Aplicatie. Sa se arate ca




Demonstratie.




=====================================================================================================

P12. Sa se arate ca daca


Demonstratie 1. Inegalitatea este echivalenta cu

Demonstratie 2. Identitati cunoscute









P13. Fie doua numere pozitive






Demonstratie. Notam




P14. Sa se arate ca daca

![$\sum\ \frac {b+c}{a}\ \ge\ \frac {(R+r)(R+2r)}{Rr}\ \ge\ 3\left(1+\sqrt[3]{\frac {R}{2r}}\right)\ .$](http://latex.artofproblemsolving.com/3/b/5/3b5870960848abb698f7f57043490a832dffcac6.png)
Demonstratie. Obtinem succesiv


vom obtine


![$\frac {(R+r)(R+2r)}{Rr}\ \ge\ 3\left(1+\sqrt[3]{\frac {R}{2r}}\right)$](http://latex.artofproblemsolving.com/1/9/4/194af46143c2255c4131eba2a1428f88080a0e1c.png)
se scrie echivalent


P15. Sa se arate ca in orice


Demonstratie.


putem aplica lema de mai sus. Asadar




![$-2R\cdot\left[\frac {\sqrt 3}{2}\cdot\left(1+\frac rR\right)-\frac 12\cdot\frac pR\right]=p-\sqrt 3 \cdot(R+r)\ .$](http://latex.artofproblemsolving.com/6/4/9/649f9f71b29fb81a5c28e19f880a8b871dd93897.png)
P16. Fie un triunghi




Demonstratie. Se observa ca



triunghi este adevarata inegalitatea

















P17 (M.O. Sanchez). Let a right trapezoid





equilateral. Denote



![$\boxed{[CDE]=\frac {2\left(m^3+n^3\right)}{(m+n)^3}\cdot S}\ (*)\ ,$](http://latex.artofproblemsolving.com/8/8/4/88456b73473de4580f87b7300fa802b24bfdf9ec.png)


Proof. Denote


![$[CD]$](http://latex.artofproblemsolving.com/e/7/0/e70960e9e5738a46ad23f794e796ef3cb4ad7e2c.png)




and










![$[CDE]=\frac {l^2\sqrt 3}4\ \stackrel{(2)}{=}\ \frac {m^2-mn+n^2}{\sqrt 3}=\frac{m^3+n^3}{(m+n)\sqrt 3}\implies$](http://latex.artofproblemsolving.com/6/9/9/6994344a43f5b8101672861b054875ce89c1c17d.png)
![$\boxed{[CDE]=\frac {m^3+n^3}{(m+n)\sqrt 3}}\ (3)\ .$](http://latex.artofproblemsolving.com/e/4/9/e49cdf2dd6541efa9c286520fa04a7b9a222adec.png)
![$[ABCD]=\frac {m+n}2\cdot (u+v)\ \stackrel{(1)}{=}\ \frac {m+n}2\cdot \frac {m+n}{\sqrt 3}=\frac {(m+n)^2}{2\sqrt 3}\implies$](http://latex.artofproblemsolving.com/c/e/d/ceda8d59588641d96e1b898584797e0f90b77768.png)
![$\boxed{[ABCD]=\frac {(m+n)^2}{2\sqrt 3}}\ (4)\ .$](http://latex.artofproblemsolving.com/1/0/8/108681e5ab1276d3df55971bd1b1519dbb1307ea.png)
![$\frac {[CDE]}{[ABCD]}=\frac {m^3+n^3}{(m+n)\sqrt 3}\cdot\frac {2\sqrt 3}{(m+n)^2}\implies\ (*)\ .$](http://latex.artofproblemsolving.com/b/0/e/b0e04c5c284b2559225b13b8f6043a233cee6678.png)
Extension. Let a right trapezoid






with




![$[CDE]=\frac {\sqrt 3\left(m^2+2mn\cos 2\phi +n^2\right)}{(m+n)^2\sin2\phi}\cdot S\ (*)$](http://latex.artofproblemsolving.com/5/b/4/5b4d233c8bf9bce96a7596776c52211928261dc8.png)
Proof. Denote


![$[CD]$](http://latex.artofproblemsolving.com/e/7/0/e70960e9e5738a46ad23f794e796ef3cb4ad7e2c.png)




and














![$\boxed{[CDE]=\frac {\sqrt 3\left(m^2+2mn\cos 2\phi +n^2\right)}{4\sin^2\phi}}\ (3)\ .$](http://latex.artofproblemsolving.com/d/6/0/d60e774454444c8d63899d1d0fe7ed73ddbe07e9.png)
analogously that
![$[ABCD]=\frac {m+n}2\cdot (u+v)\ \stackrel{(1)}{=}\ \frac {m+n}2\cdot \frac {m+n}{\tan\phi}=\frac {(m+n)^2}{2\tan\phi}\implies$](http://latex.artofproblemsolving.com/1/d/c/1dcbdaee9510c7af02729c6f98ac72f4378b0c69.png)
![$\boxed{[ABCD]=\frac {(m+n)^2}{2\tan\phi}}\ (4)\ .$](http://latex.artofproblemsolving.com/5/c/1/5c10e62d90bafc593bdf88cb48e763e5f358f638.png)
![$\frac {[CDE]}{[ABCD]}=\frac {\sqrt 3\left(m^2+2mn\cos 2\phi +n^2\right)}{4\sin^2\phi}\cdot\frac {2\tan\phi}{(m+n)^2}=\frac {\sqrt 3\left(m^2+2mn\cos 2\phi +n^2\right)}{(m+n)^2\sin2\phi}\implies\ (*)\ .$](http://latex.artofproblemsolving.com/7/b/5/7b502018a92da33d51f278e8cca3685e5041c098.png)

This post has been edited 339 times. Last edited by Virgil Nicula, Aug 31, 2016, 12:18 PM