385. Some nice geometry problems.
by Virgil Nicula, Aug 17, 2013, 2:27 AM
PP1. Let
be an interior point of
for which let
. For
and
construct
. Prove that
, where
is the area of
.
Remarks.
IF
is the centroid of
, THEN there is the equivalence 
IF
is the incenter of
, THEN there is the equivalence 
IF
is orthocenter of
, THEN there is the equivalence
. (Juan Felipe Crisostomo Ramos).
Proof. Let
and
. Apply the Ceva's theorem to 
. Apply the Menelaus' theorem to
.
In conclusion,

because
.
IF
, THEN
, where
and
.
Remark. The relation
is equivalently with
.If
belongs to the
-bisector, then previous relation becomes
.
PP2 (Julio Orihuela Bastidas). Let
with the circumcircle
, the incircle
and the
-excircle
.
Let the Euler's lines
,
of the triangles
,
respectively and
,
. Prove that
.
Proof. Let the midpoint
of
and
. Is well-known that
is the midpoint of
and
is inscribed in the circle with the diameter
. Thus,
is the common circumcenter for
and
. Let the centroid
of
, i.e.
and
. Let the centroid
of
, i.e.
and
. Therefore,
and
. Apply the Menelaus' theorem to the transversals: 
.
PP3. Let
with incenter
,
,
so that
. Know the value of
and
. Find
.
Proof. Let
and
. Thus,
and
. Since
and using an well-known property
obtain 
, where
. Thus,
.Apply the generalized Pythagoras' theorem in 
.
Particular case. IF
, THEN
(Miguel Ochoa Sanchez).
PP4. Let
with
-bisector
, where
. For
(ray) let
. Prove that
.
Proof. Denote
and
. Observe that
. Apply the Ceva's theorem to

. Therefore,

.
PP5. Let
with midpoint
of
, midpoint
of
and
. Show
is tangent to circuncircle of
.
Proof (without the Menelaus' theorem). Let the middlepoint
of
. Thus,
and
. In conclusion,
is tangent to the
circumcircle of

PP6. Let
be the orthocenter of an acute
. The circle centered at the midpoint of
and passing through
intersects
at
,
. Similarly define the pairs
,
and
,
. Prove that
,
,
,
,
,
are concyclically.
Proof. Let the midpoints
,
,
of
,
,
respectively. Prove easily
.
Thus,

because prove easily
(remark that
a.s.o.). Thus,
(symmetrically in
,
,
).
Thus,
.
PP7. Let
with circumcircle
and the symmedian point
. For
let
. Prove that
(segments are orientated).
Proof. Let
- the distance of
to
. Thus,

because is well-known that
. The relation
is barycentric orientated. (see PP16 from here).
Generalization. Let
with circumcircle
and let
with barycentric coordinates
w.r.t.
. Let isogonal conjugate 
of
w.r.t.
and
. The line
cuts
,
,
at
,
,
respectively. Prove that
.
PP8. Let
with the incenter
. Let
and suppose that
. Prove that
.
Proof. Let
and apply theorem of Sines in

. The function
on
is strict decreasing and 
, i.e. 
Lemma. Let a quadrilateral
which is inscribed in the circle
and
. Prove that
, where
is the power of
w.r.t.
.
Proof 1. Let
. Thus
and


,
what is truly because
.
Proof 2. Let
and
. I"ll use the relations
. Thus,
. Apply the generalized Pythagoras' theorem to
of 

. Thus,
![$adef\cdot\left[\frac {ab}{(de-bf)^2}+\frac {cd}{(ae-cf)^2}\right]=$](//latex.artofproblemsolving.com/5/3/7/537f0b6698760a66f21769d5310362ca71a62810.png)
![$ade\left[(ae-cf)^2+(de-bf)^2\right]-$](//latex.artofproblemsolving.com/3/d/4/3d47a89d774a1bdb82cdd7554918994454f6a45c.png)


(Ptolemy's theorem), what is true.
PP9 (Edson Curahua). Let
with the centroid
. Prove that
.
Proof 1 (Josue Garcia Piscoya). Let
, where
is the Lemoine's point of
. Prove easily that
is cyclically (with the circumcircle
) and
. Thus,
. Apply upper lemma to the cyclic
and get 
.
Proof 2. I"ll use the well-known relation in any
. Prove easily that
. Thus,


.
Proof 3. Let the midpoints
,
of
,
respectively and
. Thus 
. Thus,
. Observe
that
. Thus,
.
From
obtain that


.
PP10 (Josue Garcia Piscoya). Let
with
so that
and
. Let
and
. Prove that
.
Proof 1. Prove easily that
and
. The circumradii of
,
,
and
have same length
.
Thus,
and
. Hence
.
Proof 2. Prove easily that
. The circumradii of
,
,
and
have same length
.
I"ll use the identities
in any
, where
is the length of circumradius. Prove easily
. Thus,
and

.
Remark.



.
PP11 (Miguel Ochoa Sanchez). Let
with the orthocenter
. Let the midpoint
of
and
so that
. Prove that
.
Proof 1. Let
,
,
be altitudes of
, where
,
,
. Let
. Is wellknown
, i.e.
and
is cyclic ;
the division
is harmonically and
. Since
is cyclically obtain that
. Thus,
.
Proof 2. I"ll use same notations from upper proof. Thus,
is cyclically 
.
PP12 (Miguel Ochoa Sanchez). Let a parallelogram
and let
so that
. Prove that
.
Proof.
and
, where ![$\left\{\begin{array}{ccc}
\sigma=[MAN] & ; & \sigma_1=[CBN]\\\\
\sigma_2=[CNM] & ; & \sigma _3=[CMD]\end{array}\right\|\implies$](//latex.artofproblemsolving.com/d/7/e/d7e44709c7af7c5e402ac0571bb4f9c7100229ca.png)
, where
. Thus,

.
An easy extension (Virgil Nicula). Let
be a parallelogram with
.
Prove that
.
PP13. Let a parallelogram
with
and
so that
. Suppose that
. Find the ratio
.
Proof. Let
. I"ll use Euler's relation
. So

. Thus,

.
Lemma. Prove
there are
and
.
Proof 1 (Ruben Dario). Let an equilateral
with
and
so that
and Stewart's 

Otherwise. Apply the Pythagoras theorem
.
The circumcircle of
meet again
in
. Then
and
.
Otherwise. Let
. Let
. Then
. Thus, 
.

.
Let
and
. Apply the theorem ofSines in
,
where
. In conclusion,
.
Proof 2.
.



.
PP14. Let an equilateral
with
and centroid
. For
let
. Find the sum
.
Proof. Let the midpoints
,
and
of the sides
,
and
respectively and
. Suppose w.l.o.g.
and
. Thus,
and
. Thus,
, where
. In conclusion, 
, Using the upper lemma obtain that

PP15. Let
with the circumcircle
and the
-excircle
a.s.o. Let the radical axes
,
,
between
and
-excircle,
-excircle and
-excircle
respectively and
. Prove that
, where
.
Proof. Denote the power
of the point
w.r.t. the circle
. Let
be the midpoint of
and
be the point where
touches again
. Thus,


. Prove analogously
. In conclusion, 
.
PP16. Let
and the circles
. Let
. Prove that
.
Proof. Let
and apply the Ceva's theorem to
and

and analogously
and
. In conclusion,
. I used the relation
.
PP17. Let
and
for which denote
. Suppose that
. Find the area
.
Proof 1. Let
and
. Thus,
,
and ![$\frac {[ZBA]}{[ZBM]}=\frac {ZA}{ZM}=\frac {[ZCA]}{[ZCM]}\implies$](//latex.artofproblemsolving.com/4/3/0/43002165f80147ce30a290b057b7a20425ca7df1.png)
. Therefore,

, i.e.
. Prove easily that if ![$[ANZ]=[BPX]=[CMY]=a$](//latex.artofproblemsolving.com/d/c/e/dce14b591dc7a5a8ed3194a0bf2334681aabc999.png)
and
, then there is the relation
.
Proof 2. Observe that
. Apply the Menelaus' theorem to
and the triangle

, i.e.
.
Proof 3. Observe that
. Apply the Menelaus' theorem to
and

, i.e.
.
Routh relation.
.
Proof. Apply the Menelaus' theorem to the transversals
.
From the relation
, where
obtain that 



, where
.






![$\boxed{L\in BP\iff \frac {FA}{FE}\cdot [CME]=\frac {GC}{GD}\cdot [AMD]}$](http://latex.artofproblemsolving.com/3/a/5/3a5dd48aa8b81e0b843661c0f84909165dc1ba99.png)
![$[XYZ]$](http://latex.artofproblemsolving.com/c/7/6/c7608a3e97e44fc5bcf0cd62a1f7dfc0a0a2e7d4.png)

Remarks.












Proof. Let





In conclusion,






![$\frac {FA}{FE}\cdot\frac {2[CME]}{a\cdot\sin C}=\frac {GC}{GD}\cdot\frac {2[AMD]}{c\cdot\sin A}\iff$](http://latex.artofproblemsolving.com/6/b/a/6ba6bfb1739426f677dcda30332dbb942db1a386.png)
![$\frac {FA}{FE}\cdot [CME]=\frac {GC}{GD}\cdot [AMD]$](http://latex.artofproblemsolving.com/f/2/1/f2170120e387fec913d23a4312ad2a9f361ebe95.png)

IF

![$\left\{\begin{array}{ccc}
2[CME]=CM\cdot CE\cdot\sin C=a\cos C\cdot b\cos C\cdot\sin C=2S\cdot \cos^2C\\\\
2[AMD]=AM\cdot AD\cdot\sin A=c\cos A\cdot b\cos A\cdot\sin A=2S\cdot \cos^2A\end{array}\right\|$](http://latex.artofproblemsolving.com/d/f/4/df45da5ba528508b77df839bd2ab9d75e2e7225b.png)
![$S=[ABC]$](http://latex.artofproblemsolving.com/b/3/a/b3ae3d445111e4dd28be75922309d3270079368c.png)

Remark. The relation





PP2 (Julio Orihuela Bastidas). Let





Let the Euler's lines







Proof. Let the midpoint

![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)


![$[II_a]$](http://latex.artofproblemsolving.com/b/9/d/b9d69f173ce4bad72631095440791204d2b021e3.png)

![$[II_a]$](http://latex.artofproblemsolving.com/b/9/d/b9d69f173ce4bad72631095440791204d2b021e3.png)
















PP3. Let








Proof. Let
















Particular case. IF


PP4. Let










Proof. Denote
















PP5. Let


![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)

![$[AD]$](http://latex.artofproblemsolving.com/0/f/3/0f3e4c424371b27673db323ced8ef0777940c0d4.png)




Proof (without the Menelaus' theorem). Let the middlepoint

![$[CN]$](http://latex.artofproblemsolving.com/d/a/0/da05dfbdd7a61ec126c10a0ee42ccc478d91ae93.png)



circumcircle of










PP6. Let

















Proof. Let the midpoints



![$ [BC]$](http://latex.artofproblemsolving.com/3/5/5/3550468aa97af843ef34b8868728963dec043efe.png)
![$ [CA]$](http://latex.artofproblemsolving.com/b/8/3/b8309224981a62a2c0df087562b92830bd7ad7b0.png)
![$ [AB]$](http://latex.artofproblemsolving.com/d/7/a/d7a8027c238eec9cf67de0f7ec6cb1df4df49a61.png)

Thus,















Thus,

PP7. Let






Proof. Let











Generalization. Let






of











PP8. Let





Proof. Let













Lemma. Let a quadrilateral







Proof 1. Let













what is truly because

Proof 2. Let




![$\boxed{p_w(E)+p_w(F)=adef\cdot\left[\frac {ab}{(de-bf)^2}+\frac {cd}{(ae-cf)^2}\right]}\ (1)$](http://latex.artofproblemsolving.com/0/e/7/0e7f911efdbedcdadc02d9ac814a228678330b3b.png)
![$[EF]$](http://latex.artofproblemsolving.com/7/6/3/763239c0ce4fccc63411d3d6cb0011f7f6cc3a31.png)




![$\boxed{EF^2=ade\cdot\frac {ade\left[(ae-cf)^2+(de-bf)^2\right]-e(de-bf)(ae-cf)\left(a^2+d^2-f^2\right)}{(de-bf)^2(ae-cf)^2}}\ (2)$](http://latex.artofproblemsolving.com/b/d/a/bda22dcc18a4d88b619e0a49f08715db7ee57b26.png)

![$adef\cdot\left[\frac {ab}{(de-bf)^2}+\frac {cd}{(ae-cf)^2}\right]=$](http://latex.artofproblemsolving.com/5/3/7/537f0b6698760a66f21769d5310362ca71a62810.png)
![$ade\cdot\frac {ade\left[(ae-cf)^2+(de-bf)^2\right]-e(de-bf)(ae-cf)\left(a^2+d^2-f^2\right)}{(de-bf)^2(ae-cf)^2}\iff$](http://latex.artofproblemsolving.com/9/2/e/92e7fcdad7f878eafd37a25be803a3a4d1d6e91a.png)
![$f\left[ab(ae-cf)^2+cd(de-bf)^2\right]=$](http://latex.artofproblemsolving.com/5/b/c/5bcacb769a48e82d0ece1db179586a0b86a05d16.png)
![$ade\left[(ae-cf)^2+(de-bf)^2\right]-$](http://latex.artofproblemsolving.com/3/d/4/3d47a89d774a1bdb82cdd7554918994454f6a45c.png)

![$f\left[ab(ae-cf)^2+cd(de-bf)^2\right]-$](http://latex.artofproblemsolving.com/2/5/4/254ebc1ce4685632203b7100596121233bcbc6a6.png)
![$ade\left[(ae-cf)^2+(de-bf)^2\right]+$](http://latex.artofproblemsolving.com/3/2/9/329d0d42f3cab3dcb8a523511474565b5f7b814c.png)







PP9 (Edson Curahua). Let



Proof 1 (Josue Garcia Piscoya). Let













Proof 2. I"ll use the well-known relation in any


![$3[AGB]=[ACB]\iff$](http://latex.artofproblemsolving.com/6/3/6/636ffc09d4ca61209ed1568781dc3202fd6fe370.png)











Proof 3. Let the midpoints


![$[CB]$](http://latex.artofproblemsolving.com/f/0/a/f0a45a13c6123c357e7ffe7d05e50e68ad7d157a.png)
![$[CA]$](http://latex.artofproblemsolving.com/4/5/c/45c1acd47628de406680d04c09fe6314c3847acf.png)




that



From












PP10 (Josue Garcia Piscoya). Let







Proof 1. Prove easily that







Thus,

![$BC=A'B+A'C=2r[\sin (A+x)+\sin (A-x)]\iff$](http://latex.artofproblemsolving.com/4/e/4/4e4d12ff1de2f320bc685381e84d159661862062.png)


Proof 2. Prove easily that






I"ll use the identities





![$[ABC]=[A'B'C']+\sum[AB'C']\iff$](http://latex.artofproblemsolving.com/8/8/0/880a3484a7df372819e75c27a7ed8c951c928b60.png)







![$2\sum\sin A[\cos (B-C-2x)+\cos A]=$](http://latex.artofproblemsolving.com/9/e/5/9e55c5eebe1ec127d57fbbb8fdab2664aaa076f5.png)

![$\sum\sin 2A+\sum 2\sin (B+C)[\cos (B-C)\cos 2x+\sin (B-C)\sin 2x]=$](http://latex.artofproblemsolving.com/7/8/0/7808933b36f901a20beb5c313fd540dc780095dc.png)






PP11 (Miguel Ochoa Sanchez). Let



![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)



Proof 1. Let











the division






Proof 2. I"ll use same notations from upper proof. Thus,







PP12 (Miguel Ochoa Sanchez). Let a parallelogram


![$[CBN]=[CNM]=[CMD]=1$](http://latex.artofproblemsolving.com/8/5/5/855e0228b36cc802132dc205b78f95e3b4bc7ea7.png)
![$[MAN]=\sqrt 5-2$](http://latex.artofproblemsolving.com/8/b/d/8bd30b9ec66699377cc5604fb78e110a88004ca3.png)
Proof.

![$S=[ABCD]=\sigma +\sum_{k=1}^3\sigma_k$](http://latex.artofproblemsolving.com/a/6/8/a68808a416eee70f7e511c7984f6f7600e672187.png)
![$\left\{\begin{array}{ccc}
\sigma=[MAN] & ; & \sigma_1=[CBN]\\\\
\sigma_2=[CNM] & ; & \sigma _3=[CMD]\end{array}\right\|\implies$](http://latex.artofproblemsolving.com/d/7/e/d7e44709c7af7c5e402ac0571bb4f9c7100229ca.png)

![$\frac {S-\left(\sigma +\sigma_1+\sigma_3\right)}{2(x+y)(u+v)-\left[xu+v(x+y)+y(u+v)\right]}=$](http://latex.artofproblemsolving.com/4/7/b/47b238ee94081d93bccd76a653010bf11f459527.png)









An easy extension (Virgil Nicula). Let


Prove that
![$\ \ \boxed{[CBN]=x\ ,\ [CNM]=y\ ,\ [CMD]=z\ \implies\ [MAN]=-(x+z)+\sqrt {y^2+4xz}}$](http://latex.artofproblemsolving.com/1/8/8/188a724c250837052a186707eb181dda38586608.png)
PP13. Let a parallelogram






Proof. Let















Lemma. Prove



Proof 1 (Ruben Dario). Let an equilateral










Otherwise. Apply the Pythagoras theorem










Otherwise. Let




![$4R^2\left[\sin^2 \left(60^{\circ}+x\right)+\sin^2 x+\sin ^2\left(60^{\circ}-x\right)\right]=6R^2\iff$](http://latex.artofproblemsolving.com/1/2/c/12cd310ef22be76bf2c30a599b652f2e615e9f54.png)








Let



where





Proof 2.
![$2g(x)=\left(1-\cos 2x\right)+\left[1-\cos\left (120^{\circ}+2x\right)\right]+\left[1-\cos\left (120^{\circ}-2x\right)\right]\iff$](http://latex.artofproblemsolving.com/9/7/8/9786f5d286ec3bebd5e3c200b45fdc2a50433a0f.png)



![$4f(x)=(1-\cos 2x)^2+\left[1+\cos\left (60^{\circ}-2x\right)\right]^2+\left[1+\cos\left (60^{\circ}+2x\right)\right]^2\iff$](http://latex.artofproblemsolving.com/d/e/7/de7770cae1e52942041c09d044a9a16f3a5422eb.png)

![$\left[1+\sin\left (30^{\circ}+2x\right)\right]^2+$](http://latex.artofproblemsolving.com/3/0/8/30885d49177320a080637ced766df77aedce36b2.png)
![$\left[1+\sin\left (30^{\circ}-2x\right)\right]^2\iff$](http://latex.artofproblemsolving.com/a/d/6/ad67702815277769ae73450751af71a07b56a12a.png)
![$4f(x)=3+2\left[\sin\left (30^{\circ}+2x\right)+\sin\left (30^{\circ}-2x \right)-\cos 2x\right]+$](http://latex.artofproblemsolving.com/7/d/d/7dded520f246344739169ef107b44d756f55633c.png)

![$4f(x)=3+2\left[2\sin 30^{\circ}\cos 2x-\cos 2x\right]+$](http://latex.artofproblemsolving.com/8/5/9/859c4834fc55d93ba400ac11161b900ec2772d14.png)






PP14. Let an equilateral






Proof. Let the midpoints



![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)
![$[CA]$](http://latex.artofproblemsolving.com/4/5/c/45c1acd47628de406680d04c09fe6314c3847acf.png)
![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)








![$k^4\left[\sin ^4x+\cos^4\left (30^{\circ}-x\right)+\cos^4\left (30^{\circ}+x\right)\right]$](http://latex.artofproblemsolving.com/f/f/1/ff1b453c3976471518c456f8a48b4c84f2bc7c08.png)


PP15. Let











respectively and



Proof. Denote the power




![$[AC]$](http://latex.artofproblemsolving.com/0/9/3/0936990e6625d65357ca51006c08c9fe3e04ba0c.png)











![$(a+c)\left[4\cdot AC_2-(a+2b+c)\right]=b^2\iff$](http://latex.artofproblemsolving.com/9/3/b/93b684faca9e2af84e5ef65c565159356c5eb1bb.png)







PP16. Let




Proof. Let














PP17. Let



![$\left\{\begin{array}{c}
4=[ANZ]=[BPX]=[CMY]\\\\
20=[APXZ]=[BMYX]=[CNZY]\end{array}\right\|$](http://latex.artofproblemsolving.com/a/2/4/a248e63891cdc0e3cd0ba201848fcd87ce2272a2.png)
![$[XYZ]=x$](http://latex.artofproblemsolving.com/c/2/2/c22dcf3af98ea6798d1b96012c8083709632e9f1.png)
Proof 1. Let
![$[CNZ]=u$](http://latex.artofproblemsolving.com/a/7/4/a74c74b8b0cb0ccd56cf010bbfd24f3e745d9348.png)
![$[CYZ]=v$](http://latex.artofproblemsolving.com/b/2/1/b21c407f14dd402f7c98f431710b11cb8bf8aa9b.png)

![$\frac {[ZAB]}{[ZAN]}=\frac {ZB}{ZN}=\frac {[ZCB]}{[ZCN]}\implies$](http://latex.artofproblemsolving.com/b/e/5/be509e37b969b10e26537b35dc56ba8773d3a94a.png)

![$\frac {[ZBA]}{[ZBM]}=\frac {ZA}{ZM}=\frac {[ZCA]}{[ZCM]}\implies$](http://latex.artofproblemsolving.com/4/3/0/43002165f80147ce30a290b057b7a20425ca7df1.png)






![$\boxed{[XYZ]=12}$](http://latex.artofproblemsolving.com/d/2/f/d2f6d8dad734a9e0fd525686857edd6bfee8ee4f.png)
![$[ANZ]=[BPX]=[CMY]=a$](http://latex.artofproblemsolving.com/d/c/e/dce14b591dc7a5a8ed3194a0bf2334681aabc999.png)
and
![$[APXZ]=[BMYX]=[CNZY]=b$](http://latex.artofproblemsolving.com/0/9/4/094da75e469b5570ccf08931f5be51d362647597.png)

Proof 2. Observe that
![$\left\{\begin{array}{c}
\frac {CM}{CB}=\frac {[ACM]}{[ACB]}=\frac {28}{x+72}\\\\
\frac {PB}{PA}=\frac {[CPB]}{[CPA]}=\frac {28}{x+44}\\\\
\frac {YA}{YM}=\frac {[CYA]}{[CYM]}=\frac {24}{4}\end{array}\right\|$](http://latex.artofproblemsolving.com/8/7/b/87b65c855a0a4cca1ec7892b2e3871d9b8b89e3e.png)







![$\boxed{[XYZ]=12}$](http://latex.artofproblemsolving.com/d/2/f/d2f6d8dad734a9e0fd525686857edd6bfee8ee4f.png)
Proof 3. Observe that
![$\left\{\begin{array}{c}
\frac {BM}{BC}=\frac {[ABM]}{[ABC]}=\frac {x+44}{x+72}\\\\
\frac {NC}{NA}=\frac {[BNC]}{[BNA]}=\frac {x+44}{28}\\\\
\frac {ZA}{ZM}=\frac {[BZA]}{[BZM]}=\frac {24}{x+20}\end{array}\right\|$](http://latex.artofproblemsolving.com/1/5/b/15b3429044b689c30e1656de76b6dd69b92d6b5f.png)







![$\boxed{[XYZ]=12}$](http://latex.artofproblemsolving.com/d/2/f/d2f6d8dad734a9e0fd525686857edd6bfee8ee4f.png)
Routh relation.

![$\boxed{\frac {[XYZ]}{[ABC]}=\frac {(1-mnp)^2}{(1+m+mn)(1+n+np)(1+p+pm)}}$](http://latex.artofproblemsolving.com/1/4/a/14afa02b904e69d0fc59339f7e16efc1fc32cb3f.png)
Proof. Apply the Menelaus' theorem to the transversals

From the relation
![$[XYZ]=[ABC]-([ABM]+[BCN]+[CAP])+([CXN]+[AYP]+[BZM])$](http://latex.artofproblemsolving.com/a/c/e/ace5b435e603e90cc490a4fd62c42f5bb9f2e973.png)
![$\left\{\begin{array}{ccc}
\frac {[CXN]}{[ABC]}=\frac {[CXN]}{[CBN]}\cdot\frac {[CBN]}{[CBA]}=\frac {XN}{BN}\cdot\frac {CN}{CA} & \implies & \frac {[CXN]}{[ABC]}=\frac {np}{1+n+np}\cdot\frac {n}{n+1}\\\\
\frac {[AYP]}{[ABC]}=\frac {[AYP]}{[APC]}\cdot\frac {[APC]}{[ABC]}=\frac {PY}{PC}\cdot\frac {AP}{AB} & \implies & \frac {[AYP]}{[ABC]}=\frac {pm}{1+p+pm}\cdot\frac {p}{p+1}\\\\
\frac {[BZM]}{[ABC]}=\frac {[BZM]}{[BAM]}\cdot\frac {[BAM]}{[BAC]}=\frac {MZ}{MA}\cdot\frac {BM}{BC} & \implies & \frac {[BZM]}{[ABC]}=\frac {mn}{1+m+mn}\cdot\frac {m}{m+1}\end{array}\right\|$](http://latex.artofproblemsolving.com/6/2/1/621e35796b36e318ce86f7486f840dbfe7762ddb.png)

![$\frac{[XYZ]}{[ABC]}=1-\left(\frac{m}{m+1}+\frac {n}{n+1}+\frac {p}{p+1}\right)+$](http://latex.artofproblemsolving.com/e/a/8/ea82b761835e5aef8d911ac867ab5223f17737b9.png)

![$1-\left[ \frac {m}{m+1}\left(1-\frac {mn}{1+m+mn}\right)+\frac {n}{n+1}\left(1-\frac {np}{1+n+np}+\frac {p}{p+1}\right)\left(1-\frac {pm}{1+p+pm}\right) \right]=$](http://latex.artofproblemsolving.com/0/2/5/0254309930ae1ed482d5417a1e1624cd2c9ace55.png)





![$\frac {[XYZ]}{[ABC]}=\frac {(1-mnp)^2}{(1+m+mn)(1+n+np)(1+p+pm)}$](http://latex.artofproblemsolving.com/6/5/5/6552ed686c01c2085d1b44f0a3c0f047800b23ed.png)

This post has been edited 312 times. Last edited by Virgil Nicula, Feb 11, 2018, 3:14 PM