400. Some nice geometry problems for the high school I.

by Virgil Nicula, Oct 29, 2014, 11:14 AM

PP8. Let $\triangle ABC$ and for $P$ let its projections $D\ ,\ E\ ,\ F$ on $BC\ ,\ CA\ ,\ AB$ respectively, $R\in EF\cap BC$ . Circumcircle of $\triangle DEF$ cut again $BC$ in $M$ . Prove that $RP\perp AM$

Particular cases..

$\blacktriangleright\ P:=H$ - the orthocenter of $\triangle ABC$ . In this case $M$ is the midpoint of the side $[BC]\implies RH\perp AM$ .

$\blacktriangleright\ P:=I$ - the incenter of $\triangle ABC$ . In this case $M$ is the point $D\implies RI\perp AD$ .


Proof 1. Denote the circumcircles $w\ ,\ w_1\ ,\ w_2$ of $\triangle DEF\ ,\ \triangle AEF\ ,\ \triangle PMD$ respectively. Denote $\{P,Q\}=w_1\cap w_2$ . Observe that $EF=w\cap w_1$ and

$BC=w\cap w_2$ . In conclusion, the point $R$ is the radical center of the circles $\left\{w,w_1,w_2\right\}\implies R\in PQ$ . Since $[AP]$ is the diameter of $w_1$ obtain that $RA\perp AM$ .


Proof 2. Denote the arrow $s_a$ of the arc $\overarc{BC}$ for which $A\not\in \overarc{BC}$ a.s.o. Define analogously $s_b$ and $s_c$ . I"ll use the well-known identities $\left\{\begin{array}{ccc}
r_a-r=2s_a & ; & s(r_a-r)=ar_a\\\\
r_b-r=2s_b & ; & s(r_b-r)=br_b\\\\
r_c-r=2s_c & ; & s(r_c-r)=cr_c\end{array}\right\|$ .


PP9. Let $\triangle ABC$ with incircle $w=(I)$ . Let $D\in BC\cap w$ , the Gergonne point $\Gamma$ and the Nagel point $N$ . Prove that $\boxed{\widehat{ID\Gamma}\equiv \widehat{ID\mathrm N}\iff\frac {a}{b+c}=\frac{s-a}{s}}=\tan\frac {\pi}{8}$ .

Proof 1. Suppose w.l.o.g. that $b>c$ and denote : the orthocenter $H\ ;\ S\in BC\cap AH\ ;\ X\in AN\cap w\ ;\ L\in AN\cap BC$ and $K\in BC$ for which $NK\perp BC$ .

Show easily that $\frac {SD}{s-a}=\frac {KL}{s-a}=\frac {DK}{2a-s}=$ $\frac {b-c}{a}$ and $NK=\frac {h_a(s-a)}{s}$ . Therefore, $\widehat{ID\Gamma}\equiv \widehat{ID\mathrm N}\iff$ $\widehat{XDA}\equiv \widehat{XD\mathrm N}\iff$ $\tan\widehat{XDA}=\tan\widehat{XDN}\iff$

$\frac {SD}{SA}=\frac {KD}{KN}\iff$ $\frac {(b-c)(s-a)}{ah_a}=$ $\frac {(b-c)(2a-s)}{a}\cdot\frac {s}{h_a(s-a)}\iff$ $(s-a)^2=s(2a-s)\iff$ $\left[(b+c)-a\right]^2=\left[a+(b+c)\right]\left[3a-(b+c)\right]\iff$

$a^2+2a(b+c)-(b+c)^2=0\iff$ $\boxed{\frac {a}{b+c}=\sqrt 2-1}$ .

Proof 2. Suppose w.l.o.g. that $b>c$ . Is well-known that $X\in \overline{ANL}$ . Show easily that $LS=\frac {s(b-c)}{a}$ . Thus $\left\|\begin{array}{c}
\widehat{XDA}\equiv\widehat {XDN}\\\\
DX\perp DL\end{array}\right\|\iff$

the division $(A,N;X,L)$ is harmonically $\iff$ the division $(S,K;D,L)$ is harmonically $\iff\frac {DS}{DK}=\frac {LS}{LK}\iff$ $DS^2=DK\cdot LS\iff$

$(b-c)^2(s-a)^2=(2s-a)(b-c)^2s\iff$ $(s-a)^2=s(2s-a)\iff\ \ldots\ \iff$ $\frac {a}{b+c}=\sqrt 2-1$ .



PP10. Let an acute $\triangle ABC$ with incircle $ C(I,r)$ and circumcircle $ C(O,R)$ . Let $ D\in BC$ for which $ AD\perp BC\ ,\ AD=h_a$ . Prove that $ \boxed {DI^2 = (2R - h_a)(h_a - 2r)}$

Proof. $(\forall )\ X\ ,\ \sum aXA^2=2sXI^2+abc\implies$ $\sum aDA^2=2sDI^2+abc$ . Thus, $ \underline{2s\cdot DI}^2=ah_a^2+b\cdot\left(c^2-h_a^2\right)+c\left(b^2-h_a^2\right)-abc$ $ =2(s-a)bc-2(s-a)h_a^2=$

$2(s-a)\left(2Rh_a-h_a^2\right)=$ $ \left(2sh_a-2ah_a\right)\left(2R-h_a\right)=$ $ \left(2sh_a-4sr\right)\left(2R-h_a\right)$ $ =\underline{2s\left(h_a-2r\right)\left(2R-h_a\right)}$ . In conclusion, $ DI^2 = (2R - h_a)(h_a - 2r)$ .

Extension. Let an acute $\triangle ABC$ with incircle $ w = C(I,r)$ and circumcircle $ C(O,R)$ . Let $ D\in BC$ so that $ AD\perp BC$ , $ X\in (AD)$ and $ AD = h_a$ , $ AX = x$ .

Prove that $ \boxed {XI^2 = (2R - x)(h_a - 2r) - x(h_a - x)}$ . Particular cases. $ \left\|\begin{array}{c} x = R\implies IX^2 = R(R - 2r)\implies IX = IO \\
 \\
x = 0\implies IA^2 = 2R(h_a - r)\implies IA^2 = \frac {bc(s - a)}{s}\end{array}\right\|$

what are evidently. Thus we verified the upper identity ! Also we can find easily the points $ \{X,Y\}\subset (AD)$ for which $ IX = IY = r$ , i.e. $ AD\cap w$ .


Proof. Denote $ P\in AD$ for which $ IP\perp AD$ . Apply the generalized Pytagoras' relation in $ \triangle AIX$ : $ XI^2 = AX^2 + AI^2 - 2\cdot AX\cdot AP= x^2 + \frac {bc(s - a)}{s} - 2x(h_a - r)= $

$sx^2 + bc(s - a) - xh_a(b + c)$ $ \implies$ $ s\cdot XI^2 = sx^2 - xh_a(b + c) + bc(s - a) - (s - a)h^2_a + (s - a)h^2_a =$ $ sx^2 - xh_a(b + c) + (s - a)h^2_a + (s - a)\left(bc - h^2_a\right) =$

$ sx^2 - xh_a(b + c) + (s - a)h^2_a + h_a(s - a)\left(2R - h_a\right) =$ $ \left[sx - (s - a)h_a\right]\left(x - h_a\right) + h_a(s - a)\left(2R - h_a\right) =$ $h_a(s - a)\left(2R - h_a\right) + sx\left(x - h_a\right)$

$- h_a(s - a)\left(x - h_a\right) =$ $ h_a(s - a)(2R - x) - sx\left(h_a - x\right)$. Since $ h_a(s - a) = sh_a - ah_a = sh_a - 2sr = s\left(h_a - 2r\right)$ obtain $ XI^2 = (2R - x)(h_a - 2r) - x(h_a - x)$ .



PP11. Let an $A$-right $\triangle ABC$ . Let the midpoint $ M$ of $ [AC]$ and $ D\in BC$ for which $ AD\perp BC$ . Let $E\in w_a\cap AC$ and $F\in w_b\cap AC$ . Let $ G$ be

the second intersection between $ DF$ and the circle with the diameter $ [AC]$ . Prove that $ DMGE$ is cyclic and $ C$ is incenter of the triangle $ DGE$ .

Another similar problem. Let an $A$-right $\triangle ABC$ . Denote the midpoint $ M$ of $ [AB]$ and $ D\in BC$ for which $ AD\perp BC$ . The incircle and the $ B$-exincircle touch the sideline $ AB$ in $ F$ , $ E$

respectively. Let $ G$ be the second intersection between $ DF$ and the circle with the diameter $ [AB]$ . Prove that the quadrilateral $ DMGE$ is cyclically and $ A$ is incenter of the triangle $ DGE$ .


Remark. Observe that $ (B,F,A,E)$ is a harmonical division because $ \frac {FA}{FB}=\frac {EA}{EB}\Longleftrightarrow$ $ \frac {p-a}{p-b}=\frac {p-c}{p}\ \Longleftrightarrow\ p(p-a)=(p-b)(p-c)\ \Longleftrightarrow\ \tan\frac A2=1\ \Longleftrightarrow$

$A=90^{\circ}$ . The proof is simply, is a particular application of the harmonical division. For example, $ FM\cdot FE=FA\cdot FB$ a.s.o. It is analogously and at the previous problem !



PP12. Let an acute $\triangle ABC$ with incircle $ \omega = C(I,r)$ and circumcircle $ \rho = C(O,R)$. Circles $ C_{1}= C(P,r_{1})$ and $ C_{2}= (Q,r_{2})$ are tangent internally to the circle $ \rho$ in the

same $ A$ . The circle $ w$ is tangent externally to $ C_{1}$ and is tangent internally to $ C_{2}$. Prove that $ \boxed{PQ =\frac{a^{2}(p-a)}{4S}}$, where $ 2p = a+b+c$ and $ S\equiv [ABC]$- the area of $ \triangle ABC$.


Proof. Prove easily that $ \left\{\begin{array}{ccc}
IP = r+r_{1} & , & IQ = r_{2}-r\\\\
PO = R-r_{1} & , & PA = r_{1}\\\\
QO = R-r_{2}& , & QA = r_{2}\\\\
OA = R & , &\boxed{PQ = r_{2}-r_{1}}\end{array}\right\|$. The relations $ \left\{\begin{array}{ccc}IO^{2}= R(R-2r) & , & IA^{2}=\frac{bc(p-a)}{p}=\frac{4Rr(p-a)}{a}\\ \\ IA^{2}-r^{2}= (p-a)^{2}& , & IA^{2}+4Rr = bc\\ \\ p(p-a)+(p-b)(p-c) = bc.\end{array}\right\|$ are well-known.

Proof 1. Denote $ IO = m$, $ IA = n$. Apply the Stewart's theorem in $ \triangle OIA$ for the cevian-rays $ [IP$ and $ [IQ\ :$

$\left\{\begin{array}{c}m^{2}r_{1}^{2}+n^{2}(R-r_{1}) = R(r+r_{1})^{2}+Rr_{1}(R-r_{1})\\ \\ m^{2}r_{2}+n^{2}(R-r_{2}) = R(r_{2}-r)^{2}+Rr_{2}(R-r_{2})\end{array}\right\|$ $ \implies$ $ r_{1}(R^{2}+2Rr+n^{2}-m^{2}) = R(n^{2}-r^{2}) = r_{2}(R^{2}-2Rr+n^{2}-m^{2})$ $ \implies$

$ r_{1}(R^{2}+2Rr+bc-4Rr-R^{2}+2Rr) =$ $ R(p-a)^{2}=$ $ r_{2}(R^{2}-2Rr+bc-4Rr-R^{2}+2Rr)$ $ \implies$ $ r_{1}bc = R(p-a)^{2}= r_{2}(bc-4Rr)$ $ \implies$

$ PQ = r_{2}-r_{1}=$ $ \frac{4R^{2}r(p-a)^{2}}{bc(bc-4Rr)}=$ $ \frac{4R^{2}pr(p-a)^{2}}{b^{2}c^{2}(p-a)}=$ $ \frac{4R^{2}pra^{2}(p-a)^{2}}{16R^{2}p^{2}r^{2}(p-a)}$ $ \implies$ $ \boxed{\ PQ =\frac{a^{2}(p-a)}{4S}\ }$.

Proof 2. Apply the Pythagoras' theorem $:\ \left\{\begin{array}{cccc}
\triangle\ IOP\ : & (r+r_{1})^{2}= (R-r_{1})^{2}+(R^{2}-2Rr)-2(R-r_{1})\cdot OI\cdot\frac{(R^{2}-2Rr)+R^{2}-\frac{4Rr(p-a)}{a}}{2R\cdot IO} & \implies & \boxed{r_{1}=\frac{R(p-a)^{2}}{bc}}\\\\
\triangle\ IOQ\ : & (r_{2}-r)^{2}= (R-r_{2})^{2}+(R^{2}-2Rr)-2(R-r_{2})\cdot IO\cdot\frac{(R^{2}-2Rr)+R^{2}-\frac{4Rr(p-a)}{a}}{2R\cdot IO} & \implies & \boxed{r_{2}=\frac{Rp(p-a)}{bc}}\end{array}\right\|$ .

Therefore, $ \frac{r_{1}}{p-a}=\frac{r_{2}}{p}=\frac{R(p-a)}{bc}=\frac{PQ}{a}$, i.e. $ \boxed{PQ =\frac{aR(p-a)}{bc}}=\frac{a^{2}(p-a)}{4S}$. Observe that $ \frac{r_{1}}{r}=\frac{r_{2}}{r_{a}}$, where $ r_{a}$ is the $ A$- exinradius of $ \triangle ABC$.

Remark. Prove easily that two more interesting relations $:\ \boxed{\sum PQ = R+r\ }$ and $ r_{1}= R-\frac{a(4R+r)}{4p}$ , $ \boxed{r_{2}=\frac{ r_{b}+r_{c}}{4}}$.

Observe that $8\cdot \prod PQ=\frac{8(abc)^{2}(p-a)(p-b)(p-c)}{(4S)^{3}}=\frac{8(4RS)^{2}Sr}{(4S)^{3}}=$ $R^{2}\cdot 2r$ $\implies$ $\left\{\begin{array}{c}\boxed{\ r\le \sqrt [3]{\prod PQ}\le \frac{R}{2}\ }\\\\ \boxed{\ r\le\frac{1}{3}\cdot \sum PQ\le \frac{R^{2}}{4r}\ }\end{array}\right\|$



PP13. Let parallelogram $ABCD$ , $E\in (BD)$ , the symmetrical $S$ of $C$ w.r.t. $E$ and parallelogram $SGAF$ with $\left\{\begin{array}{c}
F\in AB\\\
G\in AD\end{array}\right\|$ . Prove that $EF\parallel AC$ and $E\in FG$

Proof. Let the origin $O\in AC\cap BD$ of the vectorial system, i.e. $\vec{OX}=X$ and $\vec{XY}=Y-X\ .$ Hence $C=-A$ , $D=-B$ , exists $m\in\mathbb R$ so that $\boxed{E=mB}\ (*)$ and

$S=2E-C\ ,$ i.e. $\boxed{S=A+2mB}\ (1)\ .$ Thus, $\left|\begin{array}{ccccc}
 SF\parallel AD & \Longleftrightarrow & F=S+u(A-D) & \Longleftrightarrow & F=(1+u)A+(2m+u)B\\\\
 F\in AB & \Longleftrightarrow & F=A+v(A-B) & \Longleftrightarrow & F=(1+v)A-vB\end{array}\ \right|$ $\Longleftrightarrow$ $\left|\begin{array}{c}
 1+u=1+v\\\\
 2m+u=-v\end{array}\right|\ .$

Hence $u=v=-m\ .$ Since $F\in AB\iff AF\parallel AB$ obtain that $\boxed{F=(1-m)A+mB}\ (2)\stackrel{(*)}{\iff}\overrightarrow {EF}$ $=(1-m)A\iff EF\parallel OA\iff \boxed{EF\parallel AC}\ (3)\ .$

Thus, $S+A=F+G\iff$ $G=S+A-F\stackrel{(1\wedge 2)}{\iff}$ $G=2A+2mB-(1-m)A-mB\iff$ $G=(1+m)A+mB\stackrel{(*)}{\implies}$ $\overrightarrow{EG}=(1+m)A\iff$

$EG\parallel OA\iff EG\parallel AC\stackrel{(3)}{\iff} E\in FG$ .



PP14. Let $P$ be an interior point of $\triangle ABC$ for which $\left\{\begin{array}{ccc}
PA & = & x\\\\
PB & = & y\\\\
PC & = & z\end{array}\right\|$. Consider the triangle $XYZ$ for which $\left\{\begin{array}{ccc}
YZ & = & xa\\\\
ZX & = & yb\\\\
XY & = & zc\end{array}\right\|$. Prove that $\left\{\begin{array}{ccc}
m\left(\widehat {BPC}\right) & = & A+X\\\\
m\left(\widehat {CPA}\right) & = & B+Y\\\\
m\left(\widehat {APB}\right) & = & C+Z\end{array}\right\|$.

Proof. Let $R$ be the point so that $AC$ separates $P$ and $R$ and $\triangle ARC\sim\triangle BPC$. Thus, $\frac {AR}y=\frac {RC}z=\frac ba$ $\odot\begin{array}{ccc}
\nearrow & \boxed{RA=\frac {yb}a} & \searrow\\\\
\searrow & \boxed{RC=\frac {zb}a} & \nearrow \end{array}\odot$ and $m\left(\widehat{PCR}\right)=C$ $\implies$

$PR^2=CP^2+CR^2-2\cdot CP\cdot CR\cdot\cos\widehat{PCR}=$ $z^2+\left(\frac {zb}a\right)^2-\frac {2z^2b}a\cdot\cos C=$ $\frac {z^2}{a^2}\cdot\left(a^2+b^2-2ab\cos C\right)=$ $\frac {z^2c^2}{a^2}\implies$ $\boxed{PR=\frac {zc}a}\implies$ $\frac za=\frac {PC}a=\frac {RC}b=\frac {PR}c$

$\implies$ $\triangle RPC\sim\triangle ABC\implies$ $\boxed{m\left(\widehat{PRC}\right)=A}$. Apply the theorem of Cosines in $\triangle PRA\ :\ AP^2=$ $RA^2+RP^2-2\cdot RA\cdot RP\cdot\cos \widehat{PRA}\implies$

$x^2=\left(\frac {by}a\right)^2+\left(\frac {cz}a\right)^2-\frac {2bcyz}{a^2}\cdot \cos\widehat{PRA}\implies$ $x^2a^2=b^2y^2+c^2z^2-2bcyz\cos\widehat{PRA}\implies$ $\cos\widehat{PRA}=\boxed{\frac {y^2b^2+z^2c^2-a^2x^2}{2yzbc}=\cos X}\ (*)\ \implies$

$\boxed{m\left(\widehat{PRA}\right)=X}\implies$ $m\left(\widehat {BPC}\right)=m\left(\widehat {ARC}\right)=$ $m\left(\widehat {PRC}\right)+m\left(\widehat {PRA}\right)=A+X\implies$ $m\left(\widehat {BPC}\right)=A+X$ a.s.o.

Particular case. $:\ \left\{\begin{array}{ccc}
\sin A=\frac {\sqrt 2}2 & ; &  PA=x=3\\\\
\sin B=\frac {\sqrt 2}2 & ; & PB=y=1\\\\
\sin C=1 & ; & PC=z=2\end{array}\right\|$ . Since $\frac {\sin A}a=\frac {\sin B}b=\frac {\sin X}c$ apply the relation $(*)\ :$

$\cos X=$ $\frac {1\cdot \frac 12+4\cdot 1-9\cdot\frac 12}{2\cdot 1\cdot 2\cdot \frac {\sqrt 2}2\cdot 1}=0\implies X=90^{\circ}$. In conclusion, $m\left(\widehat{BPC}\right)=A+X=45^{\circ}+90^{\circ}=135^{\circ}$.



PP15. Let an acute $\triangle ABC$ with circumcircle $w=C(O,R)$ and the arrows $\left\{\begin{array}{c}
s_a=5\\\
s_b=2\\\
s_c=1\end{array}\right\|$ . Find

the area $S=[ABC]$ . Remark that $s_a+\delta_{BC}(O)=s_b+\delta_{CA}(O)=s_c+\delta_{AB}(O)=R$ .


Proof 1. I"ll use $\odot\begin{array}{ccccc}
\nearrow & r_a-r & = & 2s_a & \searrow\\\\
\searrow & s\left(r_a-r\right) & = & ar_a & \nearrow\end{array}\odot$ a.s.o. Thus, $\left\{\begin{array}{cccccc}
\sum \left(r_a-r\right)=2\sum s_a=16 & \implies & (4R+r)-3r=16 & \implies & \boxed{2R=r+8} &  (1)\\\\
\prod \left[s\left(r_a-r\right)\right]=abcr_ar_br_c & \implies & 20s^2=RS^2 & \implies & \boxed{Rr^2=20} & (2)\end{array}\right\|$ .

From $(1)$ and $(2)$ obtain easily that $r=2$ and $R=5$ . therefore, $r_a=12$ , $r_b=6$ , $r_c=4$ and $S^2=rr_ar_br_c=2\cdot 12\cdot 6\cdot 4\implies$ the area of $\triangle ABC$ is $\boxed{\ S=24\ }$ .

Remark. Using Carnot's relation get $\delta_{BC}(O)+\delta_{CA}(O)+\delta_{AB}(O)=R+r$ $\iff$ $3R=\sum R=$ $\sum\left[\delta_{BC}(O)+s_a\right]=\sum\delta_{BC}(O)+\sum s_a\iff$

$3R=(R+r)+(5+2+1)\iff$ $\underline{2R=r+8}$ . Thus, $\left\{\begin{array}{ccc}
r=2 & ; & r_a=12\\\\
r_b=6 & ; & r_c=4\\\\
S=24 & ; & R=5\end{array}\right\|$ $\implies$ $24=2s=12(s-a)=6(s-b)=$ $4(s-c)\implies$

$\left\{\begin{array}{ccc}
s=12 & ; & s-a=2\\\\
s-b=4 & ; & s-c=6\end{array}\right\|\implies$ $\left\{\begin{array}{ccc}
a & = & 10\\\\
b & = & 8\\\\
c & = & 6\end{array}\right\|$ , where $b^2+c^2=a^2$ , i.e. $A=90^{\circ}$ .



PP16. Let an $A$-right $\triangle ABC$ and $E\in (AC)$ so that $BE\sqrt 2=BC$ . Let the midpoint $M$ of $[BE]$ and $D\in AM\cap BC$ . Prove that $DE=CE$ .

Proof. Denote $\left\{\begin{array}{ccc}
CE & = & x\\\\
AE & = & y\end{array}\right\|$ . Observe that $x+y=b$ and $AB\perp AE\iff$ $c^2+y^2=\frac {a^2}2\implies$ $2y^2=a^2-2c^2\iff$ $\boxed{2y^2=b^2-c^2}\ (1)$ . Apply the Menelaus" theorem

to the transversal $\overline {AMD}/\triangle BCE\ :$ $\frac {AE}{AC}\cdot\frac {DC}{DB}\cdot\frac{MB}{ME}=1\implies$ $\frac {DB}y=\frac {DC}b=\boxed{k=\frac a{b+y}}\ (2)$ . Apply the generalized Pythagoras' theorem in the triangle $DCE\ :$

$DE^2=CD^2+CE^2-2\cdot CD\cdot CE\cdot\cos C\iff$ $DE^2=k^2b^2+x^2-2kbx\cdot\frac ba$ . Thus, $DE=CE\iff$ $k^2b^2+x^2-2kbx\cdot\frac ba=x^2\iff$ $k^2b^2=2kbx\cdot\frac ba\iff$

$ak=2x\ \stackrel{(2)}{\iff}\ a\cdot\frac a{b+y}=2x\iff$ $a^2=2x(b+y)\iff$ $a^2=2(b-y)(b+y)\iff$ $2y^2=2b^2-a^2\iff$ $2y^2=b^2-c^2$ what is the thrue relation $(1)$ .



PP17. Let $w=\mathbb C(O,r)$ be a circle with the diameter $[IJ]$ . For a point $H\in (OI)$ and a line $\delta$ so that $H\in \delta$ denote $:$ the midpoints $A$ , $B$ of $[HI]$ , $[HJ]$ respectively

where $HI=2a$ , $HJ=2b\ ;$ the circles $w_1=\mathbb (A,a)$ , $w_2=\mathbb (B,b)\ ;\ \left\{\begin{array}{ccc}
\{D,G\} & = & w\cap \delta\\\\
\{H,E\} & = & w_1\cap \delta\\\\
\{H,F\} & = & w_2\cap \delta\end{array}\right\|$ so that $E\in (HD)$ and $F\in (HG)$ . Prove that $DE=GF$ .


Proof. Let the projection $L$ of $O$ on $\delta$ . Since $O$ is the midpoint of $[IJ]$ and $IE\parallel OL\parallel JF\ ,\ IE\perp\delta$ obtain that $L$ is the common midpoint of $[EF]$ and $[DG]$ , i.e. $DE=GF$ .


PP18. Let $\triangle ABC$ with circumcircle $w$ . Prove that $(\forall )\ M\in\overarc{BC}\subset w$ so that $BC$ separates $A\ ,\ M$ we have $MA^2=AB\cdot AC+MB\cdot MC\iff MB=MC\ \vee\ AB=AC$ .

Proof 1. I"ll use the relation $4RS=abc$ for any $\triangle ABC$ (standard notations). Denote $AM=m$ and $\left\{\begin{array}{ccc}
MB & = & u\\\
MC & = & v\end{array}\right\|$ . Thus, $[MAB]+[MAC]=[BAC]+[BMC]\iff$

$mcu+mbv=abc+auv\iff$ $\boxed{m(cu+bv)=a(bc+uv)}\ (*)$ . Apply Ptolemy's theorem $\boxed{bu+cv=am}\ (1)$ . In conclusion, $MA^2=AB\cdot AC+MB\cdot MC\iff$

$m^2=bc+uv\ \stackrel{(*)}{\iff}\ m(cu+bv)=am^2\iff$ $cu+bv=am\ \stackrel{(1)}{\iff}\ cu+bv=bu+cv\iff$ $u(b-c)=v(b-c)\iff (b-c)(u-v)=0\iff$

$u=v\ \vee\ b=c\iff$ $MB=MC\ \vee\ AB=AC\iff$ , i.e. the ray $[AM$ is the $A$-bisector of $ABC$ or $ABC$ is $A$-isosceles.

Proof 2. Denote $D\in BC\cap AM$ , $\phi =m\left(\widehat{ADB}\right)$ and $\left\{\begin{array}{ccc}
m\left(\widehat{MAB}\right) & = & x\\\\
m\left(\widehat{MAC}\right) & = & y\end{array}\right\|$ . Thus, $[BAC]+[BMC]=[ABMC]\iff$ $bc\sin A+MB\cdot MC\cdot \sin \widehat{BMC}=$

$a\cdot MA\cdot \sin\phi\iff$ $\boxed{(bc+MB\cdot MC)\cdot \sin A=a\cdot MA\cdot \sin (B+x)}\ (2)$ . In conclusion, $MA^2=MB\cdot MC+bc\ \stackrel{(2)}{\iff}\ MA\cdot \sin A=a\cdot \sin (B+x)\iff$

$MA=2R\sin (B+x)\iff$ $2R\cdot\sin (B+y)=2R\sin (B+x)\iff$ $\sin (B+x)=\sin (B+y)\iff$ $B+x=B+y\ \vee\ (B+x)+(B+y)=180^{\circ}\iff$

$x=y\ \vee\ 2B+AB=c=180^{\circ}\iff$ $MB=MC\ \vee\ AB=AC$ .
This post has been edited 222 times. Last edited by Virgil Nicula, Feb 23, 2016, 6:44 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a