441. LaTeX (common simbols).

by Virgil Nicula, Apr 7, 2016, 12:27 AM

LaTeX <= click => AoPS cyclic quadrilateral $$\bf\color{red}\bigstar\ L\ a\ T\ e\ X\ \bigstar$$$$\bigstar\ \mathrm{L\ a\ T\ e\ X}\ \bigstar$$
$\blacktriangleright\ \mathrm{\underline{Operators}.}$

$\begin{array}{ccccccccccccccccccccccccccccccccccccccc}
 \pm & \mp & \times & \div & \cdot & \dots & \cdots & \ddots & \iddots & \ast & \star & \dagger & \ddagger & \amalg & \cap & \cup & \uplus & \sqcap & \sqcup & \vee & \wedge & \oplus & \ominus & \otimes\\\\
\circ & \bullet & \diamond & \lhd & \rhd & \unlhd & \unrhd &\oslash & \odot & \bigcirc & \triangleleft & \Diamond & \bigtriangleup & \bigtriangledown & \Box & \triangleright & \setminus & \wr & \sqrt{x} & x^{\circ} & \triangledown & \sqrt[n]{x} & a^x & a^{xyz} \end{array}$

$\blacktriangleright\ \mathrm{\underline{Relations}.}$

$\begin{array}{ccccccccccc cccccccccc cccccccccc}    
\le & \ge & \neq & \sim & \ll & \gg & \doteq & \simeq & \subset & \supset & \approx & \asymp & \subseteq & \supseteq & \cong & \smile & \sqsubset & \sqsupset & \equiv & \frown & \sqsubseteq & \sqsupseteq & \propto &\bowtie & \in & \ni & \prec & \succ & \vdash & \dashv\\\\ 
\preceq & \succeq & \models & \perp & \parallel & \gg & \mid & \bumpeq & \nmid & \nleq & \ngeq & \nsim & \ncong & \nparallel & \not< & \not> & \not= & \not\le & \not\ge & \not\sim & \not\approx & \not\cong & \not\equiv & \not\parallel & \nless & \ngtr & \lneq & \gneq & \lnsim & \lneqq\gneqq\end{array}$

$\blacktriangleright\ \mathrm{\underline{Greek Letters}.}$

$\begin{array}{cccccccccccccccccccccccccccccccccccccccc}

\alpha & \beta & \gamma & \delta & \epsilon & \varepsilon & \zeta & \eta & \theta &\vartheta & \iota & \kappa & \lambda & \mu & \nu & \xi & \pi & \varpi & \rho & \varrho & \sigma & \varsigma & \tau & \upsilon & \phi & \varphi & \chi & \psi & \omega & \Gamma & \Delta & \Theta & \Lambda & \Xi & \Pi & \Sigma & \Upsilon &\Phi & \Psi & \Omega\end{array}$

$\blacktriangleright\ \mathrm{\underline{Arrows}.}$

$\begin{array}{cccccccccccccccccccccccccccccccccc}
\gets & \to & \leftarrow & \Leftarrow & \rightarrow & \Rightarrow & \leftrightarrow & \Leftrightarrow & \mapsto & \hookleftarrow & \leftharpoonup & \leftharpoondown & \rightleftharpoons & \longleftarrow & \Longleftarrow & \longrightarrow & \longleftrightarrow & \Longleftrightarrow & \longmapsto & \hookrightarrow & \rightharpoonup & \rightharpoondown & \leadsto & \uparrow & \Uparrow & \downarrow & \Downarrow & \updownarrow & \Updownarrow & \nearrow & \searrow & \swarrow & \nwarrow\end{array}$

$\blacktriangleright\ \mathrm{\underline{Accents}\ and\ \underline{Others}.}$

$\begin{array}{cccccccccccccccccccccccccccccc}
\hat{x} & \check{x} & \dot{x} & \breve{x} & \acute{x} & \ddot{x} & \grave{x} & \tilde{x} & \mathring{x} & \bar{x} & \vec{x} & \vec{\jmath} & \tilde{\imath} & \widehat{3+x} & \widetilde{abc} & \infty & \triangle & \angle & \aleph & \hbar & \imath & \jmath & \ell & \wp & \Re & \Im & \mho & \prime & \emptyset & \nabla\\\\
\surd & \partial & \top & \bot & \vdash & \dashv & \forall & \exists & \neg & \flat & \natural & \sharp & \backslash & \Box & \Diamond & \clubsuit & \diamondsuit & \heartsuit & \spadesuit & \Join & \blacksquare & \S & \P & \copyright & \pounds & \overarc{ABC} & \underarc{XYZ} & \bigstar & \square & \mathbb{R}\checkmark\end{array}$

$\blacktriangleright\ \mathrm{\underline{Command\ Symbols}.\ \underline{European\ Language\ Symbols}.\ \underline{Bracketing\ Symbols}.\ \underline{Multi-Size\ Symbols}.}$

$\begin{array}{cccccccccccccccccccccccccccccccccccccccccccc}
\textdollar & \& & \% & \# & \_ & \{ & \} & \backslash & \oe & \ae & \o & \OE & \AE & \AA & \O & \l & \ss & !` & \L & \SS & \{ & \} & \| & \backslash & \lfloor & \rfloor & \lceil & \rceil & \langle & \rangle & \sum & \int & \oint & \prod & \coprod & \bigcap & \bigcup & \bigsqcup & \bigvee & \bigwedge & \bigodot & \bigotimes & \bigoplus & \biguplus\end{array}$

$\blacktriangleright\ \sum\textstyle\sum$ $\int  \textstyle\int$ $\oint \textstyle\oint$ $\prod \textstyle\prod$ $\coprod \textstyle\coprod$ $\bigcap \textstyle\bigcap $ $\bigcup \textstyle\bigcup $ $\bigsqcup \textstyle\bigsqcup $ $\bigvee \textstyle\bigvee $ $\bigwedge \textstyle\bigwedge $ $\bigodot \textstyle\bigodot $ $\bigotimes \textstyle\bigotimes $ $\bigoplus \textstyle\bigoplus $ $\biguplus \textstyle\biguplus $ $\ominus$ $\oplus$ $\otimes\ ;\ \underbrace {f(f(\ldots f(x))\ldots)}_{n \textrm{ times}}\ ;\ \cancel{1024}\ ;\ \textrm{cis } x = \cos x + \textrm{i}\sin x=e^{\text{i}x}\ ;\ k\in\overline{1,n}\ .$

Examples. $\overline{XYZT}\ ;\ \underline{UVW}\ ;\ \underleftrightarrow{\overbrace{XYZT}}\ ;\ \overbrace{\underleftarrow{ABCD}}\ ;\ \underbrace{\overbrace{XYZT}}$ $;$ $\overleftrightarrow{\underbrace{ABCD}}\ ;\ \displaystyle\lim_{x\to a}$ $;$ $\underleftarrow{ABCD}$ $;$ $\overleftarrow{ABCD}$ $;$ $\overrightarrow{ABCD}\ ;\ \underleftarrow{\overleftrightarrow{ABCD}}$ $;$ $E_n=\frac{\lim\limits_{x\searrow 0}\frac {\sin x}x+2^{n-1}\cdot\left(1+\prod\limits_{k=1}^na_k\right)}{\prod\limits_{k=1}^n\left(1+a_k\right)}\ ,\ n\in\mathbb{N}^*\ \ ;$

$\binom{\widehat{\odot \triangledown \odot}}{\wr \wr}$ $;$ $\bf\color{red}Nice\ proof\ !\ \bf\color{black}\ ;\ \underbrace{\text{sequence of letters}}_{\text{stuff going underneath}}$ $;$ $\overbrace{\text{sequence of letters}}^{\text{stuff going above}}$ $;$ $\overarc{ABC}$ $;$ $\overbrace {\underbrace {\overline {\underline {\left| \underline {\overline {\left| NOBODY ?\right| }}\right| }}}}\ ;\ E_n=\frac{\lim_{x\searrow 0}\frac {\sin x}x+2^{n-1}\cdot\left(1+\prod_{k=1}^na_k\right)}{\prod_{k=1}^n\left(1+a_k\right)}\ ,\ n\in\mathbb{N}^*\ ;\ \cancel{\bigcirc}$

$\boxed{\begin{array}{ccccc}
\mathrm{C}\ \mathrm{R}\ \mathrm{Q}\ \mathrm{Z}\ \mathrm{rm} & \mathbb{C}\ \mathbb{R}\ \mathbb{Q}\  \mathbb{Z}\ \mathrm{bb} & \mathbf{C}\ \mathbf{R}\ \mathbf{Q}\ \mathbf{Z}\ \mathrm{bf} & \mathcal{C}\ \mathcal{R}\ \mathcal{Q}\ \mathcal{Z}\ \mathrm{cal} & \mathfrak{C}\ \mathfrak{R}\ \mathfrak{Q}\ \mathfrak{Z}\ \mathrm{frak}\end{array}}\ ;\ \bf\color{red}Here\ are\ some\ links\ :$ Casey's theorem $\blacktriangleleft\blacktriangleright$ :) A :) B :) C :) All the best !

$$\mathrm{END}$$
P1. $\left\{\ z_1\ ,\ z_2\ ,\ z_3\ \right\}\ \subset\ \mathbb{C}\ \ \wedge\ \ \left\|\ \begin{array}{c}
 |z_1|=|z_2|=|z_3|=1\\\\
 z_1^3+z_2^3+z_3^3+z_1z_2z_3=0\end{array}\ \right\|\ \Longrightarrow\ |z_1+z_2+z_3|\ \in\ \{\ 1\ ,\ 2\ \}\ .$

Proof. $\ \ \frac {z_1}{u}=\frac {z_2}{v}=\frac {z_3}{1}=\frac {z_1+z_2+z_3}{u+v+1}\ \Longrightarrow\ \left\|\ \begin{array}{c}
 |u|=|v|=1\\\\
 u^3+v^3+1+uv=0\ (1)\\\\
 \left|z_1+z_2+z_3\right|=|u+v+1|\end{array}\ \right\|\ .$ Thus, $(1)\ \ \wedge\ \ \overline u=\frac 1u\ \ \wedge\ \ \overline v=\frac 1v\ \Longrightarrow\ u^3+v^3+u^3v^3+u^2v^2=0\ (2)\ .$

$(1)\ \ \wedge\ \ (2)\ \Longrightarrow\ 1+uv=u^2v^2(1+uv)=-\left(u^3+v^3\right)\ \Longrightarrow$ $(1+uv)^2(1-uv)=0\ \ \wedge\ \ \left(u^3+v^3\right)+(1+uv)=0\ .$

$\blacktriangleright\ \ uv=1\ \wedge\ \left(u^3+v^3\right)+2=0\ \Longrightarrow\ (u+v)^3-3(u+v)+2=0\ \Longrightarrow\ u+v\in\{1,-2\}\ \Longrightarrow\ |u+v+1|=\left|z_1+z_2+z_3\right|\in\{1,2\}\ .$

$\blacktriangleright\ \ uv=-1\ \wedge\ u^3+v^3=0\ \Longrightarrow\ (u+v)^3+3(u+v)=0\ \Longrightarrow\ u+v\in\left\{0,\pm i\sqrt 3\right\}\ \Longrightarrow$ $|u+v+1|=\left|z_1+z_2+z_3\right|\in\{1,2\}\ .$

$\left\|\ \begin{array}{c}
 |u|=|v|=1\\\\\\
 u^3+v^3+1+uv=0\end{array}\ \right\|\ \Longrightarrow\ u+v\ \in\ \left\{\ -2\ ,\ 1\ ,\ 0\ ,\ \pm i\sqrt 3\ \right\}\ .$

$\left|\begin{array}{c}
 u+v=1\\\\
 uv=1\end{array}\right|\ \ \vee\ \ \left|\ \begin{array}{c}
 u+v=-2\\\\
 uv=1\end{array}\right|\ \ \vee\ \ \left|\ \begin{array}{c}
 u+v=0\\\\
 uv=-1\end{array}\right|\ \ \vee\ \ \left|\ \begin{array}{c}
 u+v=i\sqrt 3\\\\
 uv=-1\end{array}\right|\ \ \vee\ \ \left|\ \begin{array}{c}
 u+v=-i\sqrt 3\\\\
 uv=-1\end{array}\right|\ \ .$

OFF-topic. In general in viata este mai usor sa gresesti decat sa intelegi unde si de ce ai gresit. Si in matematica se poate intampla sa gresesti, insa
astfel apare o noua problema - descoperirea greselii - care te proiecteaza spre alte metode sau chiar extinderea teoriei. Cu alte cuvinte, greseala in
matematica uneori este benefica. Insa aici in noua problema aparuta ai "dezavantajul" ca trebuie sa te descurci singur, cum de altfel s-a si intamplat.



P2. Fie triunghiul $ABC$ cu $m\left(\widehat{BAC}\right)=120^{\circ}\ .$ Punctele $M$ , $N$ si $P$ sunt picioarele bisectoarelor din $A\ ,$ $B\ ,$ $C$ pe $BC\ ,$ $CA\ ,$ $AB$ respectiv. Sa se arate ca $m\left(\widehat{BNM}\right)=30^{\circ}\ .$

Demonstratie. Notam incentrele $I\ ,$ $R$ ale triunghiurilor $ABC\ ,$ $ABM$ respectiv. Se observa ca $AR\perp AN\ ,$ adica $[AN$ este bisectoarea exterioara din varful $A$

in $\triangle ABI$ ceea ce inseamna $\frac {RB}{RI}=\frac {NB}{NI}\ .$ Deci si $[MR$ , $[MN$ sunt bisectoarele (interioara si exterioara) din varful $M$ in $\triangle BMI\ .$ asadar, $MR\perp MN$ ,

adica patrulaterul $ARMN$ este inscris in cercul de diametru $[RN]\ \Longrightarrow$ $\widehat{BNM}\equiv\widehat{RNM}\equiv\widehat{RAM}\ \Longrightarrow\ m\left(\widehat{BNM}\right)=30^{\circ}$ - concluzia problemei.


Generalizare. Fie $ABC$ un triunghi pentru care $m\left(\widehat {BAC}\right)\ >\ 90^{\circ}\ .$ Consideram bisectoarea interioara $[BN$ din varful $B$

unde $N\in (AC)$ si punctul $M\in (BC)$ pentru care $m\left(\widehat {MAC}\right)\ =\ 180^{\circ}-A\ .$ Sa se arate ca $m\left(\widehat {BNM}\right)=A-90^{\circ}\ .$



P3. Fie $\triangle\ ABC$ si $D\in (AB)$ , $E\in (AC)$ ca $\overrightarrow{DB}+\overrightarrow{EC}=p\cdot \left(\overrightarrow{DA}+\overrightarrow{EA}\right)\ .$ Notam $T\in BE\ \cap\ CD\ .$ Sa se afle $\alpha =\alpha (p) \in\mathbb R$ astfel incat $\overrightarrow{TB}+\overrightarrow{TC}=\alpha\cdot \overrightarrow{TA}\ .$

Demonstratie. Alegem originea sistemului in $A\ ,$ adica $\overrightarrow A=\vec 0$ si pentru orice $X\ ,$ $Y$ avem $\overrightarrow{AX}=X\ \ ,\ \ \overrightarrow{XY}=Y-X\ .$ Deci exista $\{m,n\}\subset (0,1)$ ca $\boxed{D=mB\ \ \wedge\ \ E=nC}\ .$

$\blacktriangleright\ \overrightarrow{DB}+\overrightarrow{EC}=p\cdot \left(\overrightarrow{DA}+\overrightarrow{EA}\right)$ $\Longleftrightarrow$ $(B+C)-(D+E)=-p(D+E)$ $\Longleftrightarrow(1-p)(D+E)=$

$B+C\Longleftrightarrow$ $(1-p)(mB+nC)=B+C$ $\Longleftrightarrow$ $\boxed{m=n=\frac {1}{1-p}}\ \ (\ DE\ \parallel\ BC\ )\ .$

$\blacktriangleright\ T\in BE\ \cap\ CD$ $\Longleftrightarrow$ exista $u$ , $v$ reale ca $T=uD+(1-u)C=vE+(1-v)B$ $\Longleftrightarrow$ $T=muB+(1-u)C=(1-v)B+nvC$ $\Longleftrightarrow$ $\left\{\begin{array}{c}
 mu=1-v\\\\
 nv=1-u\end{array}\right\|$ $\Longleftrightarrow$

$\left\{\begin{array}{c}
 mu+v=1\\\\
 u+nv=1\end{array}\right\|$ $\Longleftrightarrow$ $\left\{\begin{array}{c} u=\frac {n-1}{mn-1}\\\\
 v=\frac {m-1}{mn-1}\end{array}\right\|$ si in acest caz $\boxed{T=\frac {m(n-1)}{mn-1}\cdot B+\frac {n(m-1)}{mn-1}\cdot C}$ (prelucrare in general, fara a tine seama de relatia din ipoteza !).

$\blacktriangleright\ m=n=\frac {1}{1-p}$ $\implies$ $\boxed{\ T=\frac {1}{2-p}\cdot (B+C)\ }$ si $\overrightarrow{TB}+\overrightarrow{TC}=$ $\alpha \cdot \overrightarrow{TA}$ $\Longleftrightarrow$ $B+C=(2-\alpha )\cdot T$ $\Longleftrightarrow$ $(B+C)=\frac {2-\alpha}{2-p}\cdot (B+C)$ $\Longleftrightarrow\boxed{\ \alpha =p\ }\ .$



P4. Sa se arate ca un triunghi $ABC$ este dreptunghic $\Longleftrightarrow \ \cos\frac A2\cos\frac B2\cos\frac C2-\sin\frac A2\sin\frac B2\sin\frac C2=\frac 12\ \iff\ p=2R+r\ .$

Demonstratie 1. Folosim identitatile $:\ \left\|\ \begin{array}{ccc} \cos\frac A2\cos\frac B2\cos\frac C2 & = & \frac{p}{4R}\\\\ 
\sin\frac A2\sin\frac B2\sin\frac C2 & = & \frac{r}{4R}\ \end{array}\right\|\ .$ Astfel egalitatea devine $:\ p=2R+r\ \Longleftrightarrow\ p^{2}=4R^{2}+4Rr+r^{2}\ \Longleftrightarrow\ 2p^{2}-8Rr-2r^{2}=$

$8R^{2}\Longleftrightarrow$ $a^{2}+b^{2}+c^{2}=8R^{2}\ \Longleftrightarrow\ \sin^{2}A+\sin^{2}B+\sin^{2}C=2\ \Longleftrightarrow\ \cos 2A+\cos 2B+\cos 2C+1=0$ $\Longleftrightarrow\ 2\cos(A-B)\cos (A+B)+2cos^{2}C=0\ \Longleftrightarrow$

$\cos C=0$ sau $\cos C=\cos(A-B)$ $\Longleftrightarrow\ C=90^{\circ}$ sau $A=B+C$ sau $B=A+C$ $\Longleftrightarrow\ 90^{\circ}\in\{A,\ B,\ C\}\ .$

Demonstratie 2. Se arata usor prin relatiile Viete ca ecuatia $f(x)=p\cdot x^3-(4R+r)\cdot x^2+p\cdot x-r=0$ admite radacinile $\left\{\tan\frac A2\ ,\ \tan\frac B2\ ,\ \tan\frac C2\right\}\ .$

Se observa ca $f(1)=2[p-(2R+r)]\ .$ Asadar, $p=2R+r\ \Longleftrightarrow\ f(1)=0\ \Longleftrightarrow\ 1\in \left\{\tan\frac A2\ ,\ \tan\frac B2\ ,\ \tan\frac C2\right\}\ \Longleftrightarrow\ 90^{\circ}\in\{A,B,C\}\ .$

Demonstratie 3. $p=2R+r\iff$ $(p-a)=(2R-a)+(p-a)\tan\frac A2\iff$ $(p-a)\left(1-\tan\frac A2\right)=2R(1-\sin A)\ \stackrel{\tan\frac A2=t}{\iff}\ (p-a)(1-t)=$ $2R\cdot\left(1-\frac {2t}{1+t^2}\right)$

$\iff$ $(p-a)(1-t)=2R\cdot\frac {(1-t)^2}{1+t^2}\iff$ $t=1\ \vee\ (p-a)\left(1+t^2\right)=2R(1-t)\ .$ Deci $t=1\iff \underline{\underline{A=90}}^{\circ}\ .$ Presupunem f.r.g. $t\ne 1$ , adica $A\ne 90^{\circ}\ .$ In acest caz

$p-a=2R\cos\frac A2\left(\cos\frac A2-\sin\frac A2\right)\iff$ $p-a=R\left(2\cos^2\frac A2-\sin A\right)\iff$ $b+c-a=4R\cos^2\frac A2-a\iff$ $b+c=4R\cos^2\frac A2\iff$ $\sin B+\sin C=2\cos^2\frac A2$

$\iff 2\cos\frac A2\cos\frac {B-C}2=2\cos^2\frac A2\iff$ $\cos\frac {B-C}2=\cos\frac A2\iff$ $B=A+C$ sau $C=A+B\iff \underline{\underline{B=90^{\circ}\ \vee\ C=90}}^{\circ}\ .$ In concluzie, $\boxed{90^{\circ}\in\{A,B,C\}}\ .$



P5 (inegalitate cu medii). Daca $a,b>0$ sa se arate ca $\frac{2ab}{a+b}+\sqrt{\frac{a^2+b^2}{2}}\ge \sqrt{ab}+\frac{a+b}{2}\ .$

Demonstratie. $\left(\sqrt {ab}+\sqrt {\frac {a^2+b^2}{2}}\right)^2\le 2\cdot \left(ab+\frac {a^2+b^2}{2}\right)=2ab+a^2+b^2=(a+b)^2\  \Longrightarrow$ $\boxed{\ \sqrt {ab}+\sqrt {\frac {a^2+b^2}{2}}\le a+b\ }\ (*)\ .$

Se observa ca $\frac{2ab}{a+b}+\sqrt{\frac{a^2+b^2}{2}}\ge \sqrt{ab}+\frac{a+b}{2}\ \Longleftrightarrow\ \frac {a+b}{2}-\frac {2ab}{a+b}\le\sqrt {\frac {a^2+b^2}{2}}-\sqrt {ab}\ \Longleftrightarrow$

$\left(\frac {a+b}{2}-\frac {2ab}{a+b}\right)\cdot\left(\sqrt {\frac {a^2+b^2}{2}}+\sqrt {ab}\right)\le\frac {a^2+b^2}{2}-ab\ \Longleftrightarrow\ \frac {(a-b)^2}{2(a+b)}\cdot\left(\sqrt {\frac {a^2+b^2}{2}}+\sqrt {ab}\right)\le\frac {(a-b)^2}{2}\ \Longleftrightarrow\ (*)\ .$



P6 (O.J.M). Notam in $\triangle ABC$ mijlocul $M$ al laturii $[AB]$ si piciorul $D\in (AC)$ al bisectoarei din $B\ .$ Aratati ca $DM \perp DB\ \Longleftrightarrow\ AB=3\cdot BC\ .$

Demonstratie 1. Fie $N\in (AB)$ pentru care $ND\parallel BC\ .$ Astfel, $\widehat {NDB}\equiv\widehat {CBD}\equiv \widehat {NBD}\ ,$ adica $NB=ND\ .$ Din $DN\parallel BC$ obtinem

$\frac {AN}{AB}=\frac {DN}{BC}$ $\Longleftrightarrow$ $\frac {AN}{AB}=\frac {NB}{BC}\ (*)$ In concluzie, $DM\perp DB\ \Longleftrightarrow\ NB=NM=DN=\frac c4\stackrel {(*)}{\ \Longleftrightarrow\ }\frac 34=\frac {\frac c4}{a}\ \Longleftrightarrow\ c=3a\ .$

Demonstratie 2. Se arata usor ca $m\left(\widehat{ADM}\right)=\frac {C-A}2\ .$ Voi folosi o relatia cunoscuta $\frac {MA}{MB}=\frac {DA}{DB}\cdot\frac {\sin\widehat{MDA}}{\sin\widehat{MDB}}\iff$ $DA\cdot\sin\frac {C-A}2=DB\iff$

$\frac {bc}{a+c}\sin\frac {C-A}2=\frac {2ac}{a+c}\cdot\cos\frac B2\iff$ $\boxed{\begin{array}{ccc}
b\cdot\sin\frac {C-A}2 & = & 2a\cdot\cos\frac B2\\\\
2\cos \frac {C+A}2 & = & 2\sin\frac B2\end{array}}\ \bigodot\iff$ $b(\sin C-\sin A)=2a\sin B\iff$ $b(c-a)=2ab\iff c=3a\ .$


Extindere. Notam in $\triangle ABC$ piciorul $D\in (AC)$ al bisectoarei din $B$ si consideram un punct $M\in (AB)$ pentru care $DM\perp DB\ .$ Aratati ca $\frac {AM}{AB}=\frac {c-a}{c+a}\ .$

Generalizare. Fie $\triangle ABC$ si $\left\|\begin{array}{ccc}
M\in (AB) & , & \frac {MA}{MB}=m\\\\
N\in (CA) & , & \frac {NA}{NC}=n\end{array}\right\|\ .$ Sa se arate ca $NM\perp NB\ \ \Longrightarrow\ \ n(2m+1-n)\cdot b^2+(n+1)(n-2m)\cdot c^2=n(n+1)(2m+1)\cdot a^2\ .$

Proof. Denote $\left\{\begin{array}{ccc}
m\left(\widehat{ANM}\right) & = & u\\\\
m\left(\widehat{BCN}\right) & = & v\end{array}\right\|$ and apply the theorem of Sines in the triangles $:$

$\blacktriangleright\ \triangle AMN\ :\ \frac {AM}{\sin \widehat{ANM}}=\frac {AN}{\sin\widehat{AMN}}\iff$ $\frac {mc}{(m+1)\sin u}=\frac {nb}{(n+1)\sin (A+u)}\iff$ $ cm(n+1)(\sin A+\cos A\tan u)=bn(m+1)\tan u\iff$

$\tan u=\frac {cm(n+1)\sin A}{bn(m+1)-cm(n+1)\cos A}\iff$ $\tan u=\frac {m(n+1)\cdot 2bc\sin A}{2b^2n(m+1)-m(n+1)\cdot 2bc\cos A}\iff$ $\tan u=\frac {4m(n+1)S}{2b^2n(m+1)-m(n+1)\left(b^2+c^2-a^2\right)}\iff$

$\boxed{\tan u=\frac {4m(n+1)S}{m(n+1)\left(a^2-c^2\right)+(mn+2n-m)b^2}}\ (1)\ .$

$\blacktriangleright\ \triangle BCN\ :\ \frac {BC}{\sin \widehat{BNC}}=\frac {NC}{\sin\widehat{CBN}}\iff$ $\frac {a}{\sin v}=\frac {b}{}(n+1)\sin (C+v)\iff$ $a(n+1)(\sin C+\cos C\tan v)=b\tan v\iff$ $\tan v=\frac {a(n+1)\sin C}{b--a(n+1)\cos C}\iff$

$\tan v=\frac {(n+1)\cdot 2ab\sin C}{2b^2-(n+1)\cdot 2ab\cos C}\iff$ $\tan v=\frac {4(n+1)S}{2b^2-(n+1)\left(a^2+b^2-c^2\right)}\iff$ $\boxed{\tan v=\frac {4(n+1)S}{-(n+1)\left(a^2-c^2\right)+(1-n)b^2}}\ (2)\ .$ Therefore, $NM\perp NB\iff$

$u+v=90^{\circ}\iff$ $\tan u\tan v=1\ \stackrel{1\wedge 2}{\iff}\ m(n+1)^2\cdot 16S^2=$ $\left[m(n+1)\left(a^2-c^2\right)+(mn+2n-m)b^2\right]\cdot\left[-(n+1)\left(a^2-c^2\right)+(1-n)b^2\right]\iff$

$m(n+1)^2\cdot \left[2\cdot\sum \left(b^2c^2\right)-\sum a^4+\left(a^2-c^2\right)^2\right]=(1-n)(mn+2n-m)b^4+\left[m\left(1-n^2\right)-(1+n)(mn+2n-m)\right]b^2\left(a^2-c^2\right)\iff$

$m(n+1)^2\cdot \left[2\left(a^2+c^2\right)-b^2\right]=$ $(1-n)(mn+2n-m)b^2+\left[m\left(1-n^2\right)-(1+n)(mn+2n-m)\right]\left(a^2-c^2\right)\iff$

$n(2m+1-n)\cdot b^2+(n+1)(n-2m)\cdot c^2=n(n+1)(2m+1)\cdot a^2\ .$

Caz particular. If $n=2m\ ,$ then $NM\perp NB\iff b=(n+1)a$ (urmeaza sa va "jucati" particularizand "m" si "n" pentru a obtine o relatie frumoasa intre a , b , c !



P7. Fiind dat $\triangle ABC$ notam piciorul $D\in (BC)$ al bisectoarei interioare din varful $A$ si pentru un punct $P\in (AD)$

notam $\left\{\begin{array}{ccc}
E\in BP\cap AC & ; & F\in CP\cap AB\\\\
X\in BE\cap DF & ; & Y\in CF\cap DE\end{array}\right\|\ .$ Sa se arate ca $[AD$ este bisectoarea unghiului $\widehat {XAY}\ .$


Generalizare. Fie $\triangle ABC\ ,$ un interior $P$ si $\left\|\begin{array}{c}
 D\in AP\cap BC\\\\
 E\in BP\cap AC\\\\
F\in CP\cap AB\end{array}\right\|\ ,$ $\left\|\begin{array}{c}
 X\in BE\cap DF\\\\
 Y\in CF\cap DE\end{array}\right\|$ si $\left\|\begin{array}{ccc}
 m(\angle BAX)=x & ; & m(\angle CAY)=y\\\\
 m(\angle PAX)=u & ; & m(\angle PAY)=v\end{array}\right\|\ .$ Sa se arate $\frac {\sin (x+u)}{\sin (y+v)}=\frac {\sin x\sin v}{\sin y\sin u}\ .$

Demonstratie : Aplicam teorema lui Ceva sub forma trigonometrica pentru punctul/triunghiul $:$

$\left\| \begin{array}{cccccccccccccccccc} X/\triangle ABD & : & \frac{\sin x}{\sin u} & \cdot & \frac{\sin(\angle ADF)}{\sin(\angle BDF)} & \cdot & \frac{\sin(\angle DBP)}{\sin(\angle PBA)} & = & 1 & \Longleftrightarrow & \frac{\sin x}{\sin u} & = & \frac{\sin(\angle BDF)}{\sin(\angle ADF)} & \cdot & \frac{\sin(\angle ABE)}{\sin(\angle CBE)} & & (1) & \\\\
Y/\triangle ADC & : & \frac{\sin v}{\sin y} & \cdot & \frac{\sin(\angle ACP)}{\sin(\angle DCP)} & \cdot & \frac{\sin(\angle CDE)}{\sin(\angle EDA)} & = & 1 & \Longleftrightarrow & \frac{\sin v}{\sin y} & = & \frac{\sin(\angle BCF)}{\sin(\angle ACF)} & \cdot & \frac{\sin(\angle ADE)}{\sin(\angle CDE)} & & (2) & \\\\
P/\triangle ABC & : & \frac{\sin(\angle ABE)}{\sin(\angle CBE)} & \cdot & \frac{\sin(\angle BCF)}{\sin(\angle FCA)} & \cdot & \frac{\sin(\angle CAD)}{\sin(\angle BAD)} & = & 1 & \Longleftrightarrow & \frac{\sin(x+u)}{\sin(v+y)}& = & \frac{\sin(\angle ABE)}{\sin(\angle CBE)} & \cdot & \frac{\sin(\angle BCF)}{\sin(\angle FCA)} & & (3) & \ \end{array}\right\|$

$\stackrel{1\wedge 2}{\iff}\ \begin{array}{ccccccccccc}
 \frac{\sin x}{\sin u} &  \cdot & \frac{\sin v}{\sin y} & = & \frac{\sin(\angle ABE)}{\sin(\angle CBE)} & \cdot & \frac{\sin(\angle BCF)}{\sin(\angle ACF)} & \cdot & \frac{\sin(\angle BDF)}{\sin(\angle ADF)} & \cdot & \frac{\sin(\angle ADE)}{\sin(\angle CDE)}\end{array}\ .$

$\stackrel{3}{\iff}\ \begin{array}{ccccccccc} \frac{\sin x}{\sin u} & \cdot & \frac{\sin v}{\sin y} & = & \frac{\sin(x+u)}{\sin(v+y)} & \cdot & \frac{\sin(\angle BDF)}{\sin(\angle ADF)} & \cdot & \frac{\sin(\angle ADE)}{\sin(\angle CDE)} \end{array}\ \ \ (4)\ .$ Pe de alta parte avem : $\left\|\ \begin{array}{ccccc} 
\frac{BF}{FA} & = & \frac{BD}{AD} & \cdot &  \frac{\sin(\angle BDF)}{\sin(\angle ADF)} \\\\
\frac{AE}{EC} & = & \frac{AD}{DC} & \cdot & \frac{\sin(\angle ADE)}{\sin(\angle CDE)} \end{array}\right|\ \bigodot\ \Longrightarrow$

$\frac{BF}{FA}\cdot\frac{AE}{EC}=$ $\frac{BD}{DC}\cdot\frac{\sin(\angle BDF)}{\sin(\angle ADF)}\cdot$ $\frac{\sin(\angle ADE)}{\sin(\angle CDE)}\ \stackrel{\mathrm{Ceva}}{\iff}\ \frac{\sin(\angle BDF)}{\sin(\angle ADF)}\cdot\frac{\sin(\angle ADE)}{\sin(\angle CDE)}=1\ (5)\ .$ Asadar, din relatiile $4$ si $5\ \Longrightarrow$ $\boxed{\ \frac{\sin x}{\sin u}\cdot\frac{\sin v}{\sin y}=\frac{\sin(x+u)}{\sin(v+y)}\ }\ .$



P8. Fie $\triangle ABC$ cu cercul inscris $w=\mathbb C(I,r)$ si punctele $D\in AI\cap BC\ ,$ $E\in BI\cap CA\ ,$ $F\in CI\cap AB\ .$

1. Notam $X\in DE$ si $Y\in DF$ pentru care $I\in XY\parallel BC\ .$ Sa se arate ca $IX=IY=\frac {abc}{(b+c)(a+b+c)}\ .$

2. Notam punctul $M$ unde bisectoarea $[AI$ taie a doua oara cercul circumscris $w$ al $\triangle ABC$ si punctele $U\in XY\cap AC\ ,$

$V\in XY\cap AB\ ,$ $N\in MU\cap BI\ ,$ $P\in MV\cap CI\ .$ Sa se arate ca $\{N,P\}\subset w\ .$


Demonstratie.

1. Notam $R\in AX\cap BC\ .$ Din asemanarea $\triangle AIX\sim\triangle ADR\ \Longrightarrow\ \frac{IX}{DR}=\frac{AI}{AD}\ \Longleftrightarrow\ \boxed{IX=\frac{AI}{AD}\cdot DR}\ (1)\ .$ In $\triangle ABD$ aplicam teorema bisectoarei $\Longrightarrow$

$\frac{AI}{ID}=\frac{AB}{BD}=\frac{c}{\frac{ac}{b+c}}\iff$ $\frac{AI}{ID}=\frac{b+c}{a}\iff$ $\boxed{\frac{AI}{AD}=\frac{b+c}{a+b+c}}\ (2)$ si din $IX\parallel DR\ \Longrightarrow$ $\frac{AX}{XR}=\frac{b+c}{a}\ (3)\ .$ Aplicam teorema lui Menelaus transversalei

$\overline{EXD}$ si $\triangle ACR$ $\Longrightarrow$ $\frac{AE}{EC}\ \cdot\ \frac{CD}{DR}\ \cdot\ \frac{RX}{XA}=1$ $\Longleftrightarrow$ $DR=\frac ca\ \cdot\ \frac{ab}{b+c}\cdot$ $\frac{RX}{XA}\ \stackrel{3}{\iff}\ DR=\frac ca\cdot\frac{ab}{b+c}\cdot\frac{a}{b+c}\iff$ $\boxed{DR=\frac{abc}{(b+c)^2}}\ (4)\ .$

Acum, revenind in relatia $\ (1)\ \stackrel{2\wedge 4}{\iff}\  \boxed{IX=\frac{abc}{(b+c)(a+b+c)}}\ .$ Analog se calculeaza si segmentul $[IY]\ .$

2. Pentru a arata ca $P$ se afla pe cercul circumscris $\triangle ABC$ este suficient sa aratam ca $ACMP$ este inscriptibil. Astfel ne ramane sa demonstram ca $\angle MPC=\angle MAC=\frac{\angle A}{2}\ .$ Din $\angle AIE$ este exterior $\triangle AIB$ $\Longrightarrow\ \angle AIE=\frac{\angle A+\angle B}{2}\ \iff$ $\angle BIM=\angle AIE=\frac{\angle A+\angle B}{2}\ .$ Dar $ABMC$ este inscriptibil $\iff\angle MBC=\angle MAC=\frac{\angle A}{2}\iff$ $m(\angle MBI)=\frac{\angle A+\angle B}{2}=\angle BIM\ .$ Deci $\triangle BIM$ este isoscel cu $BM=BI\ (*)\ .$ Acum din $UV\parallel BC\iff$ $\angle IUE=\angle C$ si deoarece $\angle IEU=180^{\circ}-\angle C-\frac{\angle B}{2}\iff$ $\angle BIV=\angle EIU=\frac{\angle B}2\ \triangle BIV$ este isoscel cu $BV=VI\ (**)$ $\stackrel{(*)\wedge(**)}{\iff}\ VM$ este mediatoarea lui $[BI]$ $\Longleftrightarrow\ PM$ este mediatoarea lui $[BI]\ .$ Notam $\{O\}=PM\cap BI\ .$ Atunci $\triangle POI$ este dreptunghic in $O$ si cum $\angle PIB$ este exterior $\triangle BIC\ \Longrightarrow\ \angle PIO=\frac{\angle B+\angle C}{2}\ .$ Asadar, $\angle MPC=\angle OPI=$ $90^{\circ}-\frac{\angle B+\angle C}{2}=$ $\frac{\angle A}{2}$ c.c.t.d. Se arata analog ca si $N$ se afla pe cercul circumscris $\triangle ABC\ .$



P9 (Ruben Dario). Fie punctele coliniare $(A,C,E,O,D,B)\subset d$ in aceasta ordine astfel incat $O$ este mijlocul lui $[AB]$ si $EA=a\ ,$ $EB=b\ ,$ $AC=2c\ ,$ $DB=2d\ .$ Consideram $:$

semicercul $w$ cu diametrul $[AB]\ ;$ semicercul $w_1$ cu centrul $J$ si diametrul $[AC]\ ;$ semicercul $w_2$ cu centrul $K$ si diametrul $[BD]\ ;$ cercul $\Omega =\mathbb C(I,x)$ care este tangent exterior cercurilor

$w_1\ ,$ $w_2\ ,$ tangent interior semicercului $w$ si tangent dreptei $d$ in punctual $E\ .$ Intregul desen este situat in semiplanul $(d,I)\ .$ Sa se arate ca $\frac 1a+\frac 1b=\frac 1x$ si $\frac 1c-\frac 1d=4\left(\frac 1a-\frac 1b\right)\ .$


Demonstratie. Se arata usor ca $:\ \left\{\begin{array}{ccccccc}
\triangle EIO\ : & IO^2=EI^2+EO^2 & \implies & \left(\frac {a+b}2-x\right)^2=x^2+\left(\frac {a-b}2\right)^2 & \implies & \frac 1a+\frac 1b=\frac 1x & (*)\\\\
\triangle EIJ\ : & IJ^2=EJ^2+EI^2 & \implies & (x+c)^2=(a-c)^2+x^2 & \implies & 2c=\frac {a^2}{x+a} & (1)\\\\
\triangle EIK\ : & IK^2=EK^2+EI^2 & \implies & (x+d)^2=(b-d)^2+x^2 & \implies & 2d=\frac {b^2}{x+b} & (2)\end{array}\right\|\ .$ Din diferenta relatiilor $(1)$ si $(2)$

obtinem $2(d-c)=\frac {b^2}{x+b}-\frac {a^2}{x+a}=$ $\frac {x\left(b^2-a^2\right)+ab(b-a)}{(x+a)(x+b)}\implies$ $\frac {2(d-c)}{b-a}=$ $\frac {x(a+b)+ab}{(x+a)(x+b)}\ \stackrel{(*)}{=}\ \frac {2ab}{(x+a)(x+b)}$ $\implies$ $\boxed{\frac {d-c}{b-a}=\frac {ab}{(x+a)(x+b)}}\ (3)\ .$

Din produsul relatiilor $(1)$ si $(2)$ obtinem $\boxed{4cd=\frac {a^2b^2}{(x+a)(x+b)}}\ (4)\ .$ Din raportul relatiilor $(3)$ si $(4)$ obtinem $\frac {d-c}{b-a}\cdot \frac 1{4cd}=\frac {ab}{(x+a)(x+b)}\cdot \frac {(x+a)(x+b)}{a^2b^2}\iff$

$\frac {d-c}{b-a}=\frac {4cd}{ab}\iff$ $\frac {d-c}{cd}=4\cdot \frac {b-a}{ab}\iff$ $\frac 1c-\frac 1d=4\left(\frac 1a-\frac 1b\right)\ .$ Nice problem!



P10 (M. O. Sanchez). Let $\triangle ABC$ with the midpoint $M$ of $[AC]\ ,$ the bisector $[CN\ ,$ where $N\in (AB)$

and the Lemoine point $K$ of $\triangle ABC\ .$ Prove that $K\in MN\iff$ $ ab+c^2=a^2\iff A=B+2C\ .$


Proof. Denote $L\in BC\cap AK\ .$ Is well known that $\frac {LB}{c^2}=\frac {LC}{b^2}=\frac a{b^2+c^2}$ and $\left\{\begin{array}{cccc}
\frac {NB}{NA} & = & \frac ab\\\\
\frac {MC}{MA} & = & 1\\\\
\frac {KL}{KA} & = & \frac {a^2}{b^2+c^2}\end{array}\right\|\ .$ Apply the Cristea's theorem $:\ \frac {NB}{NA}\cdot LC+\frac {MC}{MA}\cdot LB=\frac {KL}{KA}\cdot BC\iff$ $\frac ab\cdot \frac {ab^2}{b^2+c^2}+1\cdot\frac {ac^2}{b^2+c^2}=\frac {a^2}{b^2+c^2}\cdot a\iff$ $\boxed{ab+c^2=a^2}\ (*)\ \iff$ $ab=a^2-c^2\iff$ $\sin A\sin B=\sin^2A-\sin^2C=$ $\sin (A-C)\sin (A+C)=$ $\sin (A-C)\sin B$

$\iff$ $\sin A=\sin (A-C)\iff$ $A+(A-C)=180^{\circ}\iff$ $\boxed{2A=180^{\circ}+C}\ (1)\ .$ Otherwise. Let $D\in (BC)$ so that $CA=CD\ .$ Observe that $BD=a-b$ and

$ab+c^2=a^2\iff$ $c^2=a(a-b)\iff$ $BA^2=BD\cdot BC\iff$ $\triangle BAD\sim \triangle BCA\iff$ $\widehat{BAD}\equiv\widehat {BCA}\iff$ $\boxed{A=B+2C}\iff$ $2A=180^{\circ}+C\ ,$ i.e. the relation $(1)\ .$

Particular case. $\frac A4=\frac B2=\frac C1=\frac {\pi}7\implies$ $A=B+2C\implies$ $K\in MN\ .$



P11. Sa se arate ca in orice $\triangle ABC$ exista inegalitatea $:\ \frac 1{b+c}+\frac 1{c+a}+\frac 1{a+b}\ \le\ \frac{3(R+r)}{4S}\ .$

Proof. $\frac {9}{4p}\stackrel{(CBS)}{\le}\sum\frac {1}{b+c}\le\sum\frac {b+c}{4bc}=$ $\sum\frac {a(b+c)}{4abc}=\frac {\sum bc}{2abc}=$ $\frac {p^2+r^2+4Rr}{8RS}\ \stackrel{(\mathrm{Gerretsen})}{\le}\ \frac {\left(4R^2+4Rr+3r^2\right)+r^2+4Rr}{8RS}=$ $\frac {(R+r)\cdot (R+r)}{2RS}\le$ $\frac {\frac {3R}{2}\cdot (R+r)}{2RS}=$

$\frac {3(R+r)}{4S}$ $\Longleftrightarrow$ $\boxed{\frac {9}{4p}\ \le\ \sum\frac {1}{b+c}\ \le\ \frac {3(R+r)}{4S}}\ .$ Retineti $\boxed{4r(5R-r)\ \le\ ab+bc+ca\ \le\ 4(R+r)^2}\ \stackrel{\mathrm{Gerretsen}}{\iff}\ \boxed{16Rr-5r^2\ \le\ p^2\ \le\ 4R^2+4Rr+3r^2}\ .$


Aplicatie. Sa se arate ca $\left(\frac {p}{R+r}\right)^2\ \le\ $ $\sum\frac {a^2}{bc}\ \le\ \frac {2R-r}{r}$ si $\sum \frac {1}{a(b+c)}\ \ge $ $\frac {9}{8(R+r)^2}\ .$

Demonstratie. $\left(\frac{p}{R+r}\right)^2=$ $\frac{4p^2}{(4R^2+4Rr+3r^2)+r^2+4Rr}\ \stackrel{\mathrm{Gerretsen}}{\le}\ \frac{4p^2}{p^2+r^2+4Rr}=$ $\frac{(a+b+c)^2}{ab+bc+ca}\ \stackrel{\mbox{(C.B.S)}}{\le}\ \sum\frac{a^2}{bc}\ .$

$\sum\frac{a^2}{bc}=\frac{a^3+b^3+c^3}{abc}=\frac{2p(p^2-6Rr-3r^2)}{4RS}=\frac{p^2-6Rr-3r^2}{2Rr}\ \stackrel{\mathrm{Gerretsen}}{\le}\ \frac{4R^2+4Rr+3r^2-6Rr-3r^2}{2Rr}=\frac{2R-r}{r}\ .$

=====================================================================================================

$\sum\frac{1}{a(b+c)}\ \stackrel{\mathrm{C.B.S.}}{\ge}\ \frac{9}{2(ab+bc+ca)}=\frac{9}{2\underline{\underline{p^2}}+2r^2+8Rr}\ \stackrel{\mathrm{Gerretsen}}{\ge}\ \frac{9}{2(\underline{\underline{4R^2+4Rr+3r^2}})+2r^2+8Rr}=\frac{9}{8(R+r)^2}\ .$



P12. Sa se arate ca daca $\triangle ABC$ este ascutitunghic atunci exista inegalitatea $p^2\ge 2R^2+8Rr+3r^2$ (Walker).

Demonstratie 1. Inegalitatea este echivalenta cu $\boxed{a^2+b^2+c^2 \geq 4(R+r)^2}$ a carei demonstratie se gaseste aici.

Demonstratie 2. Identitati cunoscute $:\ \left\{\begin{array}{cc}
a^2+b^2+c^2=2\left(p^2-r^2-4Rr\right) & (1)\\\\
4S=\left(b^2+c^2-a^2\right)\tan A & (2)\\\\
\sin 2A+\sin 2B+\sin 2C=\frac {2S}{R^2} & (3)\\\\
\cos A+\cos B+\cos C=1+\frac rR & (4)\end{array}\right\|$ $\implies$ $a^2+b^2+c^2=$ $\sum\left(b^2+c^2-a^2\right)\ \stackrel {(2)}{=}$ $4S\sum \frac {\cos A}{\sin A}=$ $8S\sum \frac {\cos^2A}{\sin 2A}\ \stackrel{C.B.S.}{\ge}$

$8S\frac {\left(\sum \cos A\right)^2}{\sum\sin 2A}\ \stackrel{(3)\wedge (4)}{=}\ 8S\frac {\left(1+\frac rR\right)^2}{\frac {2S}{R^2}}=$ $4(R+r)^2\Longrightarrow $ $\boxed{a^2+b^2+c^2\ge 4(R+r)^2}\ \stackrel{(1)}{\Longrightarrow}\ 2\left(p^2-r^2-4Rr\right)\ge 4(R+r)^2\ \Longrightarrow\ \boxed{p^2\ge 2R^2+8Rr+3r^2}\ .$



P13. Fie doua numere pozitive $a$ si $b\ .$ Se arata usor ca $(a+b)^4\le \left(a^2+3b^2\right)\left(b^2+3a^2\right)\ .$ Intr-adevar, $(a^2+b^2+b^2+b^2)(a^2+a^2+a^2+b^2)\ge$

$ (aa+ba+ba+bb)^2=(a+b)^4\ .$ Sa se arate o "intarire" a acesteia $:\ (a+b)^4\le\boxed{(a+b)^3\sqrt {2\left(a^2+b^2\right)}\le \left(a^2+3b^2\right)\left(b^2+3a^2\right)}\ (*)\ .$


Demonstratie. Notam $\frac{a}{b}=x>0$ si $(*)\ \iff\ (x^2+3)^2(1+3x^2)^2\ge 2(x+1)^6(x^2+1)$ $\iff$ $(x-1)^2(7x^6+2x^5+25x^4-4x^3+25x^2+2x+7)\ge 0\ .$


P14. Sa se arate ca daca $ABC$ este un triunghi ascutitunghic, atunci $\sum\ \frac {b+c}{a}\ \ge\ \frac {(R+r)(R+2r)}{Rr}\ \ge\ 3\left(1+\sqrt[3]{\frac {R}{2r}}\right)\ .$

Demonstratie. Obtinem succesiv $:\ \sum \frac{b+c}{a}= \frac{ \sum a \sum bc}{abc}-3=\frac{p^2+r^2-2Rr}{2Rr}\ .$Folosind inegalitatea Walker $p^2\ge 2R^2+8Rr+3r^2$ care se gaseste aici

vom obtine $\sum \frac{b+c}{a}\geq \frac{R^2+2r^2+3rR}{Rr}=\frac {(R+r)(R+2r)}{Rr}\ .$ Pentru partea a doua, notand cu $x^3=\frac{R}{2r}$ inegalitatea $\frac {(R+r)(R+2r)}{Rr}\ \ge\ 3\left(1+\sqrt[3]{\frac {R}{2r}}\right)$

se scrie echivalent $(1+2x^3)(1+\frac{1}{x^3})\ \ge\ 3(1+x)$ echivalent cu $x^3+x^3+\frac{1}{x^3} \geq 3x$ care reiese usor din inegalitatea mediilor.



P15. Sa se arate ca in orice $\triangle ABC$ are loc relatia $\boxed{p-\sqrt 3 \cdot(R+r)=8R\cdot\sin\left(\frac{\pi}{6}-\frac A2\right)\cdot\sin\left(\frac{\pi}{6}-\frac B2\right)\cdot\sin\left(\frac{\pi}{6}-\frac C2\right)}\ .$

Demonstratie. $x+y+z=0\Longrightarrow \prod\sin x=-\frac 14\cdot \sum \sin 2x$ (se arata usor de la dreapta spre stanga !). Deoarece $\sum\left(\frac{\pi}{6}-\frac A2\right)=0$

putem aplica lema de mai sus. Asadar $8R\cdot\prod \sin\left(\frac{\pi}{6}-\frac A2\right)=$ $-2R\cdot \sum\sin\left(\frac{\pi}{3}-A\right)=$ $-2R\cdot\sum\left(\frac {\sqrt 3}{2}\cdot\cos A-\frac 12\cdot\sin A\right)=$

$-2R\cdot\left(\frac {\sqrt 3}{2}\cdot\sum\cos A-\frac 12\cdot\sum\sin A\right)=$ $-2R\cdot\left[\frac {\sqrt 3}{2}\cdot\left(1+\frac rR\right)-\frac 12\cdot\frac pR\right]=p-\sqrt 3 \cdot(R+r)\ .$



P16. Fie un triunghi $ABC$ cu centrul de greutate $G$ si centrul cercului inscris $I\ .$ Sa se arate ca exista inegalitatea $\boxed{\frac {AG}{AI}+\frac {BG}{BI}+\frac {CG}{CI}\ \ge\ \frac 13\cdot (a+b+c)\cdot\left(\frac 1a+\frac 1b+\frac 1c\right)}\ .$

Demonstratie. Se observa ca $:\ \mathrm{LHS}=\sum\frac{\frac 23\cdot m_a}{\frac{b+c}{a+b+c}\cdot l_a}=$ $\frac{2(a+b+c)}{3}\ \cdot\ \sum\frac{m_a}{l_a(b+c)}\ .$ Prin urmare va fi suficient sa aratam ca $\sum\frac{m_a}{l_a(b+c)}\ \ge\ \frac 12\left(\frac 1a+\frac 1b+\frac 1c\right)\ .$ Dar in orice

triunghi este adevarata inegalitatea $:\ \boxed{m_a\ \ge\ \frac{b+c}{2}\ \cdot\ \cos\frac A2}\ .$ Intr-adevar, $m_a=\frac{\sqrt{2(b^2+c^2)-a^2}}{2}=$ $\frac{\sqrt{(b+c)^2-2bc+2bc\cos A}}{2}=$ $\frac{\sqrt{(b+c)^2-2bc(1-\cos A)}}{2}\ge$

$\frac{\sqrt{(b+c)^2-\frac{(b+c)^2}{2}(1-\cos A)}}{2}$ $\iff$ $m_a\ge\frac{b+c}{2}\sqrt{1-\frac{1-\cos A}{2}}=$ $\frac{b+c}{2}\sqrt{\frac{1+\cos A}{2}}=$ $\frac{b+c}{2}\ \cdot\ \cos\frac A2\implies$ $\frac{m_a}{l_a(b+c)}\ge$ $\frac{\frac{b+c}{2}\cos\frac A2}{\frac{2bc}{b+c}\cos\frac A2\ \cdot\ (b+c)}=$ $\frac{b+c}{4bc}\ .$ Deci

$\sum\frac{m_a}{l_a(b+c)}\ge$ $\sum\frac{b+c}{4bc}=$ $\frac 12\left(\frac 1a+\frac 1b+\frac 1c\right)\ .$ Remarca. In rezolvarea problemei esentiala a fost inegalitatea $m_a\ \ge\ \frac{b+c}{2}\cdot\cos\frac A2\ ,$ "mai tare" decat $m_a\ge\sqrt{p(p-a)}\ .$



P17 (M.O. Sanchez). Let a right trapezoid $ABCD$ where $AD\parallel BC$ and $AB\perp AD\ .$ Suppose that exists $E\in (AB)$ so that $\triangle CDE$ is

equilateral. Denote $BC=n$ and $AD=m\ ,$ where $n<m\ .$ Prove that the area $\boxed{[CDE]=\frac {2\left(m^3+n^3\right)}{(m+n)^3}\cdot S}\ (*)\ ,$ where $S$ is the area of $ABCD\ .$


Proof. Denote $CD=l\ ,$ the midpoint $M$ of $[CD]$ and $EA=u\ ,$ $EB=v\ .$ Observe that $AEMD$ and $BEMC$ are cyclic quadrilaterals

and $ABM$ is an equilateral triangle, i.e. $MA=MB=u+v\ .$ Apply the Ptolemy's theorem to the following quadrilaterals $:$

$\left\{\begin{array}{cccccccc}
AEMD\ : & m\cdot EM+u\cdot MD=ED\cdot AM & \implies & m\cdot \frac {EM}{ED}+u\cdot\frac {MD}{ED}=AM & \implies & \frac {m\sqrt 3}2+\frac u2=u+v & \implies & u+2v=m\sqrt 3\\\\
BEMC\ : & n\cdot EM+v\cdot MC=EC\cdot BM & \implies & n\cdot \frac {EM}{EC}+v\cdot\frac {MC}{EC}=BM & \implies & \frac {n\sqrt 3}2+\frac v2=u+v & \implies & 2u+v=n\sqrt 3\end{array}\right\|\bigoplus\implies$

$\boxed{m+n=(u+v)\sqrt 3}\ (1)\ .$ Let $P\in AD$ so that $CP\perp AD\ .$ Thus, $PC^2+PD^2=CD^2\iff$ $(u+v)^2+(m-n)^2=CD^2\ \stackrel{(1)}{\iff}\ \frac {(m+n)^2}3+(m-n)^2=l^2\iff$

$\boxed{4\left(m^2-mn+n^2\right)=3l^2}\ (2)\ .$ Therefore, $[CDE]=\frac {l^2\sqrt 3}4\ \stackrel{(2)}{=}\ \frac {m^2-mn+n^2}{\sqrt 3}=\frac{m^3+n^3}{(m+n)\sqrt 3}\implies$ $\boxed{[CDE]=\frac {m^3+n^3}{(m+n)\sqrt 3}}\ (3)\ .$ Observe analogously that

$[ABCD]=\frac {m+n}2\cdot (u+v)\ \stackrel{(1)}{=}\ \frac {m+n}2\cdot \frac {m+n}{\sqrt 3}=\frac {(m+n)^2}{2\sqrt 3}\implies$ $\boxed{[ABCD]=\frac {(m+n)^2}{2\sqrt 3}}\ (4)\ .$ In conclusion, $\frac {[CDE]}{[ABCD]}=\frac {m^3+n^3}{(m+n)\sqrt 3}\cdot\frac {2\sqrt 3}{(m+n)^2}\implies\ (*)\ .$


Extension. Let a right trapezoid $ABCD$ where $AD\parallel BC$ and $AB\perp AD\ .$ Suppose that exists $E\in (AB)$ so that $\triangle CDE$ is $E$-isosceles

with $m\left(\widehat{ECD}\right)=\phi\ .$ Denote $BC=n$ and $AD=m\ ,$ where $n<m\ .$ Prove that the area $[CDE]=\frac {\sqrt 3\left(m^2+2mn\cos 2\phi +n^2\right)}{(m+n)^2\sin2\phi}\cdot S\ (*)$


Proof. Denote $CD=l\ ,$ the midpoint $M$ of $[CD]$ and $EA=u\ ,$ $EB=v\ .$ Observe that $AEMD$ and $BEMC$ are cyclic

and $ABM$ is a $M$-isosceles triangle, i.e. $MA=MB=\frac {u+v}{2\cos\phi}\ .$ Apply the Ptolemy's theorem to the following quadrilaterals $:$

$\left\{\begin{array}{cccccccc}
AEMD\ : & m\cdot EM+u\cdot MD=ED\cdot AM & \implies & m\cdot \frac {EM}{ED}+u\cdot\frac {MD}{ED}=AM & \implies & m\sin\phi +u\cos\phi =\frac {u+v}{2\cos\phi} & \implies & v-u\cos 2\phi =m\sin 2\phi\\\\

BEMC\ : & n\cdot EM+v\cdot MC=EC\cdot BM & \implies & n\cdot \frac {EM}{EC}+v\cdot\frac {MC}{EC}=BM & \implies & n\sin\phi +v\cos\phi =\frac {u+v}{2\cos\phi} & \implies & u-v\cos 2\phi =n\sin 2\phi\end{array}\right\|\bigoplus\implies$

$\boxed{m+n=(u+v)\tan\phi  }\ (1)\ .$ Let $P\in AD$ so that $CP\perp AD\ .$ Thus, $PC^2+PD^2=CD^2\iff$ $(u+v)^2+(m-n)^2=l^2\ \stackrel{(1)}{\iff}\ \frac {(m+n)^2}{\tan^2\phi}+(m-n)^2=$ $l^2\iff$ $(m+n)^2\cos^2\phi +(m-n)^2\sin^2\phi =$ $l^2\sin^2\phi\iff$ $\boxed{m^2+2mn\cos 2\phi +n^2=l^2\sin^2\phi}\ (2)\ .$ Therefore, $\boxed{[CDE]=\frac {\sqrt 3\left(m^2+2mn\cos 2\phi +n^2\right)}{4\sin^2\phi}}\ (3)\ .$ Observe

analogously that $[ABCD]=\frac {m+n}2\cdot (u+v)\ \stackrel{(1)}{=}\ \frac {m+n}2\cdot \frac {m+n}{\tan\phi}=\frac {(m+n)^2}{2\tan\phi}\implies$ $\boxed{[ABCD]=\frac {(m+n)^2}{2\tan\phi}}\ (4)\ .$ In conclusion,

$\frac {[CDE]}{[ABCD]}=\frac {\sqrt 3\left(m^2+2mn\cos 2\phi +n^2\right)}{4\sin^2\phi}\cdot\frac {2\tan\phi}{(m+n)^2}=\frac {\sqrt 3\left(m^2+2mn\cos 2\phi +n^2\right)}{(m+n)^2\sin2\phi}\implies\ (*)\ .$

$$\mathrm{END}$$
This post has been edited 339 times. Last edited by Virgil Nicula, Aug 31, 2016, 12:18 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404400
  • Total comments: 37
Search Blog
a