382. Peruan "jewels" (Israel Diaz, M. O. Sanchez a.s.o.)

by Virgil Nicula, Jul 30, 2013, 2:00 PM

PP1 (Israel Diaz Acha). Let an acute $\triangle ABC$ with circumcircle $w=C(O,R)$ . Denote the midpoints $M$ , $N$ ,

$P$ of $[BC]$ , $[CA]$ , $[AB]$ respectively. Suppose that $OM=\sqrt 2$ , $ON=1$ , $OP=\sqrt 5$ . Find $R$ and $\widehat{ACB}$ .


Proof 1. Apply the Ptolemy's relation to $:\ \left\{\begin{array}{cc}
ONAP\ : & -aR+b\sqrt 5+c=0\\\\
OMBP\ : & a\sqrt 5-bR+c\sqrt 2=0\\\\
OMCN\ : & a+b\sqrt 2-cR=0\end{array}\right\|$ . Thus, $\left|\begin{array}{ccc}
-R & \sqrt 5 & 1\\\\
\sqrt 5 & -R & \sqrt 2\\\\
1 & \sqrt 2 & -R\end{array}\right|=0\ \iff\ R^3$ $-8R-2\sqrt {10}=0\iff$

$\left(R-\sqrt {10}\right)\left(R^2+R\sqrt {10}+2\right)=0\iff \boxed{R=\sqrt{10}}\ (*)$ . Therefore, $\left\{\begin{array}{c}
-aR+b\sqrt 5+c=0\\\\
a\sqrt 5-bR+c\sqrt 2=0\end{array}\right\|\iff$ $\frac {a}{\left|\begin{array}{cc}
\sqrt 5 & 1\\\
-R & \sqrt 2\end{array}\right|}=$ $\frac {b}{\left|\begin{array}{cc}
1 & -R\\\
\sqrt 2 & \sqrt 5\end{array}\right|}=$ $\frac {c}{\left|\begin{array}{cc}
-R & \sqrt 5\\\
\sqrt 5 & -R\end{array}\right|}\stackrel{(*)}{\iff}$

$\frac a{2\sqrt {10}}=\frac b{3\sqrt 5}=\frac c5$ $\iff$ $\boxed{\frac a{2\sqrt 2}=\frac b3=\frac c{\sqrt 5}}$ . In conclusion, $\cos C=\frac {a^2+b^2-c^2}{2ab}=$ $\frac {8+9-5}{12\sqrt 2}=\frac 1{\sqrt 2}\implies$ $\cos C=\frac {\sqrt 2}{2}\implies$ $\boxed{C=45^{\circ}}$ .

Proof 2. Apply the Ptolemy's relation in the quadrilateral $ANOP\ :\ c+b\sqrt 5=aR$ . Prove easily that $\boxed{a^2+8=b^2+4=c^2+20=4R^2}\ (1)$ . Therefore,

$c+b\sqrt 5=aR\ \stackrel{(1)}{\iff}\ \sqrt {R^2-5}+$ $\sqrt {5\left(R^2-1\right)}=R\sqrt{R^2-2}\iff$ $6R^2-10+2\sqrt {5\left(r^4-6R^2+5\right)}=R^4-2R^2\iff$ $R^4-8R^2+10=2\sqrt{5\left(R^4-6R^2+5\right)}\iff$

$\left(t^2-8t+10\right)^2=20\left(t^2-6t+5\right)\iff$ $t^4-16t^3+64t^2-40t=0\iff$ $9(t-10)\left(t^2-6t+4\right)=0$ , where $\boxed{R^2=t>5}$ . Thus, $\boxed{R=\sqrt {10}}$ and from the relation $(1)$

obtain that $\left\{\begin{array}{ccc}
a & = & 4\sqrt 2\\\\
b & = & 6\\\\
c & = & 2\sqrt 5\end{array}\right\|$ , i.e. $\boxed{\frac a{2\sqrt2}=\frac b3=\frac c{\sqrt 5}=2}$ . In conclusion, $\cos C=\frac {a^2+b^2-c^2}{2ab}=$ $\frac {8+9-5}{12\sqrt 2}=\frac 1{\sqrt 2}\implies$ $\cos C=\frac {\sqrt 2}{2}\implies$ $\boxed{C=45^{\circ}}$ .

Proof 3. Prove easily $\boxed{\frac {a^2}4+2=\frac {b^2}4+1=\frac {c^2}4+5=R^2}\ (1)$ and Pythagoras' theorem $:\ \left\{\begin{array}{ccc}
PN^2=\frac {a^2}{4}=5+1+2\sqrt 5\cos A & \stackrel{(1)}{\implies} & R^2=8+2\sqrt 5\cos A\\\\
PM^2=\frac {b^2}{4}=5+2+2\sqrt {10}\cos B & \stackrel{(1)}{\implies} & R^2=8+2\sqrt {10}\cos B\\\\
MN^2=\frac {c^2}{4}=2+1+2\sqrt 2\cos C & \stackrel{(1)}{\implies} & R^2=8+2\sqrt 2\cos C\end{array}\right\|$ $\implies$

$R^2-8=2\sqrt 5\cos A=2\sqrt {10}\cos B=2\sqrt 2\cos C\implies$ $\frac {\cos A}{\sqrt 2}=\frac {\cos B}{1}=\frac {\cos C}{\sqrt 5}=\lambda$ , where $\lambda=\frac {R^2-8}{2\sqrt{10}}$ . Apply identity $\boxed{\ \sum\cos A+2\prod\cos A=1\ }\ :$

$2\lambda^2+\lambda^2+5\lambda^2+2\lambda^3\sqrt {10}=1\iff$ $2\lambda^3\sqrt {10}+8\lambda^2-1=0\iff$ $\left(\lambda\sqrt {10}-1\right)\left(2\lambda^2+\lambda\sqrt {10}+1\right)=0\iff$ $\lambda=\frac 1{\sqrt {10}}\iff$ $\left\{\begin{array}{c}
R=\sqrt{10}\\\\
\cos C=\frac {\sqrt 2}{2}\end{array}\right\|\implies$ $\boxed{C=45^{\circ}}$ .



PP2 (Miquel Ochoa Sanchez). Let an equilateral $\triangle ABC$ and $\left\{\begin{array}{ccc}
E\in (AC) & ; & F\in (AF)\\\\
G\in BE\cap CF & ; & L\in EF\cap AG\end{array}\right\|$ . Prove that $[AEGF]=[BGC]\implies \frac {LF}{LE}=\frac {GB}{GC}$ .

Proof. $[AEGF]=[BGC]\implies [ABE]=[BCF]\implies$ $AB\cdot AE=BC\cdot BF\implies$ $AE=BF\implies$ $ABE=BCF\implies \widehat{BFC}\equiv\widehat{BEA}\implies$ $AEGF$ is cyclic $\implies$

$\triangle CEG\sim\triangle CFA\implies$ $\boxed{\frac {EG}{FA}=\frac {CG}{CA}}\ (*)$ . Apply the Menelaus' theorem to $\overline{ALG}/\triangle BEF\ :\ \frac {AF}{AB}\cdot\frac {GB}{GE}\cdot\frac {LE}{LF}=1\stackrel{(*)}{\implies}$ $\frac {EG}{GC}\cdot\frac {GB}{GE}\cdot\frac {LE}{LF}=1\implies$ $\frac {LF}{LE}=\frac {GB}{GC}$ .


An easy extension. Let an $A$-isosceles $\triangle ABC$ be and $\left\{\begin{array}{ccc}
E\in (AC) & ; & F\in (AF)\\\\
G\in BE\cap CF & ; & L\in EF\cap AG\end{array}\right\|$ so that $AEGF$ is cyclic. Prove that $\frac {LF}{LE}=\frac {GB}{GC}$ .

Proof 1. cyclic $AEGF\implies$ $\triangle CEG\sim\triangle CFA\implies$ $\boxed{\frac {EG}{FA}=\frac {CG}{CA}}\ (*)$ . Menelaus' to $\overline{ALG}/\triangle BEF\ :\ \frac {AF}{AB}$ $\cdot\frac {GB}{GE}\cdot\frac {LE}{LF}=1\stackrel{(*)}{\implies}$ $\frac {EG}{GC}\cdot\frac {GB}{GE}\cdot\frac {LE}{LF}=1\implies$ $\frac {LF}{LE}=\frac {GB}{GC}$ .

Proof 2. $AEGF$ is cyclic $\implies$ $\left\{\begin{array}{ccc}
\triangle CEG\sim\triangle CFA & \implies & \frac {FA}{EG}=\frac {CA}{CG}\\\\
\triangle BFG\sim\triangle BEA & \implies & \frac {FG}{EA}=\frac {BG}{BA}\end{array}\right\|\ (*)$ . Apply $\frac {LF}{LE}=\frac {FA\cdot FG}{EA\cdot EG}\implies$ $\frac {LF}{LE}=\frac {FA}{EG}\cdot\frac {FG}{EA}\stackrel{(*)}{\implies}$ $\frac {LF}{LE}=\frac {CA}{CG}\cdot\frac {BG}{BA}\implies$ $\frac {LF}{LE}=\frac {GB}{GC}$



Lemma. Let $ABC$ be a triangle so that $c<a$ , i.e. exists $D\in (BC)$ so that $CD=AB$ . Suppose that $C<\frac {\pi}{4}$ . Then $\boxed{B=2C\iff DA=DC}$ .

Proof. Denote $m\left(\widehat{CAD}\right)=x$ and observe that $CD=AB\iff$ $\frac {CD}{AD}=\frac {AB}{AD}\iff$ $\frac{\sin x}{\sin C}=\frac {\sin (x+C)}{\sin B}$ . Thus, $B=2C\iff$ $\frac{\sin x}{\sin C}=\frac {\sin (x+C)}{\sin 2C}\iff$

$\sin x\sin 2C=\sin C\sin (x+C)\iff$ $\cos (2C-x)-\cos (2C+x)=\cos x-\cos (2C+x)\iff$ $\cos (2C-x)=\cos x\iff x=C\iff$ $DA=DC$ .

Now suppose that $DA=DC$ . Then $DA=AB$ and $x=C\ ,\ B=m\left(\widehat{ADB}\right)\implies$ $B=x+C=2C\implies$ $B=2C$ .


PP3 (Miquel Ochoa Sanchez). Let $ABC$ be a triangle with $B=40^{\circ}$ and $C=20^{\circ}$ . Denote $\left\{\begin{array}{cc}
D\in (BC)\ : & DC=AB\\\\
E\in (AC)\ : & CE=BD\end{array}\right\|$ . Prove that $m\left(\widehat{CED}\right)=30^{\circ}$ .

Proof 1. Denote $m\left(\widehat{CED}\right)=x$ , Thus, $DC=c$ , $CE=a-c$ and $\frac {CD}{\sin \widehat{CED}}=\frac {CE}{\sin\widehat{CDE}}\iff$ $\frac {c}{\sin x}=\frac {a-c}{\sin\left(x+20^{\circ}\right)}=\frac {a}{\sin x+\sin\left(x+20^{\circ}\right)}$ . Since

$\frac {c}{\sin 20^{\circ}}=\frac a{\sin 60^{\circ}}$ obtain that $\frac {\sin 20^{\circ}}{\sin x}=\frac {\sin 60^{\circ} }{\sin x+\sin\left(x+20^{\circ}\right)}\iff$ $\frac {\sin 20^{\circ}}{\sin x}=\frac {\cos 30^{\circ}}{2\cos 10^{\circ}\sin\left(x+10^{\circ}\right)}\iff$ $\sin \left(x+10^{\circ}\right)\left(\sin 30^{\circ}+\sin 10^{\circ}\right)=\sin x\cos 30^{\circ}\iff$

$\sin \left(x+10^{\circ}\right)\left(1+2\sin 10^{\circ}\right)=2\sin x\cos 30^{\circ}\iff$ $\sin \left(x+10^{\circ}\right)+\cos x-\cos \left(x+20^{\circ}\right)=\sin \left(x+30^{\circ}\right)+\sin \left(x-30^{\circ}\right)\iff$

$\sin \left(x-30^{\circ}\right)+\sin \left(x+30^{\circ}\right)-\sin \left(90^{\circ}-x\right)+$ $\cos \left(x+20^{\circ}\right)-\cos \left(80^{\circ}-x\right)=0\iff$ $\sin \left(x-30^{\circ}\right)+2\sin \left(x-30^{\circ}\right)\cos 60^{\circ}+2\sin 50^{\circ}\sin \left(30^{\circ}-x\right)=0\iff$

$\sin \left(x-30^{\circ}\right)\left(1-\sin 50^{\circ}\right)=0\iff$ $x=30^{\circ}\iff$ $m\left(\widehat{CED}\right)=30^{\circ}$ .

Proof 2. Construct $\triangle BDF$ so that $BC$ separates $A$ , $F$ and $\triangle BDF\sim\triangle CED$ . Hence $m\left(\widehat{BDF}\right)=m\left(\widehat{CED}\right)=x$ , $m\left(\widehat{ABF}\right)=60^{\circ}$ , $DF=ED$ , $BF=CD=AB$ ,

i.e. $\triangle ABF$ is equilateral. Using upper lemma obtain $DA=DC$ , i.e. $m\left(\widehat{CAD}\right)=20^{\circ}$ , $m\left(\widehat{DAF}\right)=m\left(\widehat{CDA}\right)=40^{\circ}$ and $ADF$ is an $A$-isosceles triangle, i.e.

$m\left(\widehat{AFD}\right)=m\left(\widehat{ADF}\right)=70^{\circ}\implies$ $x+40^{\circ}=70^{\circ}\iff$ $x=30^{\circ}\iff$ $m\left(\widehat{CED}\right)=30^{\circ}$ .


An easy extension. Let $\triangle ABC$ with $D\in (BC)$ , $DC=c$ . Let $E\in (AC)$ for which $CE=a-c$ and $m\left(\widehat{CED}\right)=x$ . Prove that $B=2C\iff \tan x=\frac {\sin C}{2\cos 2C-\cos C}$ .

Proof. Apply the theorem of Sines in $\triangle CED\ :\  \frac {c}{\sin x}=$ $\frac {a-c}{\sin (x+C)}=\frac a{\sin x+\sin (x+C)}$ . Therefore, $B=2C\iff$ $\frac {\sin C}{\sin x}=\frac {\sin 3C}{\sin x+\sin (x+C)}\iff$

$\sin x(1+2\cos 2C)=\sin x+\sin (x+C)\iff$ $2\sin x\cos 2C=\sin (x+C)\iff$ $2\tan x\cos 2C=\tan x\cos C+\sin C\iff$ $\tan x=\frac {\sin C}{2\cos 2C-\cos C}$ .

Particular case. $C=20^{\circ}\implies$ $\frac {\sin C}{2\cos 2C-\cos C}=$ $\frac {\sin 20^{\circ}}{2\cos 40^{\circ}-\cos 20^{\circ}}=$ $\frac{\sin 20^{\circ}}{2\cos (60^{\circ}-20^{\circ})-\cos 20^{\circ}}=$ $\frac {\sin 20^{\circ}}{\cos 20^{\circ}+\sin 20^{\circ}\sqrt 3-\cos 20^{\circ}}=$

$\frac {\sin 20^{\circ}}{\sin 20^{\circ}\sqrt 3}=\frac 1{\sqrt 3}$ . Thus, $B=40^{\circ}\ \wedge\ C=20^{\circ}\iff$ $\tan x=\frac 1{\sqrt 3}$ , i.e. $m\left(\widehat{CED}\right)=30^{\circ}$ .



PP4. Let an equilateral $\triangle ABC$ with incircle $w$ for which denote $E\in AC\cap w$ , $F\in AB\cap w$ . Let $X\in (AF)$ , $Y\in (AE)$ so that $XY$ is tangent to $w$ . Prove that $\frac {XA}{XB}+\frac {YA}{YC}=1$ .

Proof. Let $T\in XY\cap w$ , $\left\{\begin{array}{c}
XF=x\\\\
YE=y\end{array}\right\|$ . Suppose w.l.o.g. $AB=2$ . Thus, $XY=x+y$ , $\left\{\begin{array}{c}
XA=1-x\ ;\ YA=1-y\\\\
XB=1+x\ ;\ YC=1+y\end{array}\right\|$ . Apply Pythagoras' theorem to $\triangle XAY\ :$

$(1-x)^2$ $+(1-y)^2=(1-x)(1-y)+(x+y)^2\iff$ $\boxed{(x+y)+3xy=1}\ (*)$ . So $\frac {XA}{XB}+\frac {YA}{YC}=\frac {1-x}{1+x}+\frac {1-y}{1+y}=$ $\frac {2(1-xy)}{1+(x+y)+xy}\ \stackrel{(*)}{\implies}\ \boxed{\frac {XA}{XB}+\frac {YA}{YC}=1}$ .

Remark (Ruben Auqui). $\frac {1}{XB}+\frac {1}{YC}=\frac {1}{1+x}+\frac 1{1+y}=\frac {2+x+y}{1+x+y+xy}\stackrel{(*)}{=}\frac 32\implies$ $\boxed{\frac {1}{XB}+\frac {1}{YC}=\frac 3{AB}}$ .



PP5. Let a trapezoid $ABCD$ with $AB\parallel CD$ , $P\in CB\cap AD$ . For $X\in (AB)$ let $Y\in CD\cap PX$ , $R\in AY\cap BD$ , $T\in PR\cap AB$ . Prove that $\frac 1{AT}=\frac 1{AB}+\frac 1{AX}$ .

Proof. Menelaus' to $\overline{PRT}/\triangle ABD\ :\ \frac {PD}{PA}\cdot$ $\frac {TA}{TB}\cdot\frac{RB}{RD}=1\iff$ $\frac {DY}{AX}\cdot \frac {TA}{TB}\cdot\frac {AB}{DY}=1\iff$ $\frac {TB}{TA}=\frac {AB}{AX}\iff$ $\frac {AB}{AT}=1+\frac {TB}{AT}=1+\frac {AB}{AX}\iff$ $\frac 1{AT}=\frac 1{AB}+\frac 1{AX}$ .


PP6. Let $\triangle ABC$ and $A$-bisector $AD$ , where $D\in (BC)$ . For $P\in (AD)$ denote $\left\{\begin{array}{c}
R\in AB\cap CP\\\\
Q\in AC\cap BP\end{array}\right\|$ . Prove that $[ARPQ]=[BPC]\ \iff\ \frac {PA}{PD}=\frac {b+c}{\sqrt{bc}}$ .

Proof. Ceva's theorem to $P\ :\ \frac {DB}{DC}\cdot \frac {QC}{QA}\cdot \frac {RA}{RB}=1\iff$ $\boxed{\frac {QA}{QC}=\frac cb\cdot\frac {RA}{RB}}\ (*)$ . Thus, $[ARPQ]=[BPC]\iff$ $[ABQ]=[BCR]\iff$ $\frac {[ABQ]}{[ABC]}=\frac {[BCR]}{[ACB]}\iff$

$\frac {AQ}{AC}=\frac{BR}{AB}\iff$ $\frac {QA}{QC}=\frac {RB}{RA}\ \stackrel{(*)}{\iff}\ \boxed{\frac {QA}{QC}=\frac {RB}{RA}=\sqrt {\frac cb}}\ (1)$ . Van Aubel's $:\ \frac {PA}{PD}=\frac {RA}{RB}+\frac {QA}{QC}=$ $\sqrt{\frac bc}+\sqrt {\frac cb}\implies$ $\frac {PA}{PD}=\frac {b+c}{\sqrt{bc}}$ .


An easy extension. Let $\triangle ABC$ and $D\in (BC)$ so that $\frac {DB}{DC}=m\in\mathbb R^*_+$ . For $P\in (AD)$ denote $\left\{\begin{array}{c}
R\in AB\cap CP\\\\
Q\in AC\cap BP\end{array}\right\|$ . Prove that $[ARPQ]=[BPC]\ \iff\ \frac {PA}{PD}=\frac {m+1}{\sqrt m}$ .

Particular case. If $P:=L$ - Lemoine's point, then $\frac {DB}{DC}=m=\frac {c^2}{b^2}$ and $[ARPQ]=[BPC]\iff \frac {PA}{PD}=\frac {b^2+c^2}{bc}$ .



PP7 (Miguel Ochoa Sanchez). Let an $A$-isosceles $\triangle ABC$ and the interior point $P$ so that $\left\{\begin{array}{c}
m\left(\widehat{PAB}\right)=12^{\circ}\\\\
m\left(\widehat{PAC}\right)=24^{\circ}\\\\
m\left(\widehat{PBA}\right)=18^{\circ}\end{array}\right\|$ . Prove that $m\left(\widehat{PCA}\right)=30^{\circ}$ .

Proof 1 (trigonometric). Denote $m\left(\widehat{PCA}\right)=x$ . Observe that $m\left(\widehat{PBC}\right)=54^{\circ}$ and $m\left(\widehat{PCB}\right)=72^{\circ}-x$ . Apply trigonometric form of Ceva's theorem:

$\sin \widehat{PAB}\sin\widehat{PBC}\sin \widehat{PCA}=\sin\widehat{PAC}\sin\widehat{PBA}\sin\widehat{PCB}\iff$ $\sin 12^{\circ}\sin 54^{\circ}\sin x=\sin 24^{\circ}\sin 18^{\circ}\sin (18^{\circ}+x)\iff$

$\cos 36^{\circ}\sin x=2\cos 12^{\circ}\sin 18^{\circ}\cos (18^{\circ}+x)\iff$ $(2\cos 24^{\circ}-1)\sin x=2\sin 18^{\circ}\cos (18^{\circ}+x)\iff$ $(\cos 24^{\circ}-\cos 60^{\circ})\sin x=\sin 18^{\circ}\cos (18^{\circ}+x)\iff$

$2\sin 42^{\circ}\sin x=\cos (18^{\circ}+x)\iff$ $\cos (42^{\circ}-x)-\cos (42^{\circ}+x)=\cos (18^{\circ}+x)\iff$ $\cos (42^{\circ}-x)-\cos (18^{\circ}+x)=\cos (42^{\circ}+x)\iff$

$2\sin 30^{\circ}\sin (x-12^{\circ})=\cos (42^{\circ}+x)\iff$ $\sin (x-12^{\circ})=\cos (42^{\circ}+x)\iff$ $\cos (102^{\circ}-x)=\cos (42^{\circ}+x)\iff$ $102^{\circ}-x=42^{\circ}+x\iff$ $m\left(\widehat{PCA}\right)=30^{\circ}$ .

Proof 2 (synthetic). Take $D$ the reflection of $A$ in $BP$, see that $\Delta ADP$ is equilateral, while $\Delta BAD\cong\Delta ABC(s.a.s.)$; consequently $ABCD$ is an isosceles trapezoid, i.e. cyclic.

Since $BD$ is the bisector of $\angle ABC$, we get $CD=AD$, hence $AD=CD=PD$, or $D$ is the circumcenter of $\Delta APC\implies\angle ACP=\frac{\widehat{ADP}}{2}=30^\circ$ (Sunken Rock).

Proof 3 (synthetic). Take $D$ as above and $E\in AC\cap BP$ , see that $\Delta BCE$ is isosceles, so $CE=BC$ and $m(\widehat{BDE})=m(\widehat{BAC}) = 36^\circ=\frac{m\widehat{ACB}}{2}$, hence $C$ is

the circumcenter of $\Delta BDE$ and $CD=BC$; but, as shown above, $AD=BC$, consequently $D$ is the circumcenter of $\Delta APC\implies\angle ACP=\frac{\widehat{ADP}}{2}=30^\circ$ . (Sunken Rock)



Lemma. Prove that equation $\boxed{\sin 3x\sin 5x=\sin 2x\sin 8x}\ ,\ x\in\left(0,\frac {\pi}{10}\right)\ (*)$ has only one zero $x=6^{\circ}$ , i.e. $x=\frac {\pi}{30}$ .

Proof 1. $\sin 3x\sin 5x=\sin 2x\sin 8x\ \|\ \odot\ 2\cos 3x\ne 0\iff$ $\sin 6x\sin 5x=\sin 2x(\sin 11x+\sin 5x)\iff$

$\sin 5x(\sin 6x-\sin 2x)=$ $\sin 2x\sin 11x\iff$ $2\sin 5x\sin 2x\cos 4x=$ $\sin 2x\sin 11x\iff$ $2\sin 5x\cos 4x=$

$\sin 11x\iff$ $\sin 9x+\sin x=\sin 11x\iff$ $\sin x=\sin 11x-\sin 9x\iff$ $\sin x=2\sin x\cos 10x\iff$ $x=6^{\circ}$

Remark. Let $0<b<a<\frac {\pi}{2}$ so that $\frac a5=\frac b3=x$ . Thus, $\sin b\sin a=\sin (a-b)\sin (a+b)\ \odot\ 2\cos b\ \implies\ \sin a$ $\sin 2b=\sin (a-b)[\sin (a+2b)+\sin a]\implies$

$\sin a[\sin 2b-\sin (a-b)]=\sin (a-b)\sin (a+2b)\implies$ $2\sin a\sin\frac {3b-a}{2}\cos\frac {a+b}{2}=\sin (a-b)\sin (a+2b)$ . Since $\frac{3b-a}{2}=a-b$ get

$2\sin a\cos \frac {a+b}{2}=\sin (a+2b)\implies$ $\sin\frac {3a+b}{2}+\sin\frac {a-b}{2}=\sin (a+2b)\implies$ $\sin \frac {a-b}{2}=\sin (a+2b)-\sin\frac {3a+b}{2}\implies$ $\sin\frac {a-b}{2}=2\sin\frac {3b-a}{4}\cos\frac {5(a+b)}{4}$ .

Since $2(a-b)=3b-a$ get $\cos\frac {5(a+b)}{4}=\frac 12\implies$ $5(a+b)=240^{\circ}\implies$ $a+b=48^{\circ}\implies$ $x=\frac a5=\frac b3=\frac {48^{\circ}}{8}=6^{\circ}\implies$ $x=6^{\circ}$ .

Proof 2. Let $0<b<a<\frac {\pi}{2}$ . Thus, $\sin a\sin b=\sin (a-b)\sin(a+b)\iff \sin a\sin b=\sin^2a-\sin^2b\iff$ $\left(\frac {\sin a}{\sin b}\right)^2-\left(\frac {\sin a}{\sin b}\right)-1=0\iff$ $\frac {\sin a}{\sin b}=\frac {1+\sqrt 5}{2}=$

$\frac {{\frac 12}}{\frac {-1+\sqrt 5}{4}}=\frac {\sin 30}{\sin 18}$ . In the particular case $a=5x\ ,\ b=3x$ obtain that $\frac {\sin 5x}{\sin 3x}=\frac {\sin (5\cdot 6)}{\sin (3\cdot 6)}\implies x=6$ because the function $f(x)=\frac {\sin 5x}{\sin 3x}\ ,\ x\in\left(0,\frac {\pi}{10}\right)$ is injectively. Indeed,

$f'(x)\ .s.$ $s.\ (5\cos 5x\sin 3x-3\cos 3x\sin 5x)\ .a.$ $s.\ (5\tan3x-3\tan 5x)\ .s.$ $s.\ \left(\frac{\tan 3x}{3}-\frac {\tan 5x}{5}\right)=g(x)$ , where $g'(x)=\left(\tan^23x-\tan^25x\right)\ .s.s.$

$\left(\tan 3x-\tan 5x\right)\ .s.s.$ $(3x-5x)<0$ . Hence $g'(x)<0\implies$ $g\searrow $ . Since $g(0)=0$ get $g(x)<0$ , i.e. $f'(x)<0\implies$ $f\searrow$ , i.e. $f$ is strict decreasing $\implies$ $f$ is injectively.

Remark. I defined the equivalence relation $X\ .s.s.\ Y\ \iff\ X=Y=0\ \vee\ XY>0$ , i.e. $\mathrm{sign}(X)=\mathrm{sign}(Y)$ what means that $X$ and $Y$ have same sign.



PP8. Let $\triangle ABC$ and $D\in (BC)$ so that exists $x\in \left(0,\frac {\pi}{8}\right)$ such that $\left\{\begin{array}{c}
m\left(\widehat{DAB}\right)=x\\\\
B=2x\ ;\ C=5x\end{array}\right\|$ . Prove that $DC=AB\ \iff\ x=6^{\circ}$ .

Proof. $m\left(\widehat{DAC}\right)=\pi -8x>0$ , $m\left(\widehat{ADC}\right)=3x$ and $DC=AB\iff$ $\frac {DC}{DA}=\frac {AB}{DA}\iff$ $\frac {\sin 8x}{\sin 5x}=\frac {\sin 3x}{\sin 2x}\iff$ $\sin 3x\sin 5x=\sin 2x\sin 8x\ \stackrel{(\mathrm{lemma})}{\iff}\ x=6^{\circ}$ .


PP9 (Miquel Ochoa Sanchez). Let $\triangle ABC$ and its interior point $P$ so that $\left\{\begin{array}{c}
m\left(\widehat{BAP}\right)=18^{\circ}\\\\
m\left(\widehat{CAP}\right)=102^{\circ}\\\\
m\left(\widehat{ACP}\right)=24^{\circ}\end{array}\right\|$ . Prove that $PC=AB\ \iff\ x=12^{\circ}$

Proof. Denote $m\left(\widehat{BAP}\right)=x$ . Thus, $PC=AB\iff$ $\frac {PC}{AP}=\frac {AB}{AP}\iff$ $\frac {\sin 102^{\circ}}{\sin 24^{\circ}}=\frac {\sin (18^{\circ}+x)}{\sin x}\iff$ $\sin x\cos 12^{\circ}=\sin 24^{\circ}\sin (18^{\circ}+x)\iff$

$\sin x=2\sin 12^{\circ}\sin (18^{\circ}+x)\iff$ $\tan x=2\sin 12^{\circ}(\sin 18^{\circ}+\cos 18^{\circ}\tan x)\iff$ $\tan x=\frac {2\sin 18^{\circ}\sin 12^{\circ}}{1-2\sin 12^{\circ}\cos 18^{\circ}}=$ $\frac {2\sin 18^{\circ}\sin 12^{\circ}}{1-(\sin 30^{\circ}-\sin 6^{\circ})}=$

$\frac {2\sin 18^{\circ}\sin 12^{\circ}}{\sin 30^{\circ}+\sin 6^{\circ}}=$ $\frac {2\sin 18^{\circ}\sin 12^{\circ}}{2\sin 18^{\circ}\cos 12^{\circ}}\implies$ $\tan x=\tan 12^{\circ}\implies x=12^{\circ}$ .



PP10. Let $ABC$ be a triangle with the incircle $w=C(I,r)$ . Denote $\left\{\begin{array}{ccc}
D\in BC\cap w & ; & M\in (DA\cap w\\\\
E\in CA\cap w & ; & N\in (EB\cap w\\\\
F\in AB\cap w & ; & P\in (FC\cap w\end{array}\right\|$ . Prove that $\boxed{\ \begin{array}{c}
\frac {MA}{MD}=\frac {a(s-a)}{4(s-b)(s-c)}\\\\
\frac {MA}{MD}+\frac {NB}{NE}+\frac {PC}{PF}\ge \frac 32\end{array}\ }$ .

Proof. Apply the Stewart's relation to the cevian $AD$ in $\triangle ABC\ :\ \boxed{a\cdot AD^2+a(s-b)(s-c)=b^2(s-b)+c^2(s-c)}$ . Since $AM\cdot AD=AE^2=(s-a)^2$

obtain that $\frac {AM}{AD}=\frac {a\cdot AM\cdot AD}{a\cdot AD^2}=$ $\frac{a(s-a)^2}{b^2(s-b)+c^2(s-c)-a(s-b)(s-c)}\implies$ $\frac {MA}{MD}=\frac {a(s-a)^2}{b^2(s-b)+c^2(s-c)-a(s-b)(s-c)-a(s-a)^2}$ . Observe that

$b^2(s-b)+c^2(s-c)-a(s-b)(s-c)-a(s-a)^2=$ $b^2(s-b)+c^2(s-c)-a[bc-s(s-a)]-a(s-a)^2=$ $a^2(s-a)+b^2(s-b)+c^2(s-c)-abc$ .

Now I"ll use an well-known identity $\boxed{\sum a^2(s-a)=4sr(R+r)}$ . Hence $\frac {MA}{MD}=\frac {a(s-a)^2}{4sr(R+r)-4Rsr}\implies$ $\frac {MA}{MD}=\frac {a(s-a)^2}{4sr^2}\implies$ $\boxed{\frac {MA}{MD}=\frac {a(s-a)}{4(s-b)(s-c)}}$ a.s.o.

$\sum\frac {MA}{MD}=\frac 1{4(s-a)(s-b)(s-c)}\cdot\sum a(s-a)^2$ and $\sum a(s-a)^2=s^2\sum a-2s\sum a^2+\sum a^3=$ $2s^3-4s(s^2-r^2-4Rr)+8s^3-6s(s^2+r^2+4Rr)+$

$12Rsr=$ $2s(2r^2+8Rr-3r^2-12Rr+6Rr)=$ $2s(2Rr-r^2)\implies$ $\sum a(s-a)^2=2sr(2R-r)$ . So $\sum\frac {MA}{MD}=\frac {2sr(2R-r)}{4sr^2}=\frac {2R-r}{2r}\ge \frac 32$ because $R\ge 2r$ .



PP11. Let $\triangle ABC$ and its interior point $X$ for which denote $f(X)=(a\cdot XA)^2+(b\cdot XB)^2+(c\cdot XC)^2$ . Prove that $f(X)$ is minimum iff $X$ is the Lemoine's point of $\triangle ABC$ .

Proof. The power of Lemoine's point $L$ w.r.t. circumcircle $w$ is $p_w(L)=-3\cdot\left(\frac {abc}{a^2+b^2+c^2}\right)^2$ and for any $X$ there is the relation $f(X)=\left(a^2+b^2+c^2\right)\cdot \left[XL^2-p_w(L)\right]$ .

In conclusion, $f(X)$ is minimum if and only if $X:=L$ and in this case for any interior point $X$ we have $f(X)\ge \frac {3a^2b^2c^2}{a^2+b^2+c^2}=f(L)$ .



PP12. Prove that in any cyclical $ABCD$ exists the relation $MA^2\cdot [BCD]+MC^2\cdot [BAD]=MB^2\cdot [ADC]+MD^2\cdot [ABC]\ ,\ (\forall )\ M$ . Denote $[XYZ]$ - the area of $\triangle XYZ$ .

Proof. Denote $I\in AC\cap BD$ . Observe that $\left\{\begin{array}{c}
\frac {IA}{[BAD]}=\frac {IC}{[BCD]}=\frac {AC}{S}\\\\
\frac {IB}{[ABC]}=\frac {ID}{[ADC]}=\frac {BD}{S}\end{array}\right\|\ (*)$ , where $S=[ABCD]$ . Apply the Stewart's relation to the common cevian $MI$ in the triangles:

$\blacktriangleright\ \triangle AMC \implies $ $MI^2\cdot AC+IA\cdot IC\cdot AC=MA^2\cdot IC+MC^2\cdot IA\stackrel{(*)}{\implies}$ $S\cdot\left(MI^2+IA\cdot IC\right)=MA^2\cdot [BCD]+MC^2\cdot [BAD]\ \ \ (1).$

$\blacktriangleright\ \triangle BMD \implies $ $MI^2\cdot BD+IB\cdot ID\cdot BD=MB^2\cdot ID+MD^2\cdot IB\stackrel{(*)}{\implies}$ $S\cdot\left(MI^2+IB\cdot ID\right)=MB^2\cdot [ADC]+MD^2\cdot [ABC]\ \ \ (2).$

Since $ABCD$ is cyclically get that $IA\cdot IC=IB\cdot ID=-p_w(I)$ , where $p_w(I)$ is the power of $I$ w.r.t. the circumcircle $w$ . From the relations

$(1)$ and $(2)$ obtain that $MA^2\cdot [BCD]+MC^2\cdot [BAD]=MB^2\cdot [ADC]+MD^2\cdot [ABC]=S\cdot\left[MI^2-p_w(I)\right]$ .



PP13. Let $\triangle ABC$ with $A=60^{\circ}$ , $b=16$ , $AD=20$ , where $E$ is midpoint of $[I_aI_c]$ and $D$ is projection of $E$ on $AB$ . Calculate $a$ and $c$ .

Proof 1. Let $\{U,V\}\subset AB$ so that $I_cU\perp AB$ and $I_aV\perp AB$ . Thus, $D$ is midpoint of $[UD]$ and $2\cdot UD=UV=$ $UB+BV=$ $(s-a)+(s-c)=b\implies$ $UD=\frac b2\implies$

$20=AD=AU+UD=(s-b)+\frac b2\implies$ $\boxed{a+c=40}$ . Remain to solve triangle with $A=60^{\circ}\ \wedge\ b=16\ \wedge\ a+c=40$ . Thus, $A=60^{\circ}\iff$ $a^2=b^2+c^2-bc\iff$

$(40-c)^2=16^2+c^2-16c\iff$ $1600-80c=256-16c\iff$ $c=\frac {1344}{64}\iff$ $\boxed{c=21\ \wedge\ a=19}$ .

Proof 2. Prove easily $E$ belongs to ircumcircle of $\triangle ABC$ and the bisector of $[AC]$ . If $F$ is projection of $E$ on $BC$ , then $DE=FE=x$ and $\triangle ADE\equiv \triangle CFE$ ,

i.e. $AD=CF=20\implies$ $c=AB=20+x$ and $a=BC=20-x$ . Thus, $a^2=b^2+c^2-bc\implies$ $(20-x)^2=16^2+(20+x)^2-16(20+x)\implies$ $(20+x)^2-(20-x)^2-16(4+x)=0\implies$

$80x-16(x+4)=0\implies$ $5x=x+4\implies$ $x=1\implies$ $a=19$ and $c=21$ .

Remark. Let midpoint $M$ of $[AC]$ and $\{X,Y\}\subset AC$ so that $I_cX\perp AC$ and $I_aY\perp AC$ . Since $XC=YA=s$ obtain $M$ is the midpoint and of $[XY]$ . Let $E'\in OM\cap w$ ,

where $w$ is circumcircle of $\triangle ABC$ . Thus, $E'\in I_aI_c$ and $E'\equiv E$ with $EM=\frac {r_a+r_c}{2}=\frac {bS}{2(s-a)(s-c)}=$ $\frac {b(s-b)}{2r}=\frac {2Rs(s-b)}{ac}=$ $2R\cos^2\frac B2=R(1+\cos B)$ .



PP14. The circle $w_1=C\left(I_1,r_1\right)$ is interior tangent to the circle $w_2=C\left(I_2,r_2\right)$ in the point $A$ . Find the maximum area of the triangle $XAY$ , where $X\in w_1$ and $Y\in w_2$ .

Proof 1. Denote $\{A,Y'\}=AY\cap w_1$ . Prove easily that $\frac {AY'}{AY}=\frac {r_1}{r_2}$ (constant). Thus, $[XAY]$ is maximum $\iff$ $[XAY']$ is maximum $\iff AX=XY'=Y'A$ .

Proof 2 (own). Consider the common tangent $t=AA$ to the circles $w_1$ and $w_2$ and a fixed point $T\in t$ so that the ray $[AX\subset \mathrm{int}\left(\widehat {TAY}\right)$. Denote $\left\{\begin{array}{c}
m\left(\widehat{TAX}\right)=x\\\\
m\left(\widehat{TAY}\right)=y\end{array}\right\|$ .

Suppose w.l.o.g. that $x<y$ . Prove easily that $\left\{\begin{array}{c}
AX=2r_1\sin x\\\\
AY=2r_2\sin y\\\\
m\left(\widehat{XAY}\right)=y-x\end{array}\right\|$ and $[XAY]=\frac 12\cdot AX\cdot AY\cdot\sin \widehat{XAY}\implies$ $\boxed{[XAY]=2r_1r_2\sin x\sin y\sin (y-x)}$ .

Thus, $\sin x\sin y\sin (y-x)=$ $\sin x\sin (\pi -y)\sin (y-x)\le \frac {3\sqrt 3}{8}$ because $x+(\pi -y)+(y-x)=\pi$ with equality iff $x=\pi -y=y-x$ , i.e. $x=60^{\circ}$ and $y=120^{\circ}$ .

Remark. In any triangle $ABC$ we have $\sin A\sin B\sin C=\frac {abc}{8R^3}=$ $\frac {4RS}{8R^3}=\frac {S}{2R^2}=$ $\frac {sr}{2R^2}=$ $\frac 14\cdot \frac sR\cdot \frac {2r}{R}\le \frac 14\cdot\frac {3\sqrt 3}{2}\cdot 1=$ $\frac {3\sqrt 3}{8}$ .



PP15 (Ruben Auqui). Let $\triangle ABC$ with the excircles $\left\{\begin{array}{c}
w_b=C(I_b,r_b)\\\\
w_c=C(I_c,r_c)\end{array}\right\|$ . Denote $\left\{\begin{array}{ccc}
T\in AB\cap w_c & ; & \{P,T\}=TL\cap w_c\\\\
L\in AC\cap w_b & ; & \{Q,L\}=TL\cap w_b\end{array}\right\|$ . Prove that $TP=LQ$ .

Proof 1. $\left\{\begin{array}{ccc}
E\in AC\cap w_c & \implies & LT\cdot LP=LE^2=a\\\\
F\in AB\cap w_b & \implies & TL\cdot TQ=TF^2=a\end{array}\right\|\implies$ $LT\cdot LP=TL\cdot TQ\Longrightarrow TQ=LP \Longrightarrow TP=LQ$ . Remark that $EF=TL$ .

Proof 2. Let $\left\{\begin{array}{ccc}
U\in BC\cap w_c & ; & Y\in BC\ ,\ UY\perp BC\\\\
V\in BC\cap w_b & ; & X\in BC\ ,\ TX\perp BC\end{array}\right\|$ . Thus, $\left\{\begin{array}{c}
LT\cdot LP=LI_c^2-r_c^2\\\\
TL\cdot TQ=TI_b^2-r_b^2\end{array}\right\|$ and $TP=LQ\iff$ $LP=TQ\iff$ $LT\cdot LP=TL\cdot TQ\iff$

$LI_c^2-r_c^2=TI_b^2-r_b^2\iff$ $\boxed{LI_c^2-TI_b^2=r_c^2-r_b^2}\ (*)$ . Prove easily that $\boxed{\cos C-\cos B=\frac {(s-a)(b-c)}{2Rr}}\ (1)$ and $\boxed{r_b\sin B-r_c\sin C=\frac {s(s-a)(b-c)}{2Rr}}\ (2)$ .

$\blacktriangleright\ LI_c^2=(UC-CY)^2+\left(r_c-LY\right)^2=$ $\left[s-(s-a)\cos C\right]^2+\left[r_c-(s-a)\sin C\right]^2\implies$ $\boxed{LI_c^2=s^2+r_c^2+(s-a)^2-2s(s-a)\cos C-2r_c(s-a)\sin C}\ (3)$ .

$\blacktriangleright\ TI_b^2=(VB-BX)^2+\left(r_b-TX\right)^2=$ $\left[s-(s-a)\cos B\right]^2+\left[r_b-(s-a)\sin B\right]^2\implies$ $\boxed{TI_b^2=s^2+r_b^2+(s-a)^2-2s(s-a)\cos B-2r_b(s-a)\sin B}\ (4)$ .

From the relations $(3)$ and $(4)$ obtain that $LI_c^2-TI_b^2=$ $r_c^2-r_b^2-2s(s-a)(\cos C-\cos B)-2(s-a)\left(r_c\sin C-r_b\sin B\right)$ .

Using the relations $(1)$ and $(2)$ obtain that $LI_c^2-TI_b^2=r_c^2-r_b^2$ . From the relation $(*)$ obtain the conclusion of the proposed problem, i.e. $TP=LQ$ .

Remark. $\frac {\cos C-\cos B}{\sin B-\sin C}=\frac {2\sin\frac {B+C}{2}\sin\frac {B-C}{2}}{2\sin\frac {B-C}{2}\cos\frac {B+C}{2}}=$ $\tan\frac {B+C}{2}=\cot\frac A2=$ $\frac {s-a}{r}\implies$ $\cos C-\cos B=\frac {s-a}{r}\cdot\frac {b-c}{2R}\implies \boxed{\cos C-\cos B=\frac {(s-a)(b-a)}{2Rr}}\ (1)$ .

$r_b\sin B-r_c\sin C=s\left(\tan\frac B2\sin B-\tan\frac C2\sin C\right)=$ $s\left(\frac {\sin\frac B2}{\cos\frac B2}\cdot 2\sin\frac B2\cos\frac B2-\frac {\sin\frac C2}{\cos\frac C2}\cdot2\sin\frac C2\cos\frac C2\right)=$ $2s\left(\sin^2\frac B2-\sin^2\frac C2\right)=$

$2s\left[\frac {(s-a)(s-c)}{ac}-\frac {(s-a)(s-b)}{ab}\right]=$ $\frac {2s(s-a)}{a}\cdot\left(\frac {s-c}c-\frac {s-b}b\right)\implies$ $\frac {2s(s-a)}{abc}\cdot [b(s-c)-c(s-b)]\implies$ $\boxed{r_b\sin B-r_c\sin C=\frac {s(s-a)(b-c)}{2Rr}}\ (2)$ .

Otherwise. $s(\cos C-\cos B)=r_b\sin B-r_c\sin C\iff$ $\cos C-\cos B=\tan\frac B2\sin B-\tan\frac C2\sin C\iff$

$\cos C-\cos B=2\sin^2\frac B2-2\sin^2\frac C2\iff$ $\cos C-\cos B=(1-\cos B)-(1-\cos C)$ , what is true.



PP16. Let $B$-right-angled $\triangle ABC$ with incircle $w=C(I,r)$ . Denote $\left\|\begin{array}{c}
D\in BC\cap w\\\
E\in AC\cap w\\\
F\in AB\cap w\end{array}\right\|$ and $\left\|\begin{array}{c}
\{P,D\}=AD\cap w\\\
\{P,X\}=PC\cap w\\\
\{P,Y\}=PB\cap w\end{array}\right\|$ . Prove that $PB\perp PC\ \iff\ PD=3\cdot PA$ .

Proof. Prove easily $B=90^{\circ}\iff$ $a^2+c^2=b^2\iff$ $r=s-b\iff S=\frac {ac}{2}\iff$ $S=s(s-b)=(s-a)(s-c)\iff$ $\frac {s-a}{a}=\frac {s-b}{b-c}=\frac {c}{2(s-c)}\ (*)$ . Let

$T\in BC\cap EF$ and $L\in AC\cap PT$ . I"ll use properties: the division $\{B,C;D,T\}$ is harmonically, i.e. $\frac {DB}{DC}=\frac {TB}{TC}=$ $\frac {s-b}{s-c}$ ; $T$ belongs to the tangent $PP$ to $w$ at $P\in w$ . Suppose

w.l.o.g. that $b>c$ . Thus, $\frac {TB}{s-b}=\frac {TC}{s-c}=\frac a{b-c}\implies$ $TB=\frac {a(s-b)}{b-c}\stackrel{(*)}{\implies}$ $\boxed{TB=s-a}\implies DT=DB+BT=(s-b)+(s-a)\implies$ $\boxed{DT=PT=c}$ . Since

$\{B,C;D,T\}$ is harmonic, then $PB\perp PC\iff$ $\left\{\begin{array}{c}
\widehat{BPD}\equiv\widehat{BPT}\\\\
\widehat{CPL}\equiv\widehat{CPD}\end{array}\right\|\iff$ $\frac {PD}{PT}=\frac {BD}{BT}\iff$ $\frac {PD}{c}=\frac {s-b}{s-a}\iff$ $\boxed{PD=\frac{c(s-b)}{s-a}}$ .Therefore, $I\in XY$ , the midpoint $H$

of $[PD]$ belongs to $\overline {XYT}$ and $AHBT$ is cyclic, i.e. $DH\cdot DA=DB\cdot DT\iff$ $\frac 12\cdot DP\cdot DA=c(s-b)\iff$ $DA=\frac {2c(s-b)}{\frac{c(s-b)}{s-a}}\iff$ $\boxed{DA=2(s-a)}$ . Thus,

$AP\cdot AD=AF^2\iff$ $AP=\frac {(s-a)^2}{2(s-a)}\iff$ $\boxed{PA=\frac {s-a}{2}}$ . In conclusion, $\frac {AD}{AP}=\frac {2(s-a)}{\frac {s-a}{2}}=4\iff$ $1+\frac {PD}{PA}=4\iff$ $\boxed{PD=3\cdot PA}$ .




PP17. Let $\triangle ABC$ with incircle $w=C(I,r)$ . Let $\left\|\begin{array}{c}
D\in BC\cap w\\\
E\in AC\cap w\\\
P\in AD\cap w\end{array}\right\|$ . Prove that $PB\perp PC\ \iff\ AP+AE=PD$ .

Proof. Suppose w.l.o.g. that $b>c$. Denote $\left\{\begin{array}{c}K\in BC\ ,\ AK\perp BC\\\\ L\in EF\cap BC\\\\ S\in LI\cap AD\\\\ \phi=m(\widehat{DLI})\end{array}\right\|$. From the well-known property $LI\perp AD$ . obtain $L\in PP$ and $\sin\phi=\frac{SD}{LD}=\frac{KD}{AD}$.

Prove easily $\left\{\begin{array}{c}
KD=\frac{(b-c)(p-a)}{a}\\\\
LB=\frac{a(p-b)}{b-c}\\\\
LD=\frac{2(p-b)(p-c)}{b-c}\end{array}\right\|$ . Therefore, $\left\{\begin{array}{c}\boxed{PA+AE=PD}\\\\ 
\left[AP\cdot AD=(p-a)^{2}\right]\end{array}\right\|$ $\Longleftrightarrow$ $\left\{\begin{array}{c}PD-PA=p-a\\\\
PA\cdot (PA+PD)=(p-a)^{2}\end{array}\right\|$ $\Longleftrightarrow$ $PA\cdot (PA+PD)=$

$(PD-PA)^{2}$ $\Longleftrightarrow$ $PD=3\cdot PA$ $\Longleftrightarrow$ $\left|\begin{array}{c}AD=2(p-a)\\\\ 
\sin\phi =\frac{KD}{AD}\end{array}\right|$ $\Longleftrightarrow$ $\boxed{\sin\phi=\frac{b-c}{2a}}$ Because the division $(B,C,D,L)$ is harmonically obtain $:$

$\boxed{PB\perp PC}$ $\Longleftrightarrow$ $\widehat{BPD}\equiv\widehat{BPL}$ $\Longleftrightarrow$ $\frac{PD}{PL}=\frac{BD}{BL}$ $\Longleftrightarrow$ $2\cdot \frac{DS}{LD}=\frac{BD}{BL}$ $\Longleftrightarrow$ $2\sin\phi=\frac{(p-b)(b-c)}{a(p-b)}$ $\Longleftrightarrow$ $\boxed{\sin\phi =\frac{b-c}{2a}}$ .


Remark. The incircle $C(I,r)$ of an acute triangle $ABC$ is tangent (internally) to the circle with the diameter $[BC]$ if and only if $\boxed{a+h_{a}=b+c}$

and in this case the common tangent point of these circles belongs to the $A$- Gergonne's line if and only if $a=4r$ .[/b]



PP18 (Miguel Ochoa Sanchez). Let a trapezoid $ABCD$ with $AD\parallel BC$ , $BC<AD$ and the points $\left\{\begin{array}{cc}
M\in (AB)\ ; & Q\in (DC)\\\
N\in (AC)\ ; & P\in (DB)\end{array}\right\|$ so that

$MN=NP=PQ$ and the point $X\in AD\cap\overline{MN}$ so that $A\in (XD)$ . Prove that $MN\parallel AD$ or $AD=2\cdot BC$ .


Proof. Let $\left\{\begin{array}{c}
AD=a\ ;\ BC=b\ ;\ a=xb\ ;\ x>1\\\\
MB=m\cdot MA\ ;\ QC=q\cdot QD\end{array}\right\|$ and $\left\{\begin{array}{c}
Y\in AB\cap CD\ ;\ YA=x\cdot YB\\\\
I\in AC\cap BD\ ;\begin{array}{c}
\nearrow IA=x\cdot IC\\\\
\searrow ID=x\cdot IB\end{array}\end{array}\right\|$ .Therefore,

$\blacktriangleright\ \frac {QY}{CD}=\frac {QC+CY}{CD}=\frac {q}{q+1}+\frac 1{x-1}=$ $\frac {1+xq}{(x-1)(q+1)}\implies$ $\frac {QD}{QY}=\frac {\frac {QD}{CD}}{\frac {QY}{CD}}=$ $\frac {\frac 1{q+1}}{\frac {1+xq}{(x-1)(q+1)}}\implies$ $\boxed{\frac {QD}{QY}=\frac {x-1}{1+xq}}\ \ (1)$ .

$\blacktriangleright\ \frac {MY}{AB}=\frac {MB+BY}{AB}=\frac {m}{m+1}+\frac 1{x-1}=$ $\frac {1+xm}{(x-1)(m+1)}\implies$ $\frac {MA}{MY}=\frac {\frac {MA}{AB}}{\frac {MY}{AB}}=$ $\frac {\frac 1{m+1}}{\frac {1+xm}{(x-1)(m+1)}}\implies$ $\boxed{\frac {MA}{MY}=\frac {x-1}{1+xm}}\ \ (2)$ .

Apply the Menelaus' theorem to the following transversals in the mentioned triangles :

$\blacktriangleright\ \overline{XMQ}/\triangle AYD\ :\ \frac {XA}{XD}\cdot\frac {QD}{QY}\cdot\frac {MY}{MA}=$ $1\ \stackrel{(1\wedge 2)}{\implies}\ \frac {XA}{XD}$ $\cdot\frac {x-1}{1+xq}\cdot\frac {1+xm}{x-1}=1$ $\implies$ $\boxed{\frac {XA}{XD}=\frac {1+xq}{1+xm}}\ (3)$ .

$\blacktriangleright\ \overline{ANI}/\triangle BMP\ :\ \frac {AM}{AB}\cdot\frac {IB}{IP}\cdot\frac {NP}{NM}=$ $\implies\frac {1}{m+1}\cdot\frac {IB}{IP}\cdot 1=1$ $\implies$ $IB=(m+1)\cdot IP$ . Since $ID=\frac ab\cdot IB$

obtain that $PD=ID-IP=\left(\frac ab-\frac 1{m+1}\right)\cdot IB\implies$ $\frac {PI}{PD}=\frac b{am+a-b}\implies$ $\boxed{\frac {PI}{PD}=\frac 1{x(m+1)-1}}\ (4)$ .

$\blacktriangleright\ \overline{DPI}/\triangle CQN\ :\ \frac {DQ}{DC}\cdot\frac {IC}{IN}\cdot\frac {PN}{PQ}=$ $\implies\frac {1}{q+1}\cdot\frac {IC}{IN}\cdot 1=1$ $\implies$ $IC=(q+1)\cdot IN$ . Since $IA=\frac ab\cdot IC$

obtain that $NA=IA-IN=\left(\frac ab-\frac 1{q+1}\right)\cdot IC\implies$ $\frac {NI}{NA}=\frac b{aq+a-b}\implies$ $\boxed{\frac {NI}{NA}=\frac 1{x(q+1)-1}}\ (5)$ .

$\blacktriangleright\ \overline{XNP}/\triangle AID\ :\ \frac {XA}{XD}\cdot\frac {PD}{PI}\cdot\frac {NI}{NA}$ $=1\ \stackrel{(3\wedge 4\wedge 5)}{\implies}\ \frac {1+xq}{1+xm}$ $\cdot\frac {x(m+1)-1}{x(q+1)-1}=1\implies$ $(1+xq)[x(m+1)-1]=(1+xm)[x(q+1)-1]\implies$

$x(m+1)+x^2q(m+1)-1-xq=x(q+1)+x^2m(q+1)-1-xm\implies$ $x^2(q-m)-2x(q-m)=0\implies$ $q=m\ \vee\ x=2$ , i.e. $MN\parallel AD\ \vee\ AD=2\cdot BC$ .

Remarks. We can estabilish $:\ \left\{\begin{array}{cccccccc}
\blacktriangleright & \overline{XNQ}/\triangle ACD\ : & \frac {XA}{XD}\cdot\frac {QD}{QC}\cdot\frac {NC}{NA}=1 & \implies & \frac {NC}{NA}=\frac {XD}{XA}\cdot\frac {QC}{QD} & \implies & \boxed{\frac {NC}{NA}=\frac {q(1+xm)}{1+xq}} & (6)\ .\\\\
\blacktriangleright & \overline{XMP}/\triangle ABD\ : & \frac {XA}{XD}\cdot\frac {PD}{PB}\cdot\frac {MB}{MA}=1 & \implies & \frac {PB}{PD}=\frac {XA}{XD}\cdot\frac {MB}{MA} & \implies & \boxed{\frac {PB}{PD}=\frac {m(1+xq)}{1+xm}} & (7)\ .\end{array}\right\|$ . If $MN\parallel AD$ , then

$MN=PQ$ and prove easily that $MN=NP\iff$ the point $N$ belongs to the $B$-median of $\triangle ABD$ . In conclusion, we get an easy construct of $\overline{MNPQ}$ . If $MN\not \parallel AD$ ,

then $AD=2\cdot BC$ when are given $\{b,m,q\}$ , prove easily that $:\ \frac 1q\cdot \frac {NC}{NA}=$ $\frac {1+2m}{1+2q}=m\cdot\frac {PD}{PB}\ ;\ XA=$ $\frac {b(2q+1)}{m-q}\ ;\ CZ=$ $\frac {bq(2m+1)}{m-q}$ , where $Z\in MN\cap BC$ .



PP19. Let an isosceles trapezoid $ABCD$ with $AB\parallel CD$ so that $[CD]$ is diameter of its circumcircle $w=C(O,R)$ .

For $E\in w$ so that $AB$ separates $E$ , $O$ let $\left\{\begin{array}{c}
F\in ED\cap AB\\\\
G\in EC\cap AB\end{array}\right\|$ . Prove that $\frac {AF\cdot BG}{FG}$ is constant.


Proof. Let $\left\{\begin{array}{c}
45^{\circ}<m\left(\widehat{EDC}\right)=x<90^{\circ}\\\\
\delta_{CD}(A)=\delta_{CD}(B)=h<R\\\\
\frac 12\cdot (CD-AB)=d<R\end{array}\right\|$ . Thus, $h^2=BC^2-d^2\implies$ $h^2=d(2R-d)\implies$ $\boxed{h^2+d^2=2Rd}\ (*)$

and $\frac {h}{AF+d}=\tan x=\frac {GB+d}{h}\odot\begin{array}{ccc}
\nearrow & AF=h\cot x-d & \searrow\\\\
\searrow & BG=h\tan x-d & \nearrow\end{array}\odot\implies$ $FG=AB-(AF+BG)=$ $2(R-d)-[h(\tan x+\cot x)-2d]\implies$

$FG=2R-h(\tan x+\cot x)$ . In conclusion, $\frac {AF\cdot BG}{FG}=\frac {h^2+d^2-hd(\tan x+\cot x)}{2R-h(\tan x+\cot x)}\stackrel{(*)}{\implies}$ $\boxed{\frac {AF\cdot BG}{FG}=d}$ (constant).

IF $h=24\ ,\ R=25\ \stackrel{(*)}{\implies}\  d^2-50d+24^2=0$ with $\Delta '=25^2-24^2=7^2\implies$ $\begin{array}{ccccc}
\nearrow & d_1=25-7 & \implies & d_1=18<R & \searrow\\\\
\searrow & d_2=25+7 & \implies & d_2=32\not <R & \nearrow\end{array}\odot$ $\implies d=18\implies$ $\frac {AF\cdot BG}{FG}=18$ .
This post has been edited 409 times. Last edited by Virgil Nicula, Nov 26, 2015, 11:51 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a