419. Some geometry problems for hight school I

by Virgil Nicula, Mar 28, 2015, 4:11 PM

PP1. In the $A$-right $\triangle ABC$ denote $:\ \left\{\begin{array}{ccc}
D\in BC & ; & AD\perp BC\\\\
E\in (AC) & ; & \widehat{EBA}\equiv\widehat{EBC}\end{array}\right\|$ and $P\in BE\cap AD$ for which denote $PA=m\ ,\ PD=n\ ,\ DE=p$ . Prove that $n^2+p^2=2m^2$ .

Proof 1. Observe that $m\left(\widehat{APE}\right)=$ $m\left(\widehat{PAB}\right)+m\left(\widehat{PBA}\right)=$ $m\left(\widehat{ECB}\right)+m\left(\widehat{EBC}\right)=$ $m\left(\widehat{AEP}\right)\implies$ $m\left(\widehat{APE}\right)=m\left(\widehat{AEP}\right)\implies$

$\triangle PAE$ is $A$-isosceles triangle, I,e. $AP=AE=m$ . Let $S\in BC$ so that $AS\perp BE$ . Thus, $APSE$ is a rhombus, i.e. $PS=SE=m$ and $SE\perp BC$ .

In conclusion, $p^2=DE^2=SE^2+SD^2=$ $m^2+PS^2-PD^2=$ $2m^2-n^2\implies$ $\boxed{n^2+p^2=2m^2}$ .

Proof 2. $\widehat{DAC}\equiv\widehat{DBA}\implies$ $\cos\widehat{DAC}=\cos\widehat{DBA}=$ $\frac {BD}{BA}=\frac {PD}{PA}=\frac nm\implies$ $\boxed{\cos\widehat{DAC}=\frac nm}\ (*)$ . Observe that $m\left(\widehat{APE}\right)=$ $m\left(\widehat{PAB}\right)+m\left(\widehat{PBA}\right)=$

$m\left(\widehat{ECB}\right)+m\left(\widehat{EBC}\right)=$ $m\left(\widehat{AEP}\right)\implies$ $m\left(\widehat{APE}\right)=m\left(\widehat{AEP}\right)\implies\triangle PAE$ is $A$-isosceles, i.e. $AP=AE=m$ . Apply the theorem of Cosines to $\triangle DAE\ :$

$DE^2=AD^2+AE^2-2\cdot AD\cdot AE\cdot\cos\widehat{DAE}\implies$ $p^2\ \stackrel{(*)}{=}\ (m+n)^2+$ $m^2-2m(m+n)\cdot\frac nm\implies$ $p^2=2m^2-n^2\implies$ $\boxed{n^2+p^2=2m^2}$ .



PP2. Let $\triangle ABC$. Consider $D\in (AC)\ ,\ M\in (BD)$ so that $AM\perp MC$. Prove that $\widehat{MCB}\equiv\widehat{MBA}\implies$ $\boxed{\frac {DA}{DC}=\frac {c^2\cdot \left(a^2+c^2-b^2\right)}{a^2\cdot \left(b^2+c^2\right)-\left(b^2-c^2\right)^2}}\ .$

Remark. Some interesting particular cases $:\ \left|\ \begin{array}{ccc}
 b=c & \Longrightarrow & \frac {DA}{DC}=\frac 12\\\\
 A=90^{\circ} & \Longrightarrow & \frac {DA}{DC}=\frac {c^2}{2b^2}\end{array}\ \right|$ and $\left|\ \begin{array}{ccc}
 C=90^{\circ} & \Longrightarrow & \frac {DA}{DC}=\left(\frac cb\right)^2\\\\
 B=60^{\circ} & \Longrightarrow & \frac {DA}{DC}=\frac {c^2}{a(a+c)}\end{array}\ \right|$ . Vezi aici / aici / aici cateva aplicatii.

Proof. Let the circle $w$ with the diameter $[AC]$ . Observe that $M\in w$ and $E\in BC\ ,\ AE\perp BC\implies E\in w$ . Let $\{M,F\}=BD\cap w$ and $N\in EF\cap AC$ . Thus,

$CE=AC\cos C\implies$ $CE=b\cdot\frac {a^2+b^2-c^2}{2ab}\implies$ $\boxed{CE=\frac {a^2+b^2-c^2}{2a}}\ (1)$ and $\widehat{EFB}\equiv\widehat{BCM}\equiv\widehat{ABF}\implies$ $\widehat{EFB}\equiv\widehat{ABF}\implies$ $EN\parallel AB\implies$

$\triangle CEN\sim\triangle CBA\implies$ $\frac {CE}{CB}=\frac {CN}{CA}=$ $\frac {EN}{AB}\ \stackrel{(1)}{\implies}$ $\boxed{\frac {a^2+b^2-c^2}{2a^2}=\frac {CN}{b}=\frac {EN}{c}}\ (*)\implies$ $AN=AC-NC\ \stackrel{(*)}{=}\ b-\frac {b\left(a^2+b^2-c^2\right)}{2a^2}\implies$

$\boxed{AN=\frac {b\left(a^2+c^2-b^2\right)}{2a^2}}\ (2)$ . From the power of the point $N$ w,r,t, the circle $w$ obtain that $NA\cdot NC=NE\cdot NF\iff$ $\frac {b\left(a^2+c^2-b^2\right)}{2a^2}\cdot\frac {b\left(a^2+b^2-c^2\right)}{2a^2}=$

$\frac {c\left(a^2+b^2-c^2\right)}{2a^2}\cdot NF\iff$ $\boxed{NF=\frac {b^2\left(a^2+c^2-b^2\right)}{2a^2c}}\ (3)$ . Since $NF\parallel AB$ obtain that $\frac {DN}{DA}=\frac {NF}{AB}=$ $\frac {b^2\left(a^2+c^2-b^2\right)}{2a^2c^2}$ . Therefore, $\frac {DN}{b^2\left(a^2+c^2-b^2\right)}=\frac {DA}{2a^2c^2}=$

$\frac {AN}{b^2\left(a^2+c^2-b^2\right)+2a^2c^2}=$ $\frac {b\left(a^2+c^2-b^2\right)}{2a^2\left[b^2\left(a^2+c^2-b^2\right)+2a^2c^2\right]}\implies$ $DA=\frac {c^2b\left(a^2+c^2-b^2\right)}{b^2\left(a^2+c^2-b^2\right)+2a^2c^2}\implies$ $\frac {DA}{AC}=\frac {c^2\left(a^2+c^2-b^2\right)}{b^2\left(a^2+c^2-b^2\right)+2a^2c^2}\implies$

$\frac {DA}{DC}=\frac {c^2\left(a^2+c^2-b^2\right)}{\left(b^2-c^2\right)\left(a^2+c^2-b^2\right)+2a^2c^2}\implies $ $\frac {DA}{DC}=\frac {c^2\left(a^2+c^2-b^2\right)}{a^2\left(b^2+c^2\right)-\left(b^2-c^2\right)^2}\ .$


Extension. Let $\triangle ABC$ and $\left\{\begin{array}{ccc}
D\in (AC) & ; & M\in (BD)\\\\
m\left(\widehat{AMC}\right)=\phi & ; & 4S\cot\phi =\Phi\end{array}\right\|$ . Prove that $\widehat{MCB}\equiv\widehat{MBA}\implies$ $\boxed{\frac {DA}{DC}=\frac {c^2\left(a^2+c^2-b^2-\Phi\right)}{a^2\left(b^2+c^2\right)-\left(b^2-c^2\right)^2-\Phi\left(b^2-c^2\right)}}\ .$

Proof. Let the circumcircle $w$ of $\triangle AMC$ and $\left\{\begin{array}{ccc}
\{C,E\} & = & BC\cap w\\\\
\{M,F\} & = & BD\cap w\\\\
N & \in & AC\cap EF\end{array}\right\|$ . Apply theorem of Sines in $\triangle ACE\ :\ \frac {CE}{\sin\widehat{CAE}}=\frac {AC}{\sin\widehat{AEC}}\iff$ $\frac {CE}{\sin(C+\phi )}=\frac b{\sin\phi}\iff$

$CE=\frac {b\sin (C+\phi )}{\sin\phi}=$ $\frac {b(\sin C+\cos C\tan\phi )}{\tan\phi}=$ $b(\cos C+\sin C\cot\phi )\iff$ $CE=b\cos C+b\sin C\cot\phi =$ $\frac {a^2+b^2-c^2}{2a}+\frac {2S\cot\phi}a\iff$

$CE=\frac {a^2+b^2-c^2+4S\cot\phi}{2a}\ \stackrel{(*)}{\implies}\ \boxed{CE=\frac {a^2+b^2-c^2+\Phi}{2a}}\ (1)$ and $\widehat{EFB}\equiv\widehat{BCM}\equiv\widehat{ABF}\implies$ $\widehat{EFB}\equiv\widehat{ABF}\implies$ $EN\parallel AB\implies$ $\triangle CEN\sim\triangle CBA\implies$

$\frac {CE}{CB}=\frac {CN}{CA}=$ $\frac {EN}{BA}\ \stackrel{(1)}{\implies}\ \boxed{\frac {a^2+b^2-c^2+\Phi}{2a^2}=\frac {CN}{b}=\frac {EN}{c}}\ (2)$ $\implies$ $AN=AC-NC\ \stackrel{(2)}{=}\ b-\frac {b\left(a^2+b^2-c^2+\Phi\right)}{2a^2}\implies$ $\boxed{AN=\frac {b\left(a^2+c^2-b^2-\Phi\right)}{2a^2}}\ (3)$ . From

the power of the point $N$ w,r,t, the circle $w$ obtain that $NA\cdot NC=NE\cdot NF\iff$ $NF=NA\cdot\frac {NC}{NE}\stackrel{(2)}{=}NA\cdot\frac bc\stackrel{(3)}{\iff}$$\boxed{NF=\frac {b^2\left(a^2+c^2-b^2-\Phi\right)}{2a^2c}}\ (4)$ . Since $NF\parallel AB$

obtain that $\frac {DN}{DA}=\frac {NF}{AB}=$ $\frac {b^2\left(a^2+c^2-b^2-\Phi\right)}{2a^2c^2}$ . Therefore, $\frac {DN}{b^2\left(a^2+c^2-b^2-\Phi\right)}=\frac {DA}{2a^2c^2}=$ $\frac {NA}{2a^2c^2+b^2\left(a^2+c^2-b^2-\Phi\right)}=$

$\frac {b\left(a^2+c^2-b^2-\Phi\right)}{2a^2\left[2a^2c^2+b^2\left(a^2+c^2-b^2-\Phi\right)\right]}\implies$ $\frac {DA}{AC}=\frac {c^2\left(a^2+c^2-b^2-\Phi\right)}{2a^2c^2+b^2\left(a^2+c^2-b^2-\Phi\right)}\implies$ $\frac {DA}{DC}=$ $\frac {c^2\left(a^2+c^2-b^2-\Phi\right)}{2a^2c^2+b^2\left(a^2+c^2-b^2-\Phi\right)-c^2\left(a^2+c^2-b^2-\Phi\right)}\implies$

$\frac {DA}{DC}=\frac {c^2\left(a^2+c^2-b^2-\Phi\right)}{a^2\left(b^2+c^2\right)-\left(b^2-c^2\right)^2-\Phi\left(b^2-c^2\right)}$ .



PP3. Let $\triangle ABC$ and $ D\in (BC)$ for which $ [AD$ is the bisector of $ \widehat{BAC}$. For $ L\in (AD)$ denote $ M\in AC\cap BL$ and $ N\in AB\cap CL$. Prove that

$ BM=CN\Longleftrightarrow AB=AC$.
Remark. If the point $ L$ is the incenter of the triangle $ ABC$ then obtain an well-known classical problem ==> here


PP4. Let $ABC$ be a triangle and let $P$ be a point in its interior. Lines $PA$, $PB$, $PC$ intersect sides $BC$, $CA$, $AB$ at $D$, $E$, $F$
respectively. Prove that $[PAF]+[PBD]+[PCE]=\frac S2\iff P$ lies on at least one of the medians of triangle $ABC$ .


Proof. Denote the area $[XYZ]$ of the triangle $\triangle XYZ$ . I will suppose w.l.o.g. that $[ABC]=2$ and I note:

$\bullet\ M,N,P$ - the midpoints of the sides $[BC],[CA],[AB]$ respectively;

$\bullet\ x_1=[PAF]\ ,\ x_2=[PAE]\ ;\ y_1=[PBD]\ ,\ y_2=$ $[PBF]\ ;\ z_1=[PCE]\ ,\ z_2=[PCD]\ ;$

$\bullet\ x=y_2-z_1\ ,\ y=z_2-x_1\ ,\ z=x_2-y_1\ .$ Thus, $\boxed{x_1+y_1+z_1=x_2+y_2+z_2=1\ ;\ x+y+z=0}\ .$

From the Ceva's theorem results the relation $\frac{DB}{DC}\cdot \frac{EC}{EA}\cdot \frac{FA}{FB}=1$ , i.e. $\frac{(x_1+y_1)+y_2}{(x_2+z_2)+z_1}\cdot \frac{(y_1+z_1)+z_2}{(x_2+y_2)+x_1}\cdot \frac{(z_1+x_1)+x_2}{(y_2+z_2)+y_1}=1\Longleftrightarrow$

$\frac{1+(y_2-z_1)}{1-(y_2-z_1)}\cdot \frac{1+(z_2-x_1)}{1-(z_2-x_1)}\cdot \frac{1+(x_2-y_1)}{1-(x_2-y_1)}=1\Longleftrightarrow$ $(1+x)(1+y)(1+z)=(1-x)(1-y)(1-z)\Longleftrightarrow $ $xyz=0\Longleftrightarrow$

$y_2=z_1\ \vee\ z_2=x_1\ \vee\ x_2=y_1\Longleftrightarrow $ $EF\parallel BC\ \vee\ FD\parallel CA\ \vee\ DE\parallel AB\Longleftrightarrow$ $P\in [AM]\cup [BN]\cup [CP]\ .$



PP5. Let $ABC$ with the incentre $I$ and the midpoint $M$ of the side $[BC]$ . The implication $A=90^{\circ}\implies IO=IM$ is evidently. Prove that its reverse implication isn't truly.

Proof 1. Suppose that $A\ne 90^{\circ}\ (\triangle ABC$ isn't obtuse $)$ . So $IO=IM\iff$ $ID\perp OM$ , where $D$ is midpoint of $[BC]\ ,\ OM=R\cos A\iff$ $OM=2r\iff$ $\cos A=\frac {2r}R$.

Proof 2. $IO=IM\iff$ $4\cdot IO^2=4\cdot IM^2\iff$ $4\left(R^2-2Rr\right)=2\left(IB^2+IC^2\right)-a^2=$ $2\left[\frac {ac(s-b)}{s}+\frac {ab(s-c)}{s}\right]-a^2=$ $2[a(b+c)-8Rr]-a^2\iff$

$4\left(R^2+2Rr\right)=2a(b+c)-a^2\iff$ $4s\left(R^2+2Rr\right)=$ $2as(b+c)-sa^2\iff$ $4sR^2+2abc=$ $a(b+c)(a+b+c)-sa^2=$ $a(b+c)^2+a^2(b+c)-sa^2\iff$

$4sR^2=a\left(b^2+c^2\right)+a^2(s-a)=$ $a\left(b^2+c^2-a^2\right)+sa^2\iff$ $2abc\cos A+sa^2=8Rrs\cos A+sa^2\iff$ $4R^2=8Rr\cos A+4R^2\sin^2A\iff$

$4R^2\cos^2A=8Rr\cos A$ . In conclusion, $\boxed{\ IO=IM \ \Longleftrightarrow\ A=90^{\circ}\ \ \vee\ \ \cos A=\frac {2r}{R}}$ . Examples $:\ \left\{\begin{array}{cccccc}
\mathrm{Ex.\ 1:} & a=3 & ; & b=4 & ; & c=5\\\\
\mathrm{Ex.\ 2:} & a=2 & ; & b=3 & ; & c=2\\\\
\mathrm{Ex.\ 3:} & A=60^{\circ} & ; & R=4r & &\\\\
\mathrm{Ex.\ 4:} & \cos A=\frac {2r}{R} & ; & R=r\left(1+\sqrt 5\right) & &\end{array}\right\|$ .



PP6. Let $\triangle ABC$ with the centroid $G$ , the circumcircle $C(O,R)$ , the symmedian point $S$ (Lemoine's centre) and $T\in AA\cap BC$ . Denote the midpoints $M\ ,\ N\ ,\ P$ of

the sides $[BC]\ ,\ [CA]\ ,\ [AB]$ . Prove that $ST\perp SA\iff$ $\widehat{ASB}\equiv\widehat{QSC}\iff$ $ GA\perp GO\iff 2a^2=b^2+c^2\iff$ $bm_b=cm_c\iff APGN$ is cyclically.


Proof.

$\blacktriangleright\ GA\perp GO\iff$ $GA^2+GO^2=R^2\iff$ $\frac {4m_a^2}9+\left(R^2-\frac {a^2+b^2+c^2}9\right)=R^2\iff$ $4m_a^2=a^2+b^2+c^2\iff$ $2\left(b^2+c^2\right)-a^2=a^2+b^2+c^2\iff$ $b^2+c^2=2a^2$

$\blacktriangleright$ Denote $D\in AS\cap BC$ . Are well-known $:\ \frac {DB}{c^2}=\frac {DC}{b^2}=\frac {a}{b^2+c^2}\ ;\ \frac {SA}{b^2+c^2}=\frac {SD}{a^2}=$ $\frac {AD}{a^2+b^2+c^2}\ ;\ AD=$ $\frac {2bcm_a}{b^2+c^2}\ ;\ SA=$ $\frac {2bcm_a}{a^2+b^2+c^2}\ ,$

i.e. $\frac {SA}{bcm_a}=\frac {SB}{cam_b}=$ $\frac {SC}{abmc}=\frac 2{a^2+b^2+c^2}$ . Thus, $\widehat{ASB}\equiv\widehat{ASC}\iff$ $\frac {SB}{SC}=\frac {c^2}{b^2}\iff$ $\frac {m_b}{m_c}=\frac cb\iff$ $b^2\cdot 4m_b^2=c^2\cdot 4m_c^2\iff$ $b^2\left[2\left(a^2+c^2\right)-b^2\right]=$

$c^2\left[2\left(b^2+a^2\right)-c^2\right]\iff$ $b^4-c^4=2a^2\left(b^2-c^2\right)\iff$ $b^2+c^2=2a^2$ .

$\blacktriangleright\  (B,C;D,T)$ is harmonically, i.e. $\frac {DB}{DC}=\frac {TB}{TC}$ and $ST\perp SD\iff \widehat{DSB}\equiv\widehat{DSC}$ . Therefore, $ST\perp SA\iff$ $ST\perp SD\iff$ $\widehat{DSB}\equiv\widehat{DSC}\iff$ $\widehat{ASB}\equiv\widehat{ASC}$ .

$\blacktriangleright\ APGN$ is cyclically $\iff BP\cdot BA=BG\cdot BN\iff$ $\frac {c^2}2=\frac {2m_b^2}3\iff$ $4m_b^2=3c^2\iff$ $2\left(a^2+c^2\right)-b^2=3c^2\iff$ $b^2+c^2=2a^2$ .

$\blacktriangleright\ bm_b=cm_c\iff$ $b^2\cdot 4m_b^2=c^2\cdot 4m_c^2\iff$ $b^2\left[2\left(a^2+c^2\right)-b^2\right]=c^2\left[2\left(b^2+a^2\right)-c^2\right]\iff$ $b^4-c^4=2a^2\left(b^2-c^2\right)\iff$ $b^2+c^2=2a^2\ .$

Remark. $\triangle TAB\sim\triangle TCA\iff$ $\frac {TA}{TC}=\frac cb=\frac {TB}{TA}\implies$ $TA^2=TB\cdot TC\ \ \wedge\ \ \frac {TB}{TC}=\frac {c^2}{b^2}\implies$ $\frac {TB}{c^2}=\frac {TC}{b^2}=$ $\frac {a}{\left|b^2-c^2\right|}$ (for $b\ne c$) $\implies$ $TA^2=\frac {a^2b^2c^2}{\left(b^2-c^2\right)^2}$ $\implies$

$\boxed{TA=\frac {abc}{|b^2-c^2|}}\implies $ $TD=BD+TB=$ $\frac {ac^2}{b^2+c^2}+\frac {ac^2}{b^2-c^2}=$ $\frac {2ab^2c^2}{b^4-c^4}$ (for $b>c$) $\implies$ $ \boxed{TD=\frac {2ab^2c^2}{b^4-c^4}}$ . Thus $ST\perp SA\iff$ $ST\perp DA\iff$ $TA^2-TD^2=$

$SA^2-SD^2$ $\iff$ $\frac {a^2b^2c^2}{\left(b^2-c^2\right)^2}-$ $\frac {4a^2b^4c^4}{\left(b^4-c^4\right)^2}=$ $\frac {\left(b^2+c^2\right)^2-a^4}{\left(a^2+b^2+c^2\right)^2}\cdot \frac {4b^2c^2m_a^2}{\left(b^2+c^2\right)^2}\iff$ $\frac {a^2b^2c^2\left[\left(b^2+c^2\right)^2-4b^2c^2\right]}{\left(b^4-c^4\right)^2}=\frac {b^2c^2\left(b^2+c^2-a^2\right)\left[2\left(b^2+c^2\right)-a^2\right]}{\left(a^2+b^2+c^2\right)\left(b^2+c^2\right)^2}\iff$

$\frac {a^2\left[\left(b^2+c^2\right)^2-4b^2c^2\right]}{\left(b^2-c^2\right)^2}=$ $\frac {\left(b^2+c^2-a^2\right)\left[2\left(b^2+c^2\right)-a^2\right]}{a^2+b^2+c^2}\iff$ $a^2\left(a^2+b^2+c^2\right)=\left(b^2+c^2-a^2\right)\left[2\left(b^2+c^2\right)-a^2\right]\iff$

$a^4+a^2\left(b^2+c^2\right)=2\left(b^2+c^2\right)^2-3a^2\left(b^2+c^2\right)+a^4\iff b^2+c^2=2a^2$ .



PP7. Let $:\ \triangle ABC$ with the circumcircle $w\ ;$ the midpoint $M$ of $[BC]\ ;\ \left\{\begin{array}{ccc}
\{A,N\} & = & AM\cap w\\\\\
P & \in &  BN\cap AC\\\\
Q & \in & CN\cap AB\end{array}\right\|$ . Prove that $N$ is the centroid of $\triangle PAQ\iff b^2+c^2=2a^2$ .

Proof. From the power of $M$ w.r.t. $w$ obtain that $MA\cdot MN=MB\cdot MC\iff$ $MN=\frac {a^2}{4m_a}\iff$ $AN=AM+MN=m_a+\frac {a^2}{4m_a}=\frac {4m_a^2+a^2}{4m_a}\iff$ $\boxed{AN=\frac {b^2+c^2}{2m_a}}$ .

Therefore, $N$ is the centroid of $\triangle PAQ\iff$ $3\cdot AN=4\cdot AM\iff$ $\frac {3\left(b^2+c^2\right)}{2m_a}=4m_a\iff$ $3\left(b^2+c^2\right)=2\left[2\left(b^2+c^2\right)-a^2\right]\iff$ $b^2+c^2=2a^2$ .



PP8. Let $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R)$ and the incircle $\mathbb C(I,r)$ . Denote $\left\{\begin{array}{ccc}
\{A,X\} & = & AI\cap w\\\\
\{B,Y\} & = & BI\cap w\\\\
\{C,Z\} & = & CI\cap w\end{array}\right\|$ . Prove that $\left\{\begin{array}{cccc}
(1)\ : & IY\cdot IZ & = & R\cdot IA\\\\
(2)\ : & IB\cdot IC & = & 2r\cdot IX\\\\
(3)\ : & 2r\cdot  [XYZ] & = & R\cdot [ABC]\end{array}\right\|$ .

Proof. Prove easily that $IA\cdot IX=2Rr$ and $IA^2=\frac {bc(s-a)}s$ a.s.o. Thus, $IA\cdot IB\cdot IC=$ $\sqrt{\frac {bc(s-a)}s\cdot\frac {ca(s-b)}s\cdot \frac {ab(s-c)}s}=$ $\frac {abc}s\cdot\sqrt{\frac {(s-a)(s-b)(s-c)}{s}}=$

$\frac {4Rrs}s\cdot\sqrt{\frac {sr^2}s}=4Rr^2$ $\implies$ $\boxed{IA\cdot IB\cdot IC=4Rr^2}\ (*)$ . Therefore $:\ \frac {IY\cdot IZ}{IA}=\frac {\frac {2Rr}{IB}\cdot\frac {2Rr}{IC}}{IA}=$ $\frac {4R^2r^2}{IA\cdot IB\cdot IC}\ \stackrel{(*)}{\implies}\ \frac {4R^2r^2}{4Rr^2}=R$ $\implies\frac {IY\cdot IZ}{IA}=R$ $\implies$

$\boxed{IY\cdot IZ=R\cdot IA}\ \ ;\ \frac {IB\cdot IC}{IX}=$ $ \frac {IB\cdot IC}{\frac {2Rr}{IA}}=$ $\frac{IA\cdot IB\cdot IC}{2Rr}\ \stackrel{(*)}{=}\ \frac{4Rr^2}{2Rr}=2r\implies$ $\frac {IB\cdot IC}{IX}=2r\implies$ $\boxed{IB\cdot IC=2r\cdot IX}\ \ ;\ \frac {YZ}{\cos\frac A2}=\frac {ZX}{\cos \frac B2}=\frac {XY}{\cos\frac C2}=2R\implies$

$\frac {[XYZ]}{[ABC]}=\frac {XY\cdot YZ\cdot ZX}{AB\cdot BC\cdot CA}=$ $\prod\frac {\cos\frac A2}{\sin A}=$ $\prod\frac 1{2\sin\frac A2}=\frac {4R}{8r}=\frac R{2r}\implies$ $\boxed{2r\cdot  [XYZ]=R\cdot [ABC]}$ .

Remark. Can use the trigonometrical identities $\left\{\begin{array}{ccc}
\sin\frac A2\sin\frac B2\sin\frac C2 & = & \frac r{4R}\\\\
\cos\frac A2\cos\frac B2\cos\frac C2 & = & \frac s{4R}\end{array}\right\|$ and $\left\{\begin{array}{ccc}
s-a & = & IA\cos\frac A2\\\\
2R\sin\frac A2 & = & BX=IX=CX\end{array}\right\|$ .



PP9. Let $\triangle ABC$ with the circumcircle $w$ and the $A$- bisector $AD$ , where $D\in BC$ . Denote the bisector

$d$ of $[AD]$ and $\{M,N\}=d\cap w$ . Prove that the sideline $BC$ is tangent to the circumcircle of $\triangle MDN$ .


Proof. Denote $L\in AA\cap BC$ , where $AA$ is the tangent line to $w$ at $A\in w$ . Observe that $m\left(\widehat{LAD}\right)=$ $m\left(\widehat{LAB}\right)+m\left(\widehat{BAD}\right)=$ $m\left(\widehat{ACB}\right)+m\left(\widehat{CAD}\right)=$

$m\left(\widehat{ADL}\right)=m\left(\widehat{LDA}\right)\implies$ $m\left(\widehat{LAD}\right)=m\left(\widehat{LDA}\right)\implies$ $\triangle ALD$ is $L$-isosceles, i.e. $LA=LD$ . In conclusion, $LD^2=LA^2=LM\cdot LN\implies$

$LD^2=LM\cdot LN\implies$ $\triangle LDM\sim\triangle LND\implies$ $\widehat{LDM}\equiv\widehat{LND}\implies$ the sideline $BC$ is tangent to the circumcircle of $\triangle MDN$ .



PP11 (Ruben Dario Augui). Let the circle $w(I,r)$ and two points $\{E,F\}\subset w$ so that $A\in EE\cap FF$ , where $XX$ - the tangent to the circle $w$ in the point $X\in w$ .

For the point $D$ which belongs to the small arc $\overarc{EF}$ denote the intersections $\left\{\begin{array}{ccc}
B\in AF\cap DD & ; & C\in DD\cap AE\\\\
P\in EF\cap ID & ; & M\in AP\cap BC\end{array}\right\|$ . Prove that $M$ is the midpoint of $[BC]$ .


Proof. $IDCE$ and $IDBF$ are cyclically with diameters $IC=IB=r$ . Apply well-known relation to $[IP$ in $\triangle EIF\ :\ \frac {PF}{PE}=$ $\frac {IF}{IE}\cdot\frac {\sin\widehat{PIF}}{\sin\widehat{PIE}}=$ $\frac {\sin B}{\sin C}=$ $\frac cb\implies$ $\boxed{\frac {PF}{PE}=\frac bc}\ (*)$

Apply another well-known relation to $\triangle EAF$ and the points $\left\{\begin{array}{ccc}
B\in (AF) & ; & C\in (AE)\\\\
P\in (EF) & ; & M\in AP\cap BC\end{array}\right\|\ :\ \frac {MB}{MC}=$ $\frac {PF}{PE}\cdot\frac {AB}{AC}\cdot\frac {AE}{AF}\ \stackrel{(*)}{=}\ \frac bc\cdot \frac cb=1\implies MB=MC$ .


PP12 (Ruben Dario). Let $\triangle ABC$ with the incircle $w=\mathbb (I,r)$ and $\left\{\begin{array}{ccc}
D & \in & BC\cap w\\\\
E & \in & BI\cap AC\\\\
F & \in & CI\cap AB\end{array}\right\|$ and the midpoint $M$ of $[EF]$ . Prove that $MI\perp BC\iff b=c \ \vee\ A=90^{\circ}$ .

Proof 1 (metric). I"ll use the well-known identities $\left\{\begin{array}{ccc}
BE^2=ac-EA\cdot EC\\\\
CF^2=ab-FA\cdot FB\end{array}\right\|\ (*)$ and the equivalence $MI\perp BC\iff MB^2-MC^2=DB^2-DC^2$ . Therefore,

$DB^2-DC^2=(s-b)^2-(s-c)^2=a(c-b)$ , i.e. $\boxed{DB^2-DC^2=a(c-b)}\ (1)$ . Observe that $\left\{\begin{array}{ccc}
BF & = & \frac {ac}{a+b}\\\\
CE & = & \frac {ab}{a+c}\end{array}\right\|\ (2)$ and apply the theorem of median in the triangles $:$

$\left\{\begin{array}{ccccccccc}
BM/\triangle EBF\ : & 2\cdot MB^2 & = & BE^2 & + & FB^2 & - & \frac 12\cdot EF^2\\\\
CM/\triangle ECF\ : & 2\cdot MC^2 & = & CF^2 & + & EC^2 & - & \frac 12\cdot EF^2\end{array}\right\|\implies$ $2\left(MB^2-MC^2\right)=$ $\left(BE^2-EC^2\right)-\left(CF^2-FB^2\right)\ \stackrel{(*)}{=}\ \left(ac-EA\cdot EC-EC^2\right)-$

$\left(ab-FA\cdot FB-FB^2\right)=a(c-b)+c\cdot FB-b\cdot EC$ , i.e. $\boxed{2\left(MB^2-MC^2\right)=a(c-b)+c\cdot FB-b\cdot EC}\ (3)$ . Therefore, $MI\perp BC\iff MD\perp BC\iff$

$MB^2-MC^2=DB^2-DC^2\ \stackrel{(1\wedge 3)}{\iff}\ a(c-b)+c\cdot FB-b\cdot EC=2a(c-b)\iff$ $c\cdot FB-b\cdot EC=a(c-b)\ \stackrel{(2)}{\iff}\frac {c^2}{a+b}-\frac {b^2}{a+c}=c-b\iff$

$\frac{a^2-b^2+2bc\cdot\cos A}{a+b}-\frac {a^2-c^2+2bc\cdot\cos A}{a+c}=c-b\iff$ $(a-b)+\frac {2bc\cdot\cos A}{a+b}-(a-c)-\frac {2bc\cdot\cos A}{a+c}=c-b\iff$ $2bc\cdot \cos A\left(\frac 1{a+b}-\frac 1{a+c}\right)=0\iff$

$(c-b)\cos A=0\iff$ $b=c \ \vee\ A=90^{\circ}$ . In conclusion, $MI\perp BC\iff b=c \ \vee\ A=90^{\circ}$ .

Proof 2 (metric shorter). $\left\{\begin{array}{c}
H\in BC\ \mathrm{and}\ AH\perp BC\ ;\ X\in BC\ \mathrm{and}\ FX\perp BC\ ;\ Y\in BC\ \mathrm{and}\ EY\perp BC\\\\
x=BX=BF\cos B=\frac {ac\cdot\cos B}{a+b}\iff 2x=\frac {a^2+c^2-b^2}{a+b}=a-b+\frac {c^2}{a+b}\\\\
y=CY=CE\cos C=\frac {ab\cdot \cos C}{a+c}\iff 2y=\frac {a^2+b^2-c^2}{a+c}=a-c+\frac {b^2}{a+c}\end{array}\right\|\ (1)$ . Therefore, $MI\perp BC\iff$ $DX=DY\iff$

$ s-b-x=s-c-y\iff$ $x-y=c-b\iff$ $\left[a-b+\frac {c^2}{a+b}\right]-\left[a-c+\frac {b^2}{a+c}\right]=2(c-b)\iff$ $\frac {c^2}{a+b}-\frac {b^2}{a+c}=c-b\iff$ $b+\frac {c^2}{a+b}=c+\frac {b^2}{a+c}\iff$

$\left(b^2+c^2+ab\right)(a+c)=\left(b^2+c^2+ac\right)(a+b)\iff$ $\left(b^2+c^2\right)(c-b)=a^2(c-b)\iff$ $b=c\ \vee\ b^2+c^2=a^2$ . In conclusion, $MI\perp BC\iff b=c \ \vee\ A=90^{\circ}$ .

Proof 3 (metric shortest). Suppose w.l.o.g. $b\ne c$ and let $\left\{\begin{array}{c}
X\in MI\cap AC\\\\
Y\in BC\cap MI\end{array}\right\|\ .$ Apply the Menelaus' theorem to $:\ \left\{\begin{array}{cc}
\overline {XMI}/\triangle CEF\ : & \frac {XE}{XC}\cdot\frac {IC}{IF}\cdot\frac {MF}{ME}=1\\\\
\overline{XIY}/\triangle BCE\ : & \frac {XC}{XE}\cdot \frac {IE}{IB}\cdot\frac {YB}{YC}=1\end{array}\right\|$ $\implies$

$\frac {IC}{IF}\cdot \frac {IE}{IB}\cdot \frac {YB}{YC}=1\implies$ $\frac {a+b}c\cdot\frac b{a+c}\cdot \frac {YB}{YC}=1\implies$ $\boxed{\frac {YB}{YC}=\frac {c(a+c)}{b(a+b)}}\ (*)\ .$ In conclusion, $MI\perp BC\iff$ $M\in ID\iff$ $\frac {YB}{YC}=\frac {DB}{DC}\iff$

$\frac {c(a+c)}{b(a+b)}=\frac {a+c-b}{a+b-c}\iff$ $c(a+b)(a+c)-c^2(a+c)=b(a+b)(a+c)-b^2(a+b)\iff$ $(a+b)(a+c)(b-c)=$ $a\left(b^2-c^2\right)+b^3-c^3\ \stackrel{b\ne c}{\iff}$

$(a+b)(a+c)=$ $a(b+c)+b^2+c^2+bc\iff$ $a^2+a(b+c)+bc=$ $a(b+c)+b^2+c^2+bc$ $\iff$ $a^2=b^2+c^2\iff A=90^{\circ}\ .$


An easy extension. Let $\triangle ABC$ and for an interior point $P$ denote $\left\{\begin{array}{ccc}
E\in BP\cap AC & ; & F\in CP\cap AB\\\\
M\in (EF) & ; & N\in (BC)\end{array}\right\|$ . Prove that $P\in MN\iff$ $\frac {MF}{ME}\cdot \frac {NB}{NC}=\frac {PB}{PC}\cdot\frac {PF}{PE}\ .$

Proof. Denote $\left\{\begin{array}{c}
X\in MP\cap AC\\\\
Y\in MP\cap BC\end{array}\right\|$ and apply the Menelaus' theorem to $:\ \left\{\begin{array}{cc}
\overline {XMP}/\triangle CEF\ : & \frac {XE}{XC}\cdot\frac {PC}{PF}\cdot\frac {MF}{ME}=1\\\\
\overline{XPY}/\triangle BCE\ : & \frac {XC}{XE}\cdot \frac {PE}{PB}\cdot\frac {YB}{YC}=1\end{array}\right\|$ $\bigodot\implies$ $\boxed{\frac {PC}{PF}\cdot \frac {PE}{PB}\cdot \frac {MF}{ME}\cdot\frac {YB}{YC}=1}\ (*)\ .$

In conclusion, $P\in MN\iff$ $N\equiv Y\iff$ $\frac {YB}{YC}=\frac {NB}{NC}\ \stackrel{(*)}{\iff}\ \frac {PC}{PF}\cdot \frac {PE}{PB}\cdot \frac {MF}{ME}\cdot\frac {NB}{NC}=1\iff$ $\frac {MF}{ME}\cdot \frac {NB}{NC}=\frac {PB}{PC}\cdot\frac {PF}{PE}\ .$

Particular case. If $M$ is the midpoint of $[EF]\ ,$ i.e. $ME=MF$ , then $\boxed{N\in MP\cap BC\implies\frac {NB}{NC}=\frac {PB}{PC}\cdot\frac {PF}{PE}}\ (1)\ .$ Therefore $:$

$\blacktriangleright\ P:=I\ \implies\ \frac {NB}{NC}=\frac {a+c}{b}\cdot\frac {c}{a+b}\implies\frac {NB}{NC}=\frac {c(a+c)}{b(a+b)}\ .$ Prove easily that $MI\perp BC\iff \frac {c(a+c)}{b(a+b)}=\frac {a+c-b}{a+b-c}\iff b=c\ \vee\ A=90^{\circ}\ .$

$\blacktriangleright\ P:=\mathcal N$ (Nagel's point)$\ \implies\left\{\begin{array}{ccccc}
\frac {\mathcal NB}{\mathcal NE} & = & \frac {s-a}{s-b}+\frac {s-c}{s-b} & \implies & \frac {\mathcal NB}{\mathcal NE}=\frac b{s-b}\\\\
\frac {\mathcal NC}{\mathcal NF} & = & \frac {s-a}{s-c}+\frac {s-b}{s-c} & \implies & \frac {\mathcal NC}{\mathcal NF}=\frac c{s-c}\end{array}\right\|$ $\implies \frac {NB}{NC}=\frac {b(s-c)}{c(s-b)}\ .$


PP13 (Cristian Tello). Let $F$ be the Fermat's point and $G$ be the centroid of $\triangle ABC$ . Prove that $9\cdot PG^2=\left(x^2+y^2+z^2\right)-(xy+yz+zx)$ , where $\left\{\begin{array}{ccc}
PA & = & x\\\\
PB & = & y\\\\
PC & = & z\end{array}\right\|$ .

Proof (metric). Construct outside of $\triangle ABC$ the equilateral triangles $BXC$ , $CYA$ and $AZB\ .$ Are well-known or prove easily that $P\in AX\cap BY\cap CZ$ , $AX=BY=CZ=$

$x+y+z$ and $\left\{\begin{array}{ccc}
y^2+z^2+yz & = & a^2\\\\
z^2+x^2+zx & = & b^2\\\\
x^2+y^2+xy & = & c^2\end{array}\right\|$ $\bigoplus\implies$ $\boxed{2\left(x^2+y^2+z^2\right)+(xy+yz+zx)=\left(a^2+b^2+c^2\right)}\ (1)$ . Apply the theorem of Cosines in $\triangle ABX\ :$

$AX^2=BA^2+BX^2-2\cdot BA\cdot BX\cdot \cos\left(B+60^{\circ}\right)\iff$ $(x+y+z)^2=c^2+a^2-ca\cdot\left(\cos B-\sqrt 3\sin B\right)=$ $a^2+c^2-\frac {a^2+c^2-b^2}2+2S\sqrt 3\iff$

$\boxed{2(x+y+z)^2=a^2+b^2+c^2+4S\sqrt 3}\ (2)$ . From the relations $(1)$ and $(2)$ obtain that $\boxed{3(xy+yz+zx)=4S\sqrt 3}\ (3)$ . Apply the well-known Leibniz's identity $:$

$\sum PA^2=3\cdot PG^2+\frac 13\cdot\sum a^2\iff$ $9\cdot PG^2=$ $3\sum x^2-\sum a^2=$ $\sum x^2+\left(2\sum x^2-\sum a^2\right)\ \stackrel{(1)}{\iff}\ 9\cdot PG^2=$ $\left(x^2+y^2+z^2\right)-(xy+yz+zx)\ .$



PP14 (Ruben Dario). Let $A$-right $\triangle ABC$ with $F\in (BC)$ so that $AF\perp BC$ . For a mobile point $M\in (AF)$

define $\left\{\begin{array}{ccc}
E\in AB\cap CM & \mathrm{and} & m\left(\widehat{EFB}\right)=\alpha\\\\
G\in AC\cap BM & \mathrm{and} & m\left(\widehat{GBA}\right)=\beta\end{array}\right\|$ . Prove that the difference $\cot\beta -\tan\alpha$ is constant.


Proof. Denote $\left\{\begin{array}{ccc}
AG & = & u\\\\
AE & = & v\end{array}\right\|$ and observe that $\left\{\begin{array}{ccc}
\tan C & = & \frac cb\\\\
\cot \beta & = & \frac cu\end{array}\right\|\ (1)$ . Apply an well-known relation $\frac {EB}{EA}=\frac {FB\cdot\sin\widehat{EFB}}{FA\cdot\sin\widehat{EFA}}\iff$ $\frac {c-v}v=\frac cb\cdot \frac {\sin\alpha}{\cos\alpha}\iff$

$\boxed{\tan \alpha=\frac {b(c-v)}{cv}}\ (2)$ . Now I"ll use the Ceva's theorem $:\ \frac {EA}{EB}\cdot\frac {FB}{FC}\cdot\frac {GC}{GA}=1\iff$ $\frac v{c-v}\cdot \frac {c^2}{b^2}\cdot\frac {b-u}u=1\iff$ $\frac {vc}{b(c-v)}\cdot \frac cb\cdot\left(\frac bu-1\right)=1\iff$

$\frac {vc}{b(c-v)}\cdot \left(\frac cu-\frac cb\right)=1\ \stackrel{1\wedge 2}{\iff}\ \cot \alpha$ $\left(\cot \beta-\tan C\right)=1\iff$ $\cot \beta-\tan C=\tan \alpha\iff$ $\cot\beta -\tan\alpha=\tan C$ (constant).



PP15 (Edson Curahua Ortega). Let $:$ a square $ABCD\ ;$ two points $\{P,Q\}$ so that $B\in (AP )$ , $D\in (AQ)$ and $BP=DQ\ ;$ the projection $H$ of $A$ on $PD$ . Prove that $HC\perp HQ$ .

Proof 1. Suppose w.l.o.g. $AB=1$ and denote $:\ BP=DQ=x$ and $\left\{\begin{array}{ccc}
m\left(\widehat{DCQ}\right) & = & \phi\\\
m\left(\widehat{DHQ}\right) & = & \psi\end{array}\right\|$ . Observe that $\boxed{\tan\phi =x}\ (*)$ and $\frac {HD}{HA}=\frac {AD}{AP}=\frac 1{x+1}$ . Therefore,

$\frac x{x+1}=\frac {QD}{QA}=$ $\frac {HD}{HA}\cdot\frac {\sin\widehat{QHD}}{\sin\widehat{QHA}}=$ $\frac 1{x+1}\cdot \frac {\sin\psi}{\sin\left(90^{\circ}+\psi\right)}=$ $\frac {\tan\psi}{x+1}\implies$ $\frac x{x+1}=\frac {\tan\psi}{x+1}\implies$ $\tan\psi =x\ \stackrel{(*)}{\implies}\ \phi =\psi\implies$ $\widehat{DCQ}\equiv\widehat{CDQ}\implies$ $HC\perp HQ$ .

Proof 2 (Ruben Dario). $PB=DQ\implies PA=AQ$ . Thus, $\triangle AHD\sim\triangle PAD\iff$ $\frac {HA}{AP}=\frac {HD}{AD}\iff$ $\frac {HA}{AQ}=\frac {HD}{CD}\implies$

$\triangle AHQ\sim\triangle DHC\implies$ $\widehat{AHQ}\equiv\widehat{DHC}\iff$ $\widehat{AHD}\equiv\widehat{QHC}\iff HA\perp HD\iff HQ\perp HC$ .

Proof 3. $\frac {PQ}{AC}=\frac {PA\sqrt 2}{AD\sqrt 2}=$ $\frac {PA}{AD}=\frac {PH}{AH}\implies$ $\boxed{\frac {PQ}{AC}=\frac {PH}{AH}}\ (1)$ $\implies$ $m\left(\widehat{HPQ}\right)=45^{\circ}-m\left(\widehat{HPA}\right)=45^{\circ}-m\left(\widehat{HAD}\right)=m\left(\widehat{HAC}\right)\implies$

$\boxed{\widehat{HPQ}\equiv \widehat{HAC}}\ (2)$ . From the relations $(1)$ and $(2)$ obtain that $\triangle PQH\sim\triangle ACH\implies$ $\widehat{CHQ}\equiv\widehat{AHP}\ \stackrel{HA\perp HP}{\implies}\  HC\perp HQ$ .



PP16. In $\triangle ABC$ denote $\left\{\begin{array}{ccc}
H\in (AC) & ; & m\left(\widehat{AHB}\right)=B\\\\
N\in (BC) & ; & M\in AN\cap BH\\\\
L\in (BH) & ; & NL\parallel AC\end{array}\right\|$ . Prove that $BL=MH\iff AN$ is the $A$-bisector of $\triangle ABC$ .

Proof. Denote $R\in (AC)$ so that $NR\parallel BH$ . Thus, $\boxed{LH=NR\ \mathrm{and}\ \frac {LB}{LH}=\frac {NB}{NC}}\ (1)$ . Observe that $\triangle AHB\sim\triangle ABC$ , i.e. $\frac {AH}{AB}=\frac {AB}{AC}\iff$ $\boxed{AH=\frac {c^2}b}\ (2)$ , From

$NR\parallel BH$ obtain that $\boxed{\frac {NR}{MH}=\frac {AR}{AH}}\ (3)$ and $\widehat{NRA}\equiv \widehat{BHA}\equiv \widehat{ABC}\equiv\widehat{NBA}$ , i.e. $\boxed{\widehat{NRA}\equiv\widehat{NBA}}\ (4)$ . Therefore, $\frac{BL}{MH}=\frac {BL}{LH}\cdot\frac {LH}{MH}\ \stackrel{(1)}{\iff}\ \frac{BL}{MH}=\frac {NB}{NC}\cdot\frac {NR}{MH}$ .

In conclusion, $\widehat{NAB}\equiv\widehat {NAC}\iff$ $\triangle NAB\equiv\triangle NAR$ , i.e. $AR=c$ and $\frac {NB}{NC}=$ $\frac cb\ \stackrel{(3\wedge 4)}{\iff}\ \frac{BL}{MH}=\frac cb\cdot\frac {AR}{MH}=$ $\frac {c^2}{b\cdot AH}\ \stackrel{(2)}{=}\ 1\iff$ $\frac{BL}{MH}=1\iff$ $BL=MH$ . Nice !



PP17 (Edson Curahua). Let the circle $w=\mathcal(O,r)$ and $\{A,B\}\subset w$ so that $OA\perp OB$ . For $C\in \mathrm{small}\ \overarc{AB}$ construct the rhombus $OBDC\ .$

Denote $\left\{\begin{array}{ccc}
\{A,D\}\cap w & = & \{A,R\}\\\
m\left(\widehat{BAC}\right) & = & x\\\
m\left(\widehat{CAD}\right) & = & y\end{array}\right\|$ . Prove that $\tan x+3\tan y=1+\tan x\tan y$ , i.e. $\boxed{(\tan x-3)(\tan y -1)=2}\ (*)\ .$


Proof 1. Prove easily that $\left\{\begin{array}{ccc}
CA & = & 2r\sin (45-x)\\\
m\left(\widehat{ADC}\right) & = & 45-(x+y)\end{array}\right\|$ . Apply the theorem of Sines in $\triangle ACD\ :\ \frac {CA}{\sin\widehat{ADC}}=\frac{CD}{\sin CAD}\iff$ $\frac {2r\sin (45-x)}{\sin [45-(x+y)]}=\frac {r}{\sin y}\iff$

$2\sin y\sin(45-x)=\sin [45-(x+y)]\iff$ $2\sin y(\cos x-\sin x)=\cos (x+y)-\sin (x+y)\iff$ $2\tan y(1-\tan x)=1-\tan x\tan y-(\tan x+\tan y)\iff (*)$

Proof 2. Suppose w.l.o.g. that $r=1$ . Prove easily that $\left\{\begin{array}{ccc}
m\left(\widehat{ADB}\right) & = & 45+(x-y)\\\
m\left(\widehat{BAD}\right) & = & x+y\end{array}\right\|$ . Apply the theorem of Sines in $\triangle ABD\ :\ \frac {AB}{\sin\widehat{ADB}}=\frac{BD}{\sin\widehat{BAD}}\iff$

$\frac {\sqrt 2}{\sin [45+(x-y)]}=\frac 1{\sin (x+y)}\iff$ $2\sin (x+y)=\cos (x-y)+\sin (x-y)\iff$ $2(\tan x+\tan y)=1+\tan x\tan y+\tan x-\tan y\iff$ $(*)\ .$

Remark. In the particular case $x=y$ have $AC=BR=r$ and $BR\perp BD\ .$



PP18 (Carlos Olivera). Let an $A$-right $\triangle ABC$ with $A$-excircle $w_a$ and $C$-excircle $w_c$ . Denote $\left\{\begin{array}{ccc}
D & \in & BC\cap w_a\\\
E & \in & CA\cap w_a\\\
F & \in & AB\cap w_c\end{array}\right\|\ .$ Prove that $F\in DE\iff 2\cdot m\left(\widehat{BDF}\right)=C$ .

Proof 1. Is well-known that $\left\{\begin{array}{ccccccc}
DB & = & s-c & ; & DC & = & s-b\\\
EC & = & s-b & ; & EA & = & s\\\
FA & = & s-b & ; & FB & = & s-a\end{array}\right\|$ . Apply Menelaus' theorem to transversal $\overline{DEF}/\triangle ABC\ :\ 2\cdot m\left(\widehat{BDF}\right)=C\iff$

$F\in DE\iff$ $\frac {EC}{EA}\cdot\frac {FA}{FB}\cdot\frac {DB}{DC}=1\iff$ $\frac {s-b}s\cdot\frac {s-b}{s-a}\cdot\frac {s-c}{s-b}=1\iff$ $\boxed{(s-b)(s-c)=s(s-a)}\iff $ $(a+c-b)(a+b-c)=$

$(a+b+c)(b+c-a)\iff$ $a^2-(b-c)^2=(b+c)^2-a^2\iff$ $2a^2=(b+c)^2+(b-c)^2\iff$ $a^2=b^2+c^2\iff A=90^{\circ}$ .

Remark. Is well-known or prove easily the remarkable identity $\tan\frac A2=\sqrt{\frac {(s-b)(s-c)}{s(s-a)}}$ and the particular case $\boxed{(s-b)(s-c)=s(s-a)\iff A=90^{\circ}}\ .$

Proof 2. Let $G\in AC$ so that $FG\parallel BC$ , i.e. $\boxed{\widehat {DFG}\equiv\widehat{BDF}}\ (1)$ . Prove easily that $FG\parallel BC\implies$ $\boxed{FG=\frac {a(s-b)}c}\ (2)$ and $GC=\frac {b(s-a)}c$ . Thus, $GE=GC+CE\implies $

$\boxed{GE=\frac {b(s-a)}c+(s-b)}\ (3)$ . Hence, $F\in DE\iff\widehat{BDF}\equiv\widehat{CDE}\ \stackrel{1}{\iff}\ \triangle EFG$ is isosceles $\iff FG=GE\ \stackrel{2\wedge 3}{\iff}\ \frac {a(s-b)}c=\frac {b(s-a)}c+(s-b)\iff$

$a(s-b)=b(s-a)+c(s-b)\iff$ $(a-c)(a+c-b)=b(b+c-a)\iff$ $\left(a^2-c^2\right)-b(a-c)=b^2+b(c-a)\iff$ $a^2=b^2+c^2\iff A=90^{\circ}$ what is truly.

Proof 3. Let $F_1\in DE\cap AB$ . Apply theorem of Sines to $\triangle BDF_1\ :\ \frac {BF_1}{\sin \frac C2}=$ $\frac {s-c}{\sin\left(B+\frac C2\right)}\iff$ $\frac {BF_1}{BF}=\frac {\sin\frac C2}{\cos\frac {A-B}2}\cdot\frac {s-c}{s-a}=$ $\frac {\sin C}{\sin A+\sin B}\cdot\frac {s-c}{s-a}=$

$\frac c{a+b}\cdot\frac {s-c}{s-a}\iff$ $\frac {BF_1}{BF}=$ $\frac c{a+b}\cdot\frac {s-c}{s-a}$ , Prove easily that $\frac c{a+b}\cdot\frac {s-c}{s-a}=1\iff$ $a^2=b^2+c^2$ , i.e. $A=90^{\circ}$ , what is truly. Thus, $BF_1=BF$ , i.e. $F\in DE$ .



PP19 (Ruben Dario). $A$-isosceles $\triangle ABC$ and $\{D,E\}\subset(BC)$ so that $m\left(\widehat{BAD}\right) +m\left(\widehat{CAE}\right)=m\left(\widehat{DAE}\right)\implies$ $\boxed{DE^2=BD^2+CE^2+2\cdot BD\cdot CE\cdot \cos A}\ (*)$

Proof 1 (Nicolás Vilches). Let $\left\{\begin{array}{ccc}
m\left(\widehat{BAD}\right) & = & x\\\\
m\left(\widehat{CAE}\right) & = & y\\\\
m\left(\widehat{DAE}\right) & = & z\end{array}\right\|$ , where $x+y=z$ and $A=2z$ . Construct the point $X$ so that $\triangle ADB\equiv\triangle ADX$ the line $AD$ separates $B$ , $X$ .

Prove easily that $\triangle AEC\equiv\triangle AEX$ , where $\left\{\begin{array}{ccccc}
DB=DX & ; & m\left(\widehat{DEX}\right) & = & 2x\\\\
EC=EX & ; & m\left(\widehat{EDX}\right) & = & 2y\end{array}\right\|\ .$ Apply the theorem of Sines in $\triangle DEX\ :\ \frac {DX}{\sin 2x}=\frac {EX}{\sin 2y}=\frac {DE}{\sin 2z}\iff$

$\frac {DB}{\sin 2x}=\frac {EC}{\sin 2y}=\frac {DE}{\sin 2z}\ .$ In conclusion, The relation $(*)$ is true $\iff\ \sin^22z=\sin^22x+\sin^22y+2\cdot\sin 2x\cdot \sin 2y\cdot \cos 2z\ .$ I"ll can use the well

known identity $\boxed{\sin^2a-\sin^2b=\sin (a+b)\sin (a-b)}$ . Indeed, $\sin^2{(u+v)}=$ $\sin^2u+\sin^2v+$ $2\sin u\sin v\cos (u+v)\iff$ $\sin^2(u+v)-\sin^2u=$

$\sin v[\sin v+2\sin u\cos (u+v)]\iff$ $\sin (2u+v)\sin v=\sin v[\sin v+2\sin u\cos (u+v)]\iff$ $\sin (2u+v)-\sin v=2\sin  u\cos (u+v)$ , what is true.

Proof 2. Let the midpoint $H$ of $[BC]$ and suppose w.l.o.g. $AH=1$ . Let $\left\{\begin{array}{ccc}
m\left(\widehat{BAD}\right)=x & ; & \tan x=m\\\
m\left(\widehat{CAE}\right)=y & ; & \tan y=n\\\
m\left(\widehat{DAE}\right)=z & ; & \tan z=p\end{array}\right\|$ , where $x+y=z$ and $A=2z$ . Thus, $z=x+y\implies$

$\tan z=\frac {\tan x+\tan y}{1-\tan x\tan y}\implies$ $\boxed{p=\frac {m+n}{1-mn}}\ (1)$ and $\cos 2z=\frac {1-\tan^2z}{1+\tan^2z}\implies$ $\cos 2z=\boxed{\cos A=\frac {1-p^2}{1+p^2}}\ (2)$ . Observe that $\left\{\begin{array}{c}
m\left(\widehat{DAH}\right)=y\\\
m\left(\widehat{EAH}\right)=x\end{array}\right\|$ , $HB=HC=p$

and $\left\{\begin{array}{ccc}
HD=n & ; & HE=m\\\\
DB=p-n & ; & EC=p-m\end{array}\right\|$ . Therefore, the relation $(*)$ is equivalently with the relation $(m+n)^2=(p-n)^2+(p-m)^2+2(p-n)(p-m)\cdot\frac {1-p^2}{1+p^2}\ \stackrel{(2)}{\iff}$

$mn=p^2-p(m+n)+(p-n)(p-m)\cdot\frac {1-p^2}{1+p^2}\iff$ $2mn=(p-m)(p-n)\cdot\left[1+\frac {1-p^2}{1+p^2}\right]\iff$ $mn\left(1+p^2\right)=(p-m)(p-n)\iff$ the true relation $(1)$ .

Proof 3. Let $\left\{\begin{array}{ccc}
m\left(\widehat{BAD}\right)=x\\\
m\left(\widehat{CAE}\right)=y\\\
m\left(\widehat{DAE}\right)=z\end{array}\right\|$ , where $x+y=z$ and $2z=A\ ,\ B=C=90^{\circ}-z$ . Apply the theorem of Sines to $\triangle DAE\ :\ \frac {AD}{\cos x}=\frac {DE}{\sin z}=\frac {AE}{\cos y}\implies$

$\odot\begin{array}{ccccc}
\nearrow & AD=DE\cdot\frac {\cos x}{\sin z} & \searrow\\\\
\searrow & AE=DE\cdot\frac {\cos y}{\sin z} & \nearrow\end{array}\odot$ Apply the theorem of Sines to $:\ \begin{array}{cccccccc}
\nearrow & \triangle ABD\ : & \frac {DB}{\sin x}=\frac {AD}{\cos z} & \stackrel{(1)}{\implies} & DB=DE\cdot\frac {\cos x}{\sin z}\cdot \frac {\sin x}{\cos z} & \implies & \frac {DB}{\sin 2x}=\frac {DE}{\sin 2z} & \searrow\\\\
\searrow & \triangle ACE\ : & \frac {CE}{\sin y}=\frac {AE}{\cos z} & \stackrel{(2)}{\implies} & CE=DE\cdot\frac {\cos y}{\sin z}\cdot \frac {\sin y}{\cos z} & \implies & \frac {CE}{\sin 2y}=\frac {DE}{\sin 2z} & \nearrow\end{array}\odot\ .$

The relation $(*)$ is true $\iff\ \sin^22z=\sin^22x+\sin^22y+2\cdot\sin 2x\cdot \sin 2y\cdot \cos 2z\iff$ $\sin^22z=\sin^22x+\sin^22y+\cos 2z\left[\cos 2(x-y)-\cos 2z\right]\iff$

$\sin^22z+\cos^2 2z=\sin^22x+\sin^22y+\cos 2(x+y)\cos 2(x-y)\iff$ $2=(1-\cos 4x)+(1-\cos 4y)+\cos 4x+\cos 4y$ what is true.



PP20. Let a rectangle $ABCD$ with $\left\{\begin{array}{ccc}
AB & = & a\\\\
BC & = & b\end{array}\right\|$ and a circle $w$ with the diameter $[AB]$ . For a mobile point $M\in w$ so that the $AB$ doesn't separate $M$ , $C$ let $\left\{\begin{array}{ccc}
MA & = & x\\\
MB & = & y\end{array}\right\|$

and the intersections $G$ , $F$ of $AB$ with $MC$ , $MD$ respectively. Prove that $\boxed{AG^2+BF^2=AB^2+\left(a^2-2b^2\right)\left(\frac {xy}{xy+ab}\right)^2}\ (*)$ . For $a=b\sqrt 2$ obtain the Fermat's problem.


Proof. See here.
This post has been edited 350 times. Last edited by Virgil Nicula, Oct 26, 2015, 12:16 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a