385. Some nice geometry problems.

by Virgil Nicula, Aug 17, 2013, 2:27 AM

PP1. Let $P$ be an interior point of $\triangle ABC$ for which let $\left\{\begin{array}{c}
M\in BP\cap AC\\\\
E\in AP\cap BC\\\\
D\in CP\cap BA\end{array}\right\|$ . For $F\in (AE)$ and $G\in (CD)$ construct

$\left\{\begin{array}{c}
H\in BF\cap AC\\\\
I\in BG\cap AC\\\\
L\in HE\cap ID\end{array}\right\|$ . Prove that $\boxed{L\in BP\iff \frac {FA}{FE}\cdot [CME]=\frac {GC}{GD}\cdot [AMD]}$ , where $[XYZ]$ is the area of $\triangle XYZ$ .

Remarks.

$\blacktriangleright$ IF $P$ is the centroid of $\triangle ABC$ , THEN there is the equivalence $\boxed{L\in BP\iff FG\parallel AC}\ .$

$\blacktriangleright$ IF $P$ is the incenter of $\triangle ABC$ , THEN there is the equivalence $\boxed{L\in BP\iff \frac {FA}{FE}\cdot \frac {PE}{PA}=\frac {GC}{GD}\cdot\frac{PD}{PC}}\ .$

$\blacktriangleright$ IF $P$ is orthocenter of $\triangle ABC$ , THEN there is the equivalence $\boxed{L\in BP\iff \frac {FA}{FE}\cdot \cos^2C=\frac {GC}{GD}\cdot\cos^2A}$ . (Juan Felipe Crisostomo Ramos).


Proof. Let $\left\{\begin{array}{c}
X\in ID\cap BP\\\
Y\in HE\cap BP\end{array}\right\|$ and $\left\{\begin{array}{ccc}
\frac {DB}{m}=\frac {DA}{1}=\frac {BA}{m+1} & ; & \frac {EB}{n}=\frac {EC}1=\frac {BC}{n+1}\\\\
\frac {FA}p=\frac {FE}1=\frac {AE}{p+1} & ; & \frac {GC}{q}=\frac {GD}1=\frac {CD}{q+1}\end{array}\right\|$ . Apply the Ceva's theorem to $P/\triangle ABC\ :\ \frac {MA}{MC}\cdot\frac {EC}{EB}\cdot\frac {DB}{DA}=1\iff$

$\frac {MA}{n}=\frac {MC}{m}=\frac {AC}{m+n}$ . Apply the Menelaus' theorem to $:\ \left\{\begin{array}{cccc}
\overline{BFH}/\triangle AEC\ : & \frac {BE}{BC}\cdot\frac {HC}{HA}\cdot\frac {FA}{FE}=1 & \iff & \frac {HC}{n+1}=\frac {HA}{np}=\frac {AC}{n+1+np}\\\\
\overline{BGI}/\triangle ADC\ : & \frac {BD}{BA}\cdot\frac {IA}{IC}\cdot\frac {GC}{GD}=1 & \iff & \frac {IA}{m+1}=\frac {IC}{mq}=\frac {AC}{m+1+mq}\\\\
\overline{IXD}/\triangle ABM\ : & \frac {IM}{IA}\cdot\frac {DA}{DB}\cdot\frac {XB}{XM}=1 & \iff & \frac {XB}{XM}=\frac {(m+n)(m+1)}{m+1-nq}\\\\
\overline{HYE}/\triangle CBM\ : & \frac {HM}{HC}\cdot\frac {EC}{EB}\cdot\frac {YB}{YM}=1 & \iff & \frac {YB}{YM}=\frac {(m+n)(n+1)}{n+1-mp}\end{array}\right\|$ .

In conclusion, $L\in PB\iff$ $X\equiv Y\iff$ $\frac {XB}{XM}=\frac {YB}{YM}\iff$ $\frac {m+1}{m+1-nq}=\frac {n+1}{n+1-mp}\iff$ $\boxed{mp(m+1)=nq(n+1)}\ (*)\iff$

$\frac {FA}{FE}\cdot\frac {CM\cdot CE}{a}=\frac {GC}{GD}\cdot\frac {AM\cdot AD}{c}\iff$ $\frac {FA}{FE}\cdot\frac {2[CME]}{a\cdot\sin C}=\frac {GC}{GD}\cdot\frac {2[AMD]}{c\cdot\sin A}\iff$ $\frac {FA}{FE}\cdot [CME]=\frac {GC}{GD}\cdot [AMD]$ because $\frac {\sin A}{a}=\frac {\sin C}{c}$ .

IF $P:=H$ , THEN $\left\{\begin{array}{ccc}
2[CME]=CM\cdot CE\cdot\sin C=a\cos C\cdot b\cos C\cdot\sin C=2S\cdot \cos^2C\\\\
2[AMD]=AM\cdot AD\cdot\sin A=c\cos A\cdot b\cos A\cdot\sin A=2S\cdot \cos^2A\end{array}\right\|$ , where $S=[ABC]$ and $2S=ab\sin C=bc\sin A$ .


Remark. The relation $(*)$ is equivalently with $\boxed{\frac {FA}{FE}\cdot\frac {CE}{CB}\cdot MC=\frac {GC}{GD}\cdot\frac {AD}{AB}\cdot MA}$ .If $P$ belongs to the $B$-bisector, then previous relation becomes $\boxed{CE\cdot\frac {FA}{FE}=AD\cdot\frac {GC}{GD}}$ .


PP2 (Julio Orihuela Bastidas). Let $\triangle ABC$ with the circumcircle $w=C(O,R)$ , the incircle $C(I,r)$ and the $A$-excircle $C(I_a,r_a)$ .

Let the Euler's lines $d$ , $d_a$ of the triangles $BIC$ , $BI_aC$ respectively and $M\in IO\cap d$ , $N\in I_aO\cap d_a$ . Prove that $\frac {MI}{MO}=\frac {NI_a}{NO}$ .


Proof. Let the midpoint $D$ of $[BC]$ and $\{A,S\}=\{A,I\}\cap w$ . Is well-known that $S$ is the midpoint of $[II_a]$ and $BICI_a$ is inscribed in the circle with the diameter $[II_a]$ . Thus,

$S$ is the common circumcenter for $\triangle BIC$ and $BI_aC$ . Let the centroid $G$ of $\triangle BIC$ , i.e. $G\in (ID)$ and $GI=2\cdot GD$ . Let the centroid $G_a$ of $\triangle BI_aC$ , i.e. $G_a\in (I_aD)$ and

$G_aI_a=2\cdot G_aD$ . Therefore, $d\equiv GS$ and $d_a\equiv G_aS$ . Apply the Menelaus' theorem to the transversals: $\left\{\begin{array}{cccccc}
\overline{SGM}/\triangle DIO\ : & \frac {SD}{SO}\cdot\frac {MO}{MI}\cdot\frac {GI}{GD}=1 & \implies & \frac {MI}{MO}=2\cdot \frac {SD}{SO}\\\\
\overline{S_aN}/\triangle DI_aO\ : & \frac {S_aD}{SO}\cdot\frac {NO}{NI_a}\cdot\frac {G_aI_a}{G_aD}=1 & \implies & \frac {NI_a}{NO}=2\cdot \frac {SD}{SO}\end{array}\right\|$

$\implies$ $\boxed{\frac {MI}{MO}=\frac {NI_a}{NO}=2\cdot \frac {SD}{SO}=\frac {r_a-r}{R}}$ .



PP3. Let $\triangle ABC$ with incenter $I$ , $M\in (AB)$ , $N\in (AC)$ so that $I\in MN$ . Know the value of $\angle BAC$ and $\left\{\begin{array}{c}
AB=c\ ;\ AC=b\\\\
IM=m\ ;\ IN=n\end{array}\right\|$ . Find $BC=a=f(b,c,m,n)$ .

Proof. Let $AM=x$ and $AN=y$ . Thus, $MB=c-x$ and $NC=b-y$ . Since $\frac xm=\frac yn=\lambda$ and using an well-known property $b\cdot\frac  {MB}{MA}+c\cdot\frac {NC}{NA}=a$ obtain $\frac {b(c-x)}{x}+$

$\frac {c(b-y)}{y}=a\iff$ $\frac 1x+\frac 1y=\frac {2s}{bc}$ , where $a+b+c=2s$ . Thus, $\frac 1{m\lambda}+\frac 1{n\lambda}=\frac {2s}{bc}\iff$ $\boxed{\frac{\lambda}{bc} =\frac {m+n}{2mns}}\ (*)$ .Apply the generalized Pythagoras' theorem in $\triangle MAN\ :$

$ (m+n)^2=x^2+y^2-2xy\cos A\stackrel{(*)}{\iff}$ $(2mns)^2=(bc)^2\left(m^2+n^2-2mn\cos A\right)\iff$ $\left\{\begin{array}{c}
a+b+c=\frac {bc}{mn}\sqrt {m^2+n^2-2mn\cos A}\\\\
b^2+c^2=a^2+2bc\cos A\end{array}\right\|\implies a=f(b,c,m,n)$ .

Particular case. IF $a=b=c$ , THEN $\boxed{a=\frac {3mn}{\sqrt{m^2+n^2-mn}}}$ (Miguel Ochoa Sanchez).



PP4. Let $\triangle ABC$ with $A$-bisector $AD$ , where $D\in BC$ . For $P\in (AD$ (ray) let $\left\{\begin{array}{c}
M\in AB\cap CP\\\\
N\in AC\cap BP\end{array}\right\|$ . Prove that $\frac {1}{AB^2}-\frac 1{AC^2}=$ $\frac {1}{AM^2}-\frac 1{AN^2}$ $\iff$ $AB=AC$.

Proof. Denote $AM=m$ and $AN=n$ . Observe that $(m-c)(n-b)\ge 0$ . Apply the Ceva's theorem to $P/\triangle ABC\ :\ \frac {DB}{DC}$ $\cdot \frac {NC}{NA}\cdot\frac {MA}{MB}=1\iff$

$\frac cb\cdot\frac {n-b}{n}\cdot\frac {m}{m-c}=1\iff$ $mc(n-b)=nb(m-c)\iff$ $\boxed{\frac 1c-\frac 1m=\frac 1b-\frac 1n}\ (*)$ . Therefore, $\frac {1}{AB^2}-\frac 1{AC^2}=$ $\frac {1}{AM^2}-\frac 1{AN^2}$ $\iff$

$\frac 1{c^2}-\frac 1{b^2}=\frac 1{m^2}-\frac 1{n^2}\iff$ $\frac 1{c^2}-\frac 1{m^2}=\frac 1{b^2}-\frac 1{n^2}\stackrel{(*)}{\iff}$ $\frac 1c+\frac 1m=\frac 1b+\frac 1n\iff$ $\left\{\begin{array}{c}
\frac 1c-\frac 1m=\frac 1b-\frac 1n\\\\
\frac 1c+\frac 1m=\frac 1b+\frac 1n\end{array}\right\|\bigoplus\iff$ $\frac 2c=\frac 2b\iff c=b$ .



PP5. Let $\triangle{ABC}$ with midpoint $D$ of $[BC]$ , midpoint $M$ of $[AD]$ and $N\in BM\cap AC$ . Show $AB$ is tangent to circuncircle of $\triangle{NBC}\iff$ $\frac{{BM}}{{MN}} =\frac{({BC})^2}{({BN})^2}$ .

Proof (without the Menelaus' theorem). Let the middlepoint $P$ of $[CN]$ . Thus, $\left\{\begin{array}{ccccc}
\triangle BNC\ :\ DB=DC\ ,\ PN=PC & \implies & DP\parallel BN & \implies & \boxed {BN=2\cdot DP}\\\\
\triangle ADP\ :\ MA=MD\ ,\ MN\parallel DP & \implies & NA=NP & \implies & \boxed {DP=2\cdot MN}\end{array}\right\|$ and

$\left\{\begin{array}{ccccc}
BN=2\cdot DP=4\cdot MN & \iff & BM+MN=4\cdot MN &\iff &  \boxed {\frac{MB}{MN}=3}\\\\
NA=NP=PC & \iff & AC=3\cdot AN & \iff & \boxed {\frac{MB}{MN}=\frac{AC}{AN}=3}\end{array}\right\|$ . In conclusion, $AB$ is tangent to the

circumcircle of $\triangle BNC\iff$ $\triangle ABC\sim \triangle ANB$ $\iff$ $\frac{AB}{AN}=\frac{BC}{NB}=\frac{CA}{BA}$ $\iff$ $\left(\frac{BC}{NB}\right)^2=\frac{AB}{AN}\cdot \frac{CA}{BA}$ $\iff$ $\left(\frac{BC}{BN}\right)^2=\frac{AC}{AN}$ $\iff$ $\left(\frac{BC}{BN}\right)^2=\frac{MB}{MN}\ .$



PP6. Let $ H$ be the orthocenter of an acute $\triangle ABC$ . The circle centered at the midpoint of $ BC$ and passing through $ H$ intersects

$ BC$ at $ A_{1}$ , $ A_{2}$ . Similarly define the pairs $ B_{1}$, $ B_{2}$ and $ C_{1}$ , $ C_{2}$ . Prove that $ A_{1}$ , $ A_{2}$ , $ B_{1}$ , $ B_{2}$ , $ C_{1}$ , $ C_{2}$ are concyclically.



Proof. Let the midpoints $ D$ , $ E$ , $ F$ of $ [BC]$ , $ [CA]$ , $ [AB]$ respectively. Prove easily $ \boxed {\ HA^2 + a^2 = HB^2 + b^2 = HC^2 + c^2 = 4R^2\ }\ (*)$ .

Thus, $ 4\cdot\overline {BA_1}\cdot\overline {BA_2} = 4\cdot\left(BD^2 - HD^2\right) =$ $ a^2 - 4\cdot HD^2 =$ $ a^2 - 2\cdot\left(HB^2 + HC^2\right) + a^2$ $ \stackrel {(*)}{\ \ \implies\ \ }$ $ \overline {BA_1}\cdot\overline {BA_2} = \frac 12\cdot \left(a^2 + b^2 + c^2\right) - 4R^2$ $ \implies$

$\boxed {\ \overline {BA_1}\cdot\overline {BA_2} = 4R^2\prod\cos A\ }$ because prove easily $ \boxed {\ \left(a^2 + b^2 + c^2\right) - 8R^2 = 8 R^2\prod\cos A\ } > 0$ (remark that $ \{A_1,A_2\}\subset (BC)$ a.s.o.). Thus,

$ \overline {BA_1}\cdot \overline {BA_2} = - \overline {A_1B}\cdot\overline {A_1C} = R^2 - OA_1^2\ \implies\ 4R^2\prod\cos A = R^2 - OA_1^2$ $ \implies$ $ OA_1^2 = R^2\left(1 - 4\prod\cos A\right)$ (symmetrically in $ a$ , $ b$ , $ c$ ).

Thus, $ \boxed {\ \rho = OA_1 = OA_2 = OB_1 = OB_2 = OC_1 = OC_2 = R\sqrt {1 - 4\cos A\cos B\cos C}\ }$ .



PP7. Let $\triangle ABC$ with circumcircle $w$ and the symmedian point $S$ . For $P\in w$ let $\left\{\begin{array}{c}
X\in BC\cap PS\\\
Y\in CA\cap PS\\\
Z\in AB\cap PS\end{array}\right\|$ . Prove that $\frac{3}{\overline{PS}}=\frac{1}{\overline{PX}}+\frac{1}{\overline {PY}}+\frac{1}{\overline{PZ}}$ (segments are orientated).

Proof. Let $\delta_d(X)$ - the distance of $X$ to $d$ . Thus, $\frac{3}{\overline{PS}}=\frac{1}{\overline{PX}}+\frac{1}{\overline {PY}}+\frac{1}{\overline{PZ}}\iff$ $3=\sum\frac {\overline{PS}}{\overline{PX}}\iff$ $3=\sum\frac {\overline{PX}-\overline{SX}}{\overline{PX}}\iff$ $\boxed{\sum\frac {\overline{SX}}{\overline{PX}}=0}\ (*)\ \iff$

$\sum\frac {\delta_{BC}(S)}{\delta_{BC}(P)}=0\iff$ $\sum\frac {a}{\delta_{BC}(P)}=0\ (1)$ because is well-known that $\frac { \delta_{BC}(S)}{a}=\frac { \delta_{CA}(S)}{b}=\frac { \delta_{AB}(S)}{c}$ . The relation $(1)$ is barycentric orientated. (see PP16 from
here).

Generalization. Let $\triangle ABC$ with circumcircle $w$ and let $M$ with barycentric coordinates $(x,y,z)$ w.r.t. $\triangle ABC$ . Let isogonal conjugate $S$

of $M$ w.r.t. $\triangle ABC$ and $P\in w$ . The line $PS$ cuts $BC$ , $CA$ , $AB$ at $X$ , $Y$ , $Z$ respectively. Prove that $\dfrac{x+y+z}{\overline{PS}}=\dfrac{x}{\overline{PX}}+\dfrac{y}{\overline{PY}}+\dfrac{z}{\overline{PZ}}$ .



PP8. Let $\triangle ABC$ with the incenter $I$ . Let $\left\{\begin{array}{c}
D\in BI\cap AC\\\
E\in CI\cap AB\end{array}\right\|$ and suppose that $\left\{\begin{array}{c}
m\left(\widehat{CED}\right)=18^{\circ}\\\\
m\left(\widehat{BDE}\right)=24^{\circ}\end{array}\right\|$ . Prove that $B=12^{\circ}$ .

Proof. Let $B=2x$ and apply theorem of Sines in $:\ \left\{\begin{array}{cccc}
\triangle DIE\ : & \frac {ID}{IE}=\frac {\sin\widehat{IED}}{\sin\widehat{IDE}} & \implies & \frac {ID}{IE}=\frac {\sin 18^{\circ} }{\sin 24^{\circ}}\\\\
\triangle IAD\ : & \frac {IA}{ID}=\frac {\sin\widehat{IDA}}{\sin\widehat{IAD}} & \implies & \frac {IA}{ID}=\frac {\sin (84^{\circ}-x)}{\sin \frac A2}\\\\
\triangle IAE\ : & \frac {IE}{IA}=\frac {\sin\widehat{IAE}}{\sin\widehat{IEA}} & \implies & \frac {IE}{IA}=\frac {\sin \frac A2}{\sin (42^{\circ}+x)}\end{array}\right\|\bigodot\implies$ $\sin 18^{\circ}\sin (84^{\circ}-x)=\sin 24^{\circ}\sin (42^{\circ}+x)\iff$

$\boxed{f(x)\equiv\sin 18^{\circ} \cos (6^{\circ}+x)-\sin 24^{\circ}\cos (48^{\circ}-x)=0}\ (*)$ . The function $f$ on $\left(0,48^{\circ}\right)$ is strict decreasing and $2f(6)=2\sin 18^{\circ}\cos 12^{\circ}-2\sin 24^{\circ}\cos 42^{\circ}=$

$\sin 30^{\circ}+\sin 6^{\circ}-\sin 66^{\circ}+\sin 18^{\circ}=$ $\frac 12+\sin 18^{\circ}-2\sin 30^{\circ}\cos 36^{\circ}\implies$ $2f(x)=\frac 12+\sin 18^{\circ}-\cos 36^{\circ}=$ $\frac 12+\frac {\sqrt 5-1}{4}-\frac {\sqrt 5+1}{4}=0\implies$ $f(6^{\circ})=0$ , i.e. $B=12^{\circ}$



Lemma. Let a quadrilateral $ABCD$ which is inscribed in the circle $w$ and $\left\{\begin{array}{c}
E\in AB\cap CD\\\\
F\in AD\cap BC\end{array}\right\|$ . Prove that $p_w(E)+p_w(F)=EF^2$ , where $p_w(X)$ is the power of $X$ w.r.t. $w$ .

Proof 1. Let $\left\{\begin{array}{c}
m\left(\widehat{CEF}\right)=u\\\\
m\left(\widehat{CFE}\right)=v\end{array}\right\|$ . Thus $u+v=A$ and $p_w(E)+p_w(F)=EF^2\iff$ $EC\cdot ED+FC\cdot FB=EF^2\iff$ $\frac {EC}{EF}\cdot\frac {ED}{EF}+\frac {FC}{FE}\cdot\frac {FB}{FE}=1\iff$

$\frac {\sin v}{\sin A}\cdot\frac {\sin (D-u)}{\sin B}+\frac {\sin u}{\sin A}\cdot\frac {\sin (B-v)}{\sin D}=1\iff$ $\sin v\sin (D-u)+\sin u\sin (B-v)=\sin A\sin B\iff$ $\cos (D-u-v)-\cos (D+v-u)+$

$\cos (B-u-v)-\cos (B+u-v)=$ $\cos (A-B)-\cos (A+B)\iff$ $\cos (D-A)-\cos (D+v-u)+$ $\cos (B-A)-\cos (B+u-v)=$ $\cos (A-B)-\cos (A+B)$ ,

what is truly because $\left\{\begin{array}{c}
A+C=B+D=180^{\circ}\\\\
(D-A)+(A+B)=180^{\circ}\\\\
(D+v-u)+(B+u-v)=180^{\circ}\end{array}\right\|$ .

Proof 2. Let $\left\{\begin{array}{ccc}
AB=a & BC=b & CD=c\\\\
DA=d & AC=e & BD=f\end{array}\right\|$ and $G\in AC\cap BD$ . I"ll use the relations $\left\{\begin{array}{cc}
\frac {GA}{da}=\frac {GB}{ab}=\frac {GC}{bc}=\frac {GD}{cd}=\frac {e}{da+bc}=\frac f{ab+cd}=\sqrt{\frac {-p_w(G)}{abcd}}\\\\
\frac {EA}{de}=\frac {EB}{bf}=\frac {EC}{be}=\frac {ED}{df}=\frac {a}{de-bf}=\frac {c}{df-be}=\sqrt{\frac {p_w(E)}{bdef}}\\\\
\frac {FA}{ae}=\frac {FB}{af}=\frac {FC}{ce}=\frac {FD}{cf}=\frac {d}{ae-cf}=\frac {b}{af-ce}=\sqrt {\frac {p_w(F)}{acef}}\end{array}\right\|$ . Thus, $\left\{\begin{array}{c}
p_w(E)=\frac {a^2bdef}{(de-bf)^2}\\\\
p_w(F)=\frac {acd^2ef}{(ae-cf)^2}\end{array}\right\|\bigodot\implies$ $\boxed{p_w(E)+p_w(F)=adef\cdot\left[\frac {ab}{(de-bf)^2}+\frac {cd}{(ae-cf)^2}\right]}\ (1)$ . Apply the generalized Pythagoras' theorem to $[EF]$ of $\triangle  EAF\ :$

$EF^2=$ $AE^2+AF^2-2\cdot AE\cdot AF\cdot\cos A\iff$ $EF^2=\left(\frac {ade}{de-bf}\right)^2+\left(\frac {ade}{ae-cf}\right)^2-2\cdot \frac {ade}{de-bf}\cdot \frac {ade}{ae-cf}\cdot\frac {a^2+d^2-f^2}{2ad}\iff$

$\boxed{EF^2=ade\cdot\frac {ade\left[(ae-cf)^2+(de-bf)^2\right]-e(de-bf)(ae-cf)\left(a^2+d^2-f^2\right)}{(de-bf)^2(ae-cf)^2}}\ (2)$ . Thus, $p_w(E)+p_w(F)=EF^2\iff$ $adef\cdot\left[\frac {ab}{(de-bf)^2}+\frac {cd}{(ae-cf)^2}\right]=$

$ade\cdot\frac {ade\left[(ae-cf)^2+(de-bf)^2\right]-e(de-bf)(ae-cf)\left(a^2+d^2-f^2\right)}{(de-bf)^2(ae-cf)^2}\iff$ $f\left[ab(ae-cf)^2+cd(de-bf)^2\right]=$ $ade\left[(ae-cf)^2+(de-bf)^2\right]-$

$e(de-bf)(ae-cf)\left(a^2+d^2-f^2\right)\iff$ $f\left[ab(ae-cf)^2+cd(de-bf)^2\right]-$ $ade\left[(ae-cf)^2+(de-bf)^2\right]+$ $e(de-bf)(ae-cf)\left(a^2+d^2-f^2\right)=0\iff$

$a(bf-de)(ae-cf)^2+d(cf-ae)(de-bf)^2+$ $e(de-bf)(ae-cf)\left(a^2+d^2-f^2\right)=0\iff$ $a(ae-cf)+d(de-bf)-$ $e\left(a^2+d^2-f^2\right)=0\iff$

$a^2e-acf+d^2e-bdf-a^2e-d^2e+ef^2=0\iff$ $ef=ac+bd$ (Ptolemy's theorem), what is true.


PP9 (Edson Curahua). Let $\triangle ABC$ with the centroid $G$ . Prove that $m\left(\widehat{AGB}\right)=2C\ \iff\ c^4=a^4+b^4-a^2b^2$ .

Proof 1 (Josue Garcia Piscoya). Let $\left\{\begin{array}{c}
E\in AL\cap BC\\\\
F\in BL\cap AC\end{array}\right\|$ , where $L$ is the Lemoine's point of $\triangle ABC$ . Prove easily that $CELF$ is cyclically (with the circumcircle $w$) and

$\left\{\begin{array}{c}
p_w(B)=BE\cdot BC\\\\
p_w(A)=AF\cdot AC\end{array}\right\|$ . Thus, $\left\{\begin{array}{ccc}
\frac {EB}{c^2}=\frac {EC}{b^2}=\frac a{b^2+c^2} & \implies & p_w(B)=\frac {a^2c^2}{b^2+c^2}\\\\
\frac {FA}{c^2}=\frac {FC}{a^2}=\frac b{a^2+c^2} & \implies & p_w(A)=\frac {b^2c^2}{a^2+c^2}\end{array}\right\|$ . Apply upper lemma to the cyclic $CELF$ and get $p_w(B)+p_w(A)=AB^2\iff$

$\frac {a^2c^2}{b^2+c^2}+\frac {b^2c^2}{a^2+c^2}=c^2\iff$ $\frac {b^2}{a^2+c^2}+\frac {a^2}{b^2+c^2}=1\iff$ $b^2\left(b^2+c^2\right)+a^2\left(a^2+c^2\right)=\left(a^2+c^2\right)\left(b^2+c^2\right)\iff$ $c^4=a^4+b^4-a^2b^2$ .


Proof 2. I"ll use the well-known relation in any $\triangle ABC\ :\ \boxed{4S=\left(a^2+b^2-c^2\right)\tan C}$ . Prove easily that $GA^2+GB^2-c^2=\frac 19\left(a^2+b^2-5c^2\right)$ . Thus,

$3[AGB]=[ACB]\iff$ $3\left(GA^2+GB^2-c^2\right)\tan 2C=$ $\left(a^2+b^2-c^2\right)\tan C\iff$ $\frac 13\left(a^2+b^2-5c^2\right)\cdot\frac {2\tan C}{1-\tan^2C}=$ $\left(a^2+b^2-c^2\right)\tan C\iff$

$2\left(a^2+b^2-5c^2\right)=3\left(1-\tan^2C\right)\left(a^2+b^2-c^2\right)\iff$ $3\left(a^2+b^2-c^2\right)\tan^2C=a^2+b^2+7c^2\iff$ $12S\tan C=a^2+b^2+7c^2\iff$

$48S^2=\left(a^2+b^2+7c^2\right)\left(a^2+b^2-c^2\right)\iff$ $3\left(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\right)=$ $a^4+b^4+2a^2b^2-7c^4+6c^2\left(a^2+b^2\right)\iff$ $c^4=a^4+b^4-a^2b^2$ .

Proof 3. Let the midpoints $D$ , $E$ of $[CB]$ , $[CA]$ respectively and $\left\{\begin{array}{ccc}
m\left(\widehat{GAB}\right)=x & \implies & m\left(\widehat{GAC}\right)=A-x\\\\
m\left(\widehat{GBA}\right)=y & \implies & m\left(\widehat{GBC}\right)=B-y\end{array}\right\|$ . Thus $x+y+2C=180^{\circ}\implies$

$\boxed{\tan 2C=\frac {\tan x+\tan y}{\tan x\tan y -1}}\ (*)$ . Thus, $\left\{\begin{array}{ccccccc}
DB=DC & \implies & c\sin x=b\sin (A-x) & \implies & c\tan x=b(\sin A-\cos A\tan x) & \implies & \tan x=\frac {b\sin A}{c+b\cos A}\\\\
EA=EC & \implies & c\sin y=a\sin (B-y) & \implies & c\tan y=a(\sin B-\cos B\tan y) & \implies & \tan y=\frac {a\sin B}{c+a\cos B}\end{array}\right\|$ . Observe

that $\left\{\begin{array}{c}
b\sin A=a\sin B\\\\
b\cos A+a\cos B=c\end{array}\right\|\implies$ $\left\{\begin{array}{c}
(c+b\cos A)+(c+a\cos B)=3c\\\\
(c+b\cos A)\cdot(c+a\cos B)=2c^2+ab\cos A\cos B\end{array}\right\|$ . Thus, $\left\{\begin{array}{c}
\tan x+\tan y=\frac {6S}{2c^2+ab\cos A\cos B}\\\\
\tan x\cdot\tan y=\frac {ab\sin A\sin B}{2c^2+ab\cos A\cos B}\end{array}\right\|$ .

From $(*)$ obtain that $\frac {2\tan C}{1-\tan^2C}=$ $\frac {6S}{ab\sin A\sin B-2c^2-ab\cos A\cos B}=$ $\frac {6S}{ab\cos C-2c^2}=\frac {12S}{a^2+b^2-5c^2}=$ $\frac {3\left(a^2+b^2-c^2\right)\tan C}{a^2+b^2-5c^2}\implies$

$2\left(a^2+b^2-5c^2\right)=3\left(1-\tan^2C\right)\left(a^2+b^2-c^2\right)\iff$ $3\left(a^2+b^2-c^2\right)\tan^2C=a^2+b^2+7c^2\iff$ $12S\tan C=a^2+b^2+7c^2\iff$

$48S^2=\left(a^2+b^2+7c^2\right)\left(a^2+b^2-c^2\right)\iff$ $3\left(2\sum b^2c^2-\sum a^4\right)=$ $a^4+b^4+2a^2b^2-7c^4+6c^2\left(a^2+b^2\right)\iff$ $c^4=a^4+b^4-a^2b^2$ .



PP10 (Josue Garcia Piscoya). Let $\triangle ABC$ with $\left\{\begin{array}{c}
A'\in BC\\\\
B'\in CA\\\\
C'\in AB\end{array}\right|$ so that $A'B'C'\sim ABC$ and $\frac {BC}{B'C'}=k$ . Let $P\in BC\cap B'C'$ and $x=m\left(\widehat{B'PC}\right)$ . Prove that $\cos x=\frac k2$ .

Proof 1. Prove easily that $m\left(\widehat{BC'A'}\right)=A+x$ and $m\left(\widehat{CB'A'}\right)=A-x$ . The circumradii of $A'B'C'$ , $AB'C'$ , $A'BC'$ and $A'B'C$ have same length $r$ .

Thus, $B'C'=2r\sin A$ and $BC=A'B+A'C=2r[\sin (A+x)+\sin (A-x)]\iff$ $ 2kr\sin A=4r\sin A\cos x$ . Hence $\cos x=k/2$ .

Proof 2. Prove easily that $\left\{\begin{array}{ccc}
m\left(\widehat{AC'B'}\right)=B-x & ; & m\left(\widehat{AB'C'}\right)=C+x\\\\
m\left(\widehat{BA'C'}\right)=C-x & ; & m\left(\widehat{BC'A'}\right)=A+x\\\\
m\left(\widehat{CB'A'}\right)=A-x & ; & m\left(\widehat{CA'B'}\right)=B+x\end{array}\right\|$ . The circumradii of $A'B'C'$ , $AB'C'$ , $A'BC'$ and $A'B'C$ have same length $r$ .

I"ll use the identities $\left\{\begin{array}{c}
\sum\sin 2A=4\sin A\sin B\sin C\\\\
S=2R^2\sin A\sin B\sin C\ \ (1)\end{array}\right\|$ in any $\triangle ABC$ , where $R$ is the length of circumradius. Prove easily

$\boxed{\sum\sin A\sin (B-x)\sin (C+x)=(1+2\cos 2x)\sin A\sin B\sin C}\ (*)$ . Thus, $R=kr$ and $[ABC]=[A'B'C']+\sum[AB'C']\iff$ $k^2\prod\sin A=$

$\prod \sin A+\sum\sin A\sin (B-x)\sin (C+x)\stackrel{(*)}{\iff}$ $\left(k^2-1\right)\prod\sin A=(1+2\cos 2x)\prod\sin A\iff$ $k^2=2(1+\cos 2x)\iff$ $k=2\cos x\iff\cos x=\frac k2$ .

$\blacktriangleright$ Remark. $4\sum\sin A\sin (B-x)\sin (C+x)=$ $2\sum\sin A[\cos (B-C-2x)+\cos A]=$ $\sum\sin 2A+\sum 2\sin (B+C)\cos (B-C-2x)=$

$\sum\sin 2A+\sum 2\sin (B+C)[\cos (B-C)\cos 2x+\sin (B-C)\sin 2x]=$ $4\prod\sin A+\cos 2x\sum 2\sin (B+C)\cos (B-C)+$ $\sin 2x\sum 2\sin (B+C)\sin (B-C)=$

$4\prod\sin A+\cos 2x\sum (\sin 2B+\sin 2C)+\sin 2x\sum (\cos 2B-\cos 2C)=$ $4\prod\sin A+2\cos 2x\sum \sin 2A=$ $4\prod\sin A+8\cos 2x\prod\sin A=$

$4(1+2\cos 2x)\prod\sin A\implies\ (*)$ .



PP11 (Miguel Ochoa Sanchez). Let $\triangle ABC$ with the orthocenter $H$ . Let the midpoint $M$ of $[BC]$ and $Q\in AM$ so that $HQ\perp AM$ . Prove that $MQ\cdot MA=MB^2$ .

Proof 1. Let $AD$ , $BE$ , $CF$ be altitudes of $\triangle ABC$ , where $D\in BC$ , $E\in CA$ , $F\in AB$ . Let $S\in EF\cap BC$ . Is wellknown $SH\perp AM$ , i.e. $S\in HQ$ and $AQDS$ is cyclic ;

the division $(B,C;S,D)$ is harmonically and $MB=MC\implies$ $MB^2=MD.MS$ . Since $AQDS$ is cyclically obtain that $MD.MS=MQ.MA$ . Thus, $MQ.MA=MB^2$ .

Proof 2. I"ll use same notations from upper proof. Thus, $DHQM$ is cyclically $\implies AH.AD= AQ.AM = (AM-MQ).AM\implies$

$MQ.MA = AM^2 - AH.AD =$ $ AD^2 + DM^2 - AH.AD = $ $DM^2 + DA.DH = $ $DM^2 + DB.DC = MB^2\implies$ $MQ.MA=MB^2$ .



PP12 (Miguel Ochoa Sanchez). Let a parallelogram $ABCD$ and let $M\in (AD)\ ,\ N\in (AB)$ so that $[CBN]=[CNM]=[CMD]=1$ . Prove that $[MAN]=\sqrt 5-2$ .

Proof. $\left\{\begin{array}{ccccc}
MA=x & , & MD=y & ; & \frac xy=m\\\\
NA=u & , & NB=v & ; & \frac uv=n\end{array}\right\|$ and $S=[ABCD]=\sigma +\sum_{k=1}^3\sigma_k$ , where $\left\{\begin{array}{ccc}
\sigma=[MAN] & ; & \sigma_1=[CBN]\\\\
\sigma_2=[CNM] & ; & \sigma _3=[CMD]\end{array}\right\|\implies$

$\frac {\sigma}{xu}=\frac {\sigma_1}{v(x+y)}=\frac {\sigma_3}{y(u+v)}=\frac {S}{2(x+y)(u+v)}=$ $\frac {S-\left(\sigma +\sigma_1+\sigma_3\right)}{2(x+y)(u+v)-\left[xu+v(x+y)+y(u+v)\right]}=$ $\frac {\sigma_2}{x(u+v)+yu}=p$ , where

$\boxed{2p=\sin A}\implies$ $\frac {\sigma}{mn}=\frac {\sigma_1}{m+1}=\frac {\sigma_2}{mn+m+n}=\frac {\sigma_3}{n+1}=\frac {S}{2(m+1)(n+1)}=2p$ . Thus, $\sigma_1=\sigma_2=\sigma_3\iff$ $m+1=mn+(m+n)=n+1\iff$

$m=n\ ,\ n^2=1-n\iff$ $m=n=\frac {\sqrt 5-1}{2}\implies$ $\sigma =\frac {n^2}{n+1}=\frac {1-n}{1+n}=\frac {1-\frac {\sqrt 5-1}{2}}{1+\frac {\sqrt 5-1}{2}}=\frac {3-\sqrt 5}{1+\sqrt 5}=\sqrt 5-2\implies$ $\boxed{\sigma=\sqrt 5-2}$ .

An easy extension (Virgil Nicula). Let $ABCD$ be a parallelogram with $M\in (AD)\ ,\ N\in (AB)$ .

Prove that $\ \ \boxed{[CBN]=x\ ,\ [CNM]=y\ ,\ [CMD]=z\ \implies\ [MAN]=-(x+z)+\sqrt {y^2+4xz}}$ .



PP13. Let a parallelogram $ABCD$ with $O\in AC\cap BD$ and $F\in (AO)$ so that $\widehat{FBA}\equiv\widehat{FBO}$ . Suppose that $\frac {AB}{AD}=\frac {BD}{AC}$ . Find the ratio $\frac {FC}{FA}$ .

Proof. Let $\left\{\begin{array}{c}
AB=b\ ;\ AD=a\\\\
AC=e\ ;\ BD=f\end{array}\right\|$ . I"ll use Euler's relation $\boxed{e^2+f^2=2\left(a^2+b^2\right)}\ (*)$ . So $\frac {AB}{AD}=\frac {BD}{AC}\iff$ $\frac ba=\frac fe\iff$ $\frac ea=\frac fb=k\iff$ $\left\{\begin{array}{c}
e=ak\\\
f=bk\end{array}\right\|\stackrel{(*)}{\implies}$

$k=\sqrt 2$ . Thus, $\widehat{FBA}\equiv\widehat{FBO}\iff$ $\frac {FA}{FO}=\frac {BA}{BO}\iff$ $\frac {FA}{2b}=\frac {FO}{f}=\frac e{2(2b+f)}\implies$ $\boxed{FA=\frac {eb}{2b+f}}\ (1)\implies$ $FC=AC-AF=e-\frac {eb}{2b+f}\implies$

$\boxed{FC=\frac {e(b+f)}{2b+f}}\ (2)\stackrel{(1\wedge 2)}{\implies}\ \frac {FC}{FA}=$ $1+\frac fb\implies$ $\boxed{\frac {FC}{FA}=1+\sqrt 2}$ .



Lemma. Prove $(\forall)\ x\in\mathbb R$ there are $g(x)\equiv\sin ^2x+\sin^2\left (60^{\circ}+x\right)+\sin^2\left (60^{\circ}-x\right)=\frac 32$ and $f(x)\equiv\sin ^4x+\sin^4\left (60^{\circ}+x\right)+\sin^4\left (60^{\circ}-x\right)=\frac 98$ .

Proof 1 (Ruben Dario). Let an equilateral $\triangle ABC$ with $BC=a$ and $P\in (BC)$ so that $\left\{\begin{array}{ccc}
PB & = & m\\\
PC & = & n\\\
AP & = & p\end{array}\right\|\implies$ $\boxed{m+n=a}$ and Stewart's $\implies\boxed{a^2=p^2+mn}\ (*)$

$\blacktriangleright\ m^2+n^2+a^2 =$ $ (m+n)^2-2mn+a^2 = $ $2a^2-2mn = 2(a^2-mn)\stackrel{(*)}{\implies}$ $ \boxed{m^2+n^2+a^2=2p^2}\ (1)$

Otherwise. Apply the Pythagoras theorem $\left\{\begin{array}{ccc}
\triangle ABP\ : & \implies & p^2=a^2+m^2-am\\\\
\triangle ACP\ : & \implies & p^2=a^2+n^2-an\end{array}\right\|\bigoplus\implies $ $2p^2=2a^2+m^2+n^2-a(m+n)\implies$ $m^2+n^2+a^2=2p^2$ .

$\blacktriangleright$ The circumcircle of $\triangle ABC$ meet again $AP$ in $R$ . Then $\frac {RB}{m}=\frac {RC}{n}=\frac {RA}{a}=\frac {p^2+mn}{pa}$ and $\left\{\begin{array}{c}
a^2=RA^2+RB^2-RA\cdot RB\\\\
a^2=RA^2+RC^2-RA\cdot RC\end{array}\right\|\bigoplus\implies$ $\boxed{RA^2+RB^2+RC^2=2a^2}$ .

Otherwise. Let $a=R\sqrt 3$ . Let $m\left(\widehat {RAB}\right)=x$ . Then $\left\{\begin{array}{c}
m\left(\widehat{RAC}\right)=60^{\circ}-x\\\\
m\left(\widehat{ACR}\right)=60^{\circ}+x\end{array}\right\|$ . Thus, $RA^2+RB^2+RC^2=2a^2\iff$

$4R^2\left[\sin^2 \left(60^{\circ}+x\right)+\sin^2 x+\sin ^2\left(60^{\circ}-x\right)\right]=6R^2\iff$ $\sin^2\left(60^{\circ}+x\right)+\sin^2 x+\sin ^2\left(60^{\circ}-x\right)=\frac 32$ .

$\blacktriangleright\ m^4+n^4+a^4 =$ $ (m^2+n^2)^2-2m^2n^2+a^4 \stackrel{(1)}{=}$ $ (2p^2-a^2)^2 - 2m^2n^2+a^4 = $ $4p^4-4a^2p^2+2a^4-2m^2n^2 =$

$ 4p^4+2a^2(a^2-2p^2)-2m^2n^2=$ $4p^4-2(p^2+mn)(p^2-mn)-2m^2n^2=2p^4\implies$ $ \boxed{m^4+n^4+a^4=2p^4}\ (2)$ .

Let $m\left(\widehat{BAP}\right)=x$ and $\left\{\begin{array}{c}
m\left(\widehat{CAP}\right)=60^{\circ}-x\\\\
m\left(\widehat{APC}\right)=60^{\circ}+x\end{array}\right\|$ . Apply the theorem ofSines in $:\ \left\{\begin{array}{ccccc}
\triangle ABP\ : & \implies & k\cdot \frac mp & = & \sin x\\\\
\triangle ACP\ : & \implies & k\cdot\frac np & =& \sin\left(60^{\circ}-x\right)\\\\
\triangle ABP\ : & \implies & k\cdot\frac ap & = & \sin\left(60^{\circ}+x\right)\end{array}\right\|$ ,

where $k=\frac {\sqrt 3}{2}$ . In conclusion, $f(x)=\sin ^4x+\sin^4\left (60^{\circ}+x\right)+\sin^4\left (60^{\circ}-x\right)=$ $k^4\cdot\left(\frac {m^4+n^4+a^4}{p^4}\right)\stackrel{(2)}{\implies}$ $f(x)=2k^4=2\cdot \left(\frac {\sqrt 3}{2}\right)^4=\frac {2\cdot 9}{16}\implies$ $f(x)=\frac 98$ .

Proof 2. $2g(x)=\left(1-\cos 2x\right)+\left[1-\cos\left (120^{\circ}+2x\right)\right]+\left[1-\cos\left (120^{\circ}-2x\right)\right]\iff$ $2g(x)=3-\cos 2x-2\cos 120^{\circ}\cos 2x\iff$ $\boxed{g(x)=\frac 32}$ .

$f(x)=\sin ^4x+\cos^4\left (30^{\circ}-x\right)+\cos^4\left (30^{\circ}+x\right)\iff$ $4f(x)=(1-\cos 2x)^2+\left[1+\cos\left (60^{\circ}-2x\right)\right]^2+\left[1+\cos\left (60^{\circ}+2x\right)\right]^2\iff$ $4f(x)=(1-\cos 2x)^2+$

$\left[1+\sin\left (30^{\circ}+2x\right)\right]^2+$ $\left[1+\sin\left (30^{\circ}-2x\right)\right]^2\iff$ $4f(x)=3+2\left[\sin\left (30^{\circ}+2x\right)+\sin\left (30^{\circ}-2x \right)-\cos 2x\right]+$ $\cos^22x+\sin^2\left (30^{\circ}+2x\right)+\sin^2 \left (30^{\circ}-2x\right)\iff$

$4f(x)=3+2\left[2\sin 30^{\circ}\cos 2x-\cos 2x\right]+$ $\cos^22x+\sin^2\left (30^{\circ}+2x\right)+\sin^2 \left (30^{\circ}-2x\right)\iff$ $4f(x)=3+\cos^22x+\sin^2\left (30^{\circ}+2x\right)+\sin^2 \left (30^{\circ}-2x\right)\iff$

$8f(x)=6+3+\cos 4x-\cos \left(60^{\circ}+4x\right)-$ $\cos \left(60^{\circ}-4x\right)\implies$ $8f(x)=9+\cos 4x-2\cos 60^{\circ}\cos 4x\iff$ $\boxed{f(x)=\frac 98}$ .


PP14. Let an equilateral $\triangle ABC$ with $BC=a$ and centroid $G$ . For $d\ ,\ G\in d$ let $\left\{\begin{array}{c}
M\in d\cap BC\\\\
N\in d\cap CA\\\\
P\in d\cap AB\end{array}\right\|$ . Find the sum $\frac 1{GM^4}+\frac 1{GN^4}+\frac 1{GP^4}$ .

Proof. Let the midpoints $D$ , $E$ and $F$ of the sides $[BC]$ , $[CA]$ and $[AB]$ respectively and $m\left(\widehat{GMC}\right)=x$ . Suppose w.l.o.g. $a=1$ and $B\in (MC)$ . Thus, $GD=\frac 1{2\sqrt 3}$ and

$\left\{\begin{array}{c}
m\left(\widehat{MGF}\right)=30^{\circ}+x\\\\
m\left(\widehat{EGN}\right)=30^{\circ}-x\end{array}\right\|$ . Thus, $\frac 1k=GD=GM\cdot\sin x=GN\cdot \sin \left(30^{\circ}-x\right)=GP\cdot \sin \left(30^{\circ}+x\right)$ , where $\boxed{k=2\sqrt 3}$ . In conclusion, $\frac 1{GM^4}+\frac 1{GN^4}+\frac 1{GP^4}=$

$k^4\left[\sin ^4x+\cos^4\left (30^{\circ}-x\right)+\cos^4\left (30^{\circ}+x\right)\right]$ , Using the upper lemma obtain that $\frac 1{GM^4}+\frac 1{GN^4}+\frac 1{GP^4}=k^4f(x)=\frac {9k^4}{8}=144\cdot\frac 98\implies$ $\boxed{\frac 1{GM^4}+\frac 1{GN^4}+\frac 1{GP^4}=\frac {162}a}$



PP15. Let $\triangle ABC$ with the circumcircle $w=C(O,R)$ and the $A$-excircle $w_a=C(I_a,r_a)$ a.s.o. Let the radical axes $\delta_a$ , $\delta_b$ , $\delta_c$ between $w$ and $A$-excircle, $B$-excircle and $C$-excircle

respectively and $\left\{\begin{array}{ccc}
B_1\in \delta_a\cap AB & ; & C_2\in \delta_a\cap AC\\\\
C_1\in \delta_b\cap BC & ; & A_2\in \delta_b\cap BA\\\\
A_1\in \delta_c\cap CA & ; & B_2\in \delta_c\cap CB\end{array}\right\|$ . Prove that $\left(\frac {1}{AB_1}+\frac 1{AC_2}\right) +\left(\frac {1}{BC_1}+\frac 1{BA_2}\right) +\left(\frac {1}{CA_1}+\frac 1{CB_2}\right)=\frac 8s$ , where $2s=a+b+c$ .


Proof. Denote the power $p_w(X)$ of the point $X$ w.r.t. the circle $w$ . Let $M$ be the midpoint of $[AC]$ and $T$ be the point where $w_a$ touches again $BC$ . Thus,

$C_2\in \delta_a\iff$ $p_w\left(C_2\right)=p_{w_a}\left(C_2\right)\iff$ $C_2O^2-R^2=C_2T^2\ (*)\iff$ $\left(OM^2+C_2M^2\right)-R^2=C_2T^2\iff$ $C_2M^2-C_2T^2=OC^2-OM^2\iff$

$(C_2M+C_2T)(C_2M-C_2T)=CM^2\iff$ $(AT-AM)(2\cdot C_2A-MA-s)=CM^2\iff$ $\left(s-\frac b2\right)\left(2\cdot AC_2-\frac b2-s\right)=\left(\frac b2\right)^2\iff$

$(a+c)\left[4\cdot AC_2-(a+2b+c)\right]=b^2\iff$ $\boxed{AC_2=\frac {s^2}{a+c}}$ . Prove analogously $\boxed{AB_1=\frac {s^2}{a+b}}$ . In conclusion, $\left(\frac {1}{AB_1}+\frac 1{AC_2}\right) +\left(\frac {1}{BC_1}+\frac 1{BA_2}\right) +$

$\left(\frac {1}{CA_1}+\frac 1{CB_2}\right)=$ $\sum\left(\frac {1}{AB_1}+\frac 1{AC_2}\right)=$ $\sum \left(\frac {a+b}{s^2}+\frac {a+c}{s^2}\right)=$ $\sum\frac {2a+b+c}{s^2}=\frac 8s$ .



PP16. Let $\triangle ABC$ and the circles $\left\{\begin{array}{cccc}
w_a=C\left(A,h_a\right)\ : & \{A_1, A_2\}=BC\cap w_a & ; & A_2\in (BA_1)\\\\
w_b=C\left(B,h_b\right)\ : & \{B_1, B_2\}=CA\cap w_b & ; & B_2\in (CB_1)\\\\
w_c=C\left(C,h_c\right)\ : & \{C_1, C_2\}=AB\cap w_c & ; & C_2\in (AC_1)\end{array}\right\|$ . Let $\left\{\begin{array}{c}
U\in BB_2\cap CC_1\\\\
V\in CC_2\cap AA_1\\\\
W\in AA_2\cap BB_1\end{array}\right\|$ . Prove that $AU\cap BV\cap CW\ne\emptyset$ .

Proof. Let $\left\{\begin{array}{c}
X\in AU\cap BC\\\\
Y\in BV\cap CA\\\\
W\in CW\cap AB\end{array}\right\|$ and apply the Ceva's theorem to $U$ and $\triangle ABC\ :\ \frac {XB}{XC}\cdot\frac {B_2C}{B_2A}\cdot\frac {C_1A}{C_1B}=1\iff$ $\frac {XB}{XC}\cdot\frac {b-h_a}{h_a}\cdot \frac{h_a}{c-h_a}=1$ $\iff$

$\frac {XB}{XC}=$ $\frac {c-h_a}{b-h_a}=\frac {2Rc-2Rh_a}{2Rb-2Rh_a}=$ $\frac {2Rc-bc}{2Rb-bc}\implies$ $\boxed{\frac {XB}{XC}=\frac {c(2R-b)}{b(2R-c)}}$ and analogously $\frac {YC}{YA}=\frac {a(2R-c)}{c(2R-a)}$ and

$\frac {ZA}{ZB}=\frac {b(2R-a)}{a\b(2R-b)}$ . In conclusion, $\frac {XB}{XC}\cdot\frac {YC}{TA}\cdot\frac {WA}{WB}=1\iff$ $AU\cap BV\cap CW\ne\emptyset$ . I used the relation $\boxed{2Rh_a=bc}$ .



PP17. Let $\triangle ABC$ and $\left\{\begin{array}{c}
M\in (BC)\\\\
N\in (CA)\\\\
P\in (AB)\end{array}\right\|$ for which denote $\left\{\begin{array}{c}
X\in BX\cap CP\\\\
Y\in CP\cap AM\\\\
Z\in AM\cap BN\end{array}\right\|$ . Suppose that $\left\{\begin{array}{c}
 4=[ANZ]=[BPX]=[CMY]\\\\
 20=[APXZ]=[BMYX]=[CNZY]\end{array}\right\|$ . Find the area $[XYZ]=x$ .

Proof 1. Let $[CNZ]=u$ and $[CYZ]=v$ . Thus, $u+v=20$ , $\frac {[ZAB]}{[ZAN]}=\frac {ZB}{ZN}=\frac {[ZCB]}{[ZCN]}\implies$ $\frac {24}{4}=\frac {x+v+24}{u}$ and $\frac {[ZBA]}{[ZBM]}=\frac {ZA}{ZM}=\frac {[ZCA]}{[ZCM]}\implies$

$\frac {24}{x+20}=\frac {u+4}{v+4}$ . Therefore, $\left\{\begin{array}{c}
v=20-u\\\\
x+v+24=6u\\\\
24(v+4)=(x+20)(u+4)\end{array}\right\|\iff$ $\left\{\begin{array}{c}
v=20-u\\\\
x+44=7u\\\\
24(24-u)=(x+20)(u+4)\end{array}\right\|\iff$ $\left\{\begin{array}{c}
v=20-u\\\\
x=7u-44\\\\
24(24-u)=(7u-24)(u+4)\end{array}\right\|\iff$

$\left\{\begin{array}{c}
v=20-u\\\\
x=7u-44\\\\
u^2+4u-96=0\end{array}\right\|\iff$ $\left\{\begin{array}{c}
u=8\\\\
v=12\\\\
x=12\\\\
\end{array}\right\|$ , i.e. $\boxed{[XYZ]=12}$ . Prove easily that if $[ANZ]=[BPX]=[CMY]=a$

and $[APXZ]=[BMYX]=[CNZY]=b$ , then there is the relation $\boxed{a\left(2x+4a+5b\right)^2=(2a+b)\left(10a^2+13ab+4b^2\right)}$ .

Proof 2. Observe that $\left\{\begin{array}{c}
\frac {CM}{CB}=\frac {[ACM]}{[ACB]}=\frac {28}{x+72}\\\\
\frac {PB}{PA}=\frac {[CPB]}{[CPA]}=\frac {28}{x+44}\\\\
\frac {YA}{YM}=\frac {[CYA]}{[CYM]}=\frac {24}{4}\end{array}\right\|$ . Apply the Menelaus' theorem to $\overline{CYP}$ and the triangle $ABM\ :\ \frac {CM}{CB}$ $\cdot\frac {PB}{PA}\cdot\frac {YA}{YM}=1\iff$

$\frac {28}{x+72}\cdot\frac {28}{x+44}\cdot 6=1\iff$ $(x+72)(x+44)=6\cdot 28^2\iff$ $x^2+116x-1536=0\begin{array}{ccc}
\nearrow & x_1=12 & \searrow\\\\
\searrow & x_2=-128 & \nearrow\end{array}\odot\implies$ $x=12$ , i.e. $\boxed{[XYZ]=12}$ .

Proof 3. Observe that $\left\{\begin{array}{c}
\frac {BM}{BC}=\frac {[ABM]}{[ABC]}=\frac {x+44}{x+72}\\\\
\frac {NC}{NA}=\frac {[BNC]}{[BNA]}=\frac {x+44}{28}\\\\
\frac {ZA}{ZM}=\frac {[BZA]}{[BZM]}=\frac {24}{x+20}\end{array}\right\|$ . Apply the Menelaus' theorem to $\overline{BZN}$ and $\triangle ACM\ :\ \frac {CM}{CB}$ $\cdot\frac {PB}{PA}\cdot\frac {YA}{YM}=1\iff$

$\frac {x+44}{x+72}\cdot\frac {x+44}{28}\cdot \frac {24}{x+20}=1\iff$ $6(x+44)^2=7\cdot (x+20)(x+72)\iff$ $x^2+116x-1536=0\begin{array}{ccc}
\nearrow & x_1=12 & \searrow\\\\
\searrow & x_2=-128 & \nearrow\end{array}\odot\implies$ $x=12$ , i.e. $\boxed{[XYZ]=12}$ .


Routh relation. $\left\{\begin{array}{c}
\frac {MB}{m}=\frac {MC}{1}=\frac {BC}{m+1}\\\\
\frac{NC}{n}=\frac {NA}{1}=\frac {CA}{n+1}\\\\
\frac {PA}{p}=\frac {PB}{1}=\frac {AB}{p+1}\end{array}\right\|\implies$ $\boxed{\frac {[XYZ]}{[ABC]}=\frac {(1-mnp)^2}{(1+m+mn)(1+n+np)(1+p+pm)}}$ .

Proof. Apply the Menelaus' theorem to the transversals $:\ \left\{\begin{array}{cccc}
\overline{BZN}/\triangle ACM\ : & \frac {ZA}{ZM}=\frac {BC}{BM}\cdot\frac {NA}{NC}=\frac {m+1}{mn} & \implies & \frac {ZA}{m+1}=\frac {ZM}{mn}=\frac {AM}{1+m+mn}\\\\
\overline{CXP}/\triangle BAN\ : & \frac {XB}{XN}=\frac {CA}{CN}\cdot\frac {PB}{PA}=\frac {n+1}{np} & \implies & \frac {XB}{n+1}=\frac {XN}{np}=\frac {BN}{1+n+np}\\\\
 \overline{AYM}/\triangle CBP\ : & \frac {YC}{YP}=\frac {AB}{AP}\cdot\frac {MC}{MB}=\frac {p+1}{pm} & \implies & \frac {YC}{p+1}=\frac {YP}{pm}=\frac {CP}{1+p+pm}\end{array}\right\|$ .

From the relation $[XYZ]=[ABC]-([ABM]+[BCN]+[CAP])+([CXN]+[AYP]+[BZM])$ , where

$\left\{\begin{array}{ccc}
\frac {[CXN]}{[ABC]}=\frac {[CXN]}{[CBN]}\cdot\frac {[CBN]}{[CBA]}=\frac {XN}{BN}\cdot\frac {CN}{CA} & \implies & \frac {[CXN]}{[ABC]}=\frac {np}{1+n+np}\cdot\frac {n}{n+1}\\\\
\frac {[AYP]}{[ABC]}=\frac {[AYP]}{[APC]}\cdot\frac {[APC]}{[ABC]}=\frac {PY}{PC}\cdot\frac {AP}{AB} & \implies & \frac {[AYP]}{[ABC]}=\frac {pm}{1+p+pm}\cdot\frac {p}{p+1}\\\\
\frac {[BZM]}{[ABC]}=\frac {[BZM]}{[BAM]}\cdot\frac {[BAM]}{[BAC]}=\frac {MZ}{MA}\cdot\frac {BM}{BC} & \implies & \frac {[BZM]}{[ABC]}=\frac {mn}{1+m+mn}\cdot\frac {m}{m+1}\end{array}\right\|$ obtain that $:$

$\frac{[XYZ]}{[ABC]}=1-\left(\frac{m}{m+1}+\frac {n}{n+1}+\frac {p}{p+1}\right)+$ $\left(\frac {n^2p}{(n+1)(1+n+np)}+\frac {p^2m}{(p+1)(1+p+pm)}+\frac {m^2n}{(m+1)(1+m+mn)}\right)=$

$1-\left[ \frac {m}{m+1}\left(1-\frac {mn}{1+m+mn}\right)+\frac {n}{n+1}\left(1-\frac {np}{1+n+np}+\frac {p}{p+1}\right)\left(1-\frac {pm}{1+p+pm}\right) \right]=$ $1-\left(\frac {m}{1+m+mn}+\frac n{1+n+np}+\frac p{1+p+pm}\right)=$

$\frac {\prod (1+m+mn)-\sum m(1+n+np)(1+p+pm)}{\prod (1+m+mn)}=$ $\frac {\left(1+s_1+2s_2+4s_3+\sum mn^2+2s_1s_3+s_2s_3+s_3^2\right)-\left(s_1+2s_2+\sum m^2p+6s_3+2s_1s_3+s_2s_3\right)}{\prod (1+m+mn)}=$

$\frac {1-2s_3+s_3^2}{\prod (1+m+mn)}=$ $\frac {\left(1-s_3\right)^2}{\prod (1+m+mn)}\implies$ $\frac {[XYZ]}{[ABC]}=\frac {(1-mnp)^2}{(1+m+mn)(1+n+np)(1+p+pm)}$ , where $\left\{\begin{array}{ccc}
s_1 & = & m+n+p\\\\
s_2 & = & mn+np+pm\\\\
s_3 & = & mnp\end{array}\right\|$ .
This post has been edited 312 times. Last edited by Virgil Nicula, Feb 11, 2018, 3:14 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a