344. Some trigonometry problems.

by Virgil Nicula, Jun 18, 2012, 2:29 PM

PP0. Let $\triangle ABC$ and sequencies $\left|\left|\begin{array}{c}
a_1=a\\\\
b_1=b\end{array}\right|\begin{array}{c}
a_{n+1}=\frac {a_n^2-b_n^2}{a_n}\\\\
b_{n+1}=\frac {cb_n}{a_n}\end{array}\right\|$ for $(\forall ) n\in\mathbb N^*$ ; $\left\{\begin{array}{c}
AB=c\\\
BC=a\\\
CA=b\end{array}\right\|$ . Prove that $(\forall )\ n\in\mathbb N^*\ ,\ A=nB\iff a_n=b_n$ . See and here.

PP1. Let $ABC$ be a triangle so that $a+c=2b$ and $C=2A$ . Find the value of $\sin A$ .

Proof 1 (only with angles). The relation $C=2A$ means that exists $x\in\left(0,\frac {\pi}{3}\right)$ so that $\left\{\begin{array}{ccc}
A & = & x\\\\
B & = & 180^{\circ}-3x\\\\
C & = & 2x\end{array}\right|$ . Thus, $a+c=2b\iff$ $\sin A+\sin C=2\sin B\iff$

$\sin x+\sin 2x=2\sin 3x\iff$ $\sin x+2\sin x\cos x=$ $2\sin x\left(3-4\sin^2x\right)\iff$ $1+2\cos x=2(1+2\cos 2x)\iff$ $1+2\cos x=2+4\left(2\cos^2x-1\right)\iff$

$8\cos^2x-2\cos x-3=0\iff$ $\cos x\in\left\{-\frac 12,\frac 34\right\}$ . Since $x\in\left(0,\frac {\pi}{3}\right)$ obtain that $\cos x=\frac 34\iff$ $\sin A=\frac {\sqrt 7}{4}$ .

Proof 2. From well-known property $\boxed{C=2A\iff c^2=a(a+b)}\ (*)$ obtain that $\left|\begin{array}{c}
c^2-a^2=ab\\\
c+a=2b\end{array}\right|\iff$ $\left|\begin{array}{c}
2(c-a)=a\\\
c+a=2b\end{array}\right|\iff$ $\frac a4=\frac b5=\frac c6\iff \triangle ABC\sim\triangle (4,5,6)$ .

Hence can suppose w.l.o.g. that $\left|\begin{array}{c}
a=4\\\
b=5\\\
c=6\end{array}\right|\implies$ $\cos A=\frac {b^2+\left(c^2-a^2\right)}{2bc}=$ $\frac {b^2+ab}{2bc}=$ $\frac {b+a}{2c}=\frac 9{12}\implies \cos A=\frac 34$ $\implies A\in\left(0,\frac {\pi}{2}\right)$ and $\boxed{\sin A=\frac {\sqrt 7}{4}}$ .

$(*)\blacktriangleright$ Proof of the remarkable property. Denote $F\in (AB)$ for which $\widehat {FCA}\equiv\widehat{FCB}$ . Thus, $C=2A\iff$ $\triangle BFC\sim\triangle BCA\iff$ $\frac {BF}{BC}=\frac {CB}{AB}\iff$ $BC^2=BF\cdot BA$

(the line $BA$ is tangent to the circumcircle of the triangle $ACF$ in the point $C$) $\iff$ $a^2=c\cdot\frac {ca}{a+b}\iff$ $c^2=a(a+b)$ . Denote $2s=a+b+c$ .

Proof 3. $\left|\begin{array}{c}
a+c=2b\\\\
C=2A\end{array}\right|$ $\iff$ $\left|\begin{array}{c}
\sin A+\sin C=2\sin B\\\\
C=2A\end{array}\right|$ $\iff$ $\left|\begin{array}{c}
2\sin\frac {A+C}{2}\cos\frac {A-C}{2}=4\sin\frac B2\cos\frac B2\\\\
C=2A\end{array}\right|$ $\iff$ $\left|\begin{array}{c}
\boxed{\cos \frac A2=2\sin \frac B2}\\\\
a+c=2b\end{array}\right|$ $\iff$ $\left|\begin{array}{c}
\frac {s(s-a)}{bc}=\frac {4(s-a)(s-c)}{ac}\\\\
a+c=2b\end{array}\right|$ $\iff$

$\left\{\begin{array}{c}
as=4b(s-c)\\\\
a+c=2b\end{array}\right|$ $\iff$ $\left|\begin{array}{c}
a(a+b+c)=4b(a+b-c)\\\\
a+c=2b\end{array}\right|$ $\iff$ $\left|\begin{array}{c}
3ab=4b(a+b-c)\\\\
a+c=2b\end{array}\right|$ $\iff$ $\left|\begin{array}{c}
3a=4a+2(a+c)-4c\\\\
a+c=2b\end{array}\right|$ $\iff$ $\left|\begin{array}{c}
3a=2c\\\\
a+c=2b\end{array}\right|$ $\iff$ $\frac a4=\frac b5=\frac c6$ .



PP1 bis. In any triangle $ABC$ exists the implication $\boxed{C=3A\ \iff\ ab^2=(a+c)(a-c)^2}$ .

\[\Longrightarrow\ \mathrm{(\ implication\ from\ left\ to\ right\ )}\]Proof 1 (synthetic). Denote $\{M,N\}\subset (AB)$ so that $m\left(\widehat{ACM}\right)=m\left(\widehat{MCN}\right)=m\left(\widehat{NCB}\right)=A$ .

Thus, $BM=BC=a$ , $MA=MC=c-a$ and $\triangle BCN\sim\triangle BAC$ $\implies$ $\frac ac=\frac {CN}{b}=\frac {BN}{a}$ $\implies$

$\boxed{CN=\frac {ab}{c}}\ (1)$ and $\boxed{BN=\frac {a^2}{c}}$ $\implies$ $NA=BA-BN=c-\frac {a^2}{c}$ $\implies$ $\boxed{NA=\frac {c^2-a^2}{c}}\ (2)$ .

$\triangle NCM\sim\triangle NAC\implies$ $\frac {NC}{NA}=\frac {c-a}{b}\stackrel{(1\wedge 2)}{\implies}$ $\frac {\frac {ab}{c}}{\frac {c^2-a^2}{c}}=\frac {c-a}{b}\implies$ $ab^2=(a+c)(a-c)^2$ .

Proof 2 (metric). Denote $M\in (AB)$ so that $MA=MC$ . Thus $m\left(\widehat{MCA}\right)=A$ , $ m\left(\widehat{MCB}\right)=$ $\left(\widehat{BMC}\right)=2A$ , $MB=a$ ,

$MA=MC=c-a$ . Apply the Srewart's relation to the ray $[CM$ in $\triangle ABC\ :\ CM^2\cdot AB+$ $AB\cdot AM\cdot MB=$

$CA^2\cdot MB+CB^2\cdot MA$ $\iff$ $c(c-a)^2+ac(c-a)=ab^2+a^2(c-a)\iff$ $\boxed{ab^2=(a+c)(a-c)^2}$ .

Proof 3 (trigonometric). $C=3A\implies$ $\sin C=\sin A\left(3-4\sin^2A\right)\implies$ $c=a[3-2(1-\cos 2A)]\implies$

$\boxed{\cos 2A=\frac {c-a}{2a}}\ (*)$ . Thus, $\cos B=\cos (180^{\circ}-4A)=$ $-\cos 4A=1-2\cos^22A\stackrel{(*)}{\implies}$

$\cos B=\frac {a^2+2ac-c^2}{2a^2}\implies$ $\frac {a^2+c^2-b^2}{2ac}=$ $\frac {a^2+2ac-c^2}{2a^2}\implies$ $\boxed{ab^2=(a+c)(a-c)^2}$ .

Proof 4. Denote $M\in (AB)$ so that $MA=MC$ . Thus, $m\left(\widehat{MCA}\right)=A$ , $ m\left(\widehat{MCB}\right)=2A$ and $MB=a$ , $MC=c-a$ .

Apply the well-known relation $\frac {MA}{MB}=\frac {CA}{CB}\cdot\frac {\sin\widehat{MCA}}{\sin\widehat{MCB}}\implies$ $\frac {c-a}{a}=\frac ba\cdot\frac {\sin A}{\sin 2A}\implies$ $\cos A=\frac {b}{2(c-a)}\implies$

$\frac {b^2+c^2-a^2}{2bc}=\frac {b}{2(c-a)}\implies$ $(c-a)\left(b^2+c^2-a^2\right)=b^2c\implies$ $\boxed{ab^2=(a+c)(a-c)^2}$ .

\[\Longleftrightarrow\ \mathrm{(\ equivalence\ )}\]Proof. $ab^2=(a+c)(a-c)^2\iff$ $\sin A\sin^2B=(\sin A-\sin C)\left(\sin ^2A-\sin^2C\right)\iff$

$\sin A\sin^2B=(\sin A-\sin C)\sin (A+C)\sin (A-C)\iff$ $\sin A\sin B=(\sin A-\sin C)\sin (A-C)\iff$

$2\sin A\sin\frac B2\cos\frac B2=2\sin\frac {A-C}{2}\cos\frac {A+C}{2}\sin (A-C)\iff$ $\sin A\cos\frac B2=\sin\frac {A-C}{2}\sin (A-C)\iff$

$\sin\left(A+\frac B2\right)+\sin\left(A-\frac B2\right)=\cos\frac {A-C}{2}-\cos\frac {3(A-C)}{2}\iff$ $\sin\left(\frac B2-A\right)=\cos\frac {3(A-C)}{2}\iff$

$\cos\left(90^{\circ}+A-\frac B2\right)=\cos\frac {3(A-C)}{2}\iff$ $C=3A$ . In conclusion. $\boxed{C=3A\ \iff\ ab^2=(a+c)(a-c)^2}$ .



PP2. Let $ a,b,c$ be the length-sides of $\triangle ABC$ ,so that $b=1$ , $c=2$ and $\cos 2A+2\sin^2\frac{B+C}{2} =1$ . Find the value of $a$ .

Proof. $\cos 2A+2\sin^2\frac{B+C}{2} =1\iff$ $\cos 2A+2\cos^2\frac A2 =1\iff$ $\cos 2A+1+\cos A=1\iff$ $2\cos^2A+\cos A-1=0\iff$

$\cos A\in\left\{-1,\frac 12\right\}$ , i.e. $\cos A=\frac 12$ . Apply Pythagoras' relation $a^2=b^2+c^2-2bc\cdot \cos A=b^2+c^2-bc\implies a=\sqrt 3$ . Remark that $CA\perp CB$ .



PP3. Prove that $\tan x\tan y= \sqrt {\frac{a-b}{a+b}}\implies$ $(a-b\cos 2x)(a-b\cos 2y)=a^2-b^2$ .

Proof 1. Denote $\left\{\begin{array}{c}
\tan x=u\\\
\tan y=v\end{array}\right|$ . The assumption becomes $uv=\sqrt {\frac{a-b}{a+b}}$ , i.e. $u^2v^2=\frac{a-b}{a+b}$ and the conclusion becomes $\left(a-b\cdot\frac {1-u^2}{1+u^2}\right)\left(a-b\cdot\frac {1-v^2}{1+v^2}\right)=a^2-b^2\iff$

$\left[(a+b)u^2+(a-b)\right]\cdot\left[(a+b)v^2+(a-b)\right]=\left(a^2-b^2\right)\left(1+u^2\right)\left(1+v^2\right)\iff$ $(a+b)^2\cdot\frac {a-b}{a+b}+\left(a^2-b^2\right)\left(u^2+v^2\right)+(a-b)^2=$

$\left(a^2-b^2\right)\left[1+\left(u^2+v^2\right)+u^2v^2\right]$ , what is truly because $(a+b)^2\cdot\frac {a-b}{a+b}=a^2-b^2$ and $(a-b)^2=\left(a^2-b^2\right)u^2v^2$ .

Proof 2. $\tan x\tan y= \sqrt {\frac{a-b}{a+b}}\implies$ $\frac {a-b}{\sin^2x\sin^2y}=\frac {a+b}{\cos^2x\cos^2y}\iff$ $\frac {a-b}{(1-\cos 2x)(1-\cos 2y)}=\frac {a+b}{(1+\cos 2x)(1+\cos 2y)}\iff$

$\frac {a}{1+\cos 2x\cos 2y}= \frac {b}{\cos 2x+\cos 2y}\iff$ $ab(\cos 2x+\cos 2y)=b^2(1+\cos 2x\cos 2y)\iff$ $(a-b\cos 2x)(a-b\cos 2y)=a^2-b^2$ .



PP4. Let $ a,b,c$ be the length-sides of a triangle $ ABC$ , where $ (a+b-c)(a+b+c)=ab$ . Find the value of $C$ .

Proof. Prove easily that $\left\|\begin{array}{c}
s(s-a)+(s-b)(s-c)=bc\\\\
s(s-a)-(s-b)(s-c)=bc\cdot\cos A\end{array}\right\|\ (*)$ , where $2s=a+b+c$ . From the relations $(*)$ obtain

$\left\{\begin{array}{ccccccccc}
\oplus\rightarrow & bc(1+\cos A) & = & 2s(s-a) & \implies & bc\cdot \cos^2\frac A2=s(s-a) & \implies & \cos\frac A2=\sqrt {\frac {s(s-a)}{bc}} & (1)\\\\
\ominus\rightarrow & bc(1-\cos A) & = & 2(s-b)(s-c) & \implies & bc\cdot \sin^2\frac A2=(s-b)(s-c) & \implies & \sin\frac A2=\sqrt {\frac {(s-b)(s-c)}{bc}} & (2)\end{array}\right\|$

Apply the relation $(1)\ :\ 4s(s-c)=ab\iff$ $\frac {s(s-c)}{ab}=\frac 14\iff$ $\cos^2\frac C2=\frac 14\iff$ $\cos\frac C2=\frac 12\iff$ $\boxed{\ C=120^{\circ}\ }$ .

Remark. Prove easily that $(a+b+c)(a+b-c)+ (c+a-b)(c+b-a)=4ab$ . Thus, $(a+b-c)(a+b+c)=ab\iff$

$(c+a-b)(c+b-a)=3ab\iff$ $c^2=a^2+ab+b^2\iff$ $\frac {a^2+b^2-c^2}{2ab}=-\frac 12\iff$ $\cos C=-\frac 12\iff$ $C=120^{\circ}$ .



PP5. Let $\triangle  ABC$ with $a=\sqrt{2}\ ,\ \cos A= \frac{2}{3}\ ,\ \sin B=\sqrt{5}\cdot \cos C$ . Find the area $S=[ABC]$ .

Proof 1. $\{A,C\}\subset\left(0,\frac {\pi}{2}\right)\ ,\ \boxed{\ \sin A=\frac {\sqrt 5}{3}\ }$ and $\frac {\sin A}{a}=\frac {\sin B}{b}\iff$ $\frac {\sqrt 5}{3\sqrt 2}=\frac {\sqrt 5\cdot\cos C}{b}\iff$ $\cos C=\frac {b}{3\sqrt 2}\iff$ $\frac {a^2+b^2-c^2}{2ab}=\frac {b}{3\sqrt 2}\iff$

$\frac {2+b^2-c^2}{2b\sqrt 2}=\frac {b}{3\sqrt 2}\iff$ $2b^2=3\left(2+b^2-c^2\right)\iff$ $\boxed{3c^2-b^2=6}\ (1)$ . Since $\cos A=\frac 23$ obtain $\frac {b^2+c^2-2}{2bc}=\frac 23\iff$ $\boxed{3\left(b^2+c^2\right)-4bc=6}\ (2)$ .

From the relations $(1)$ and $(2)$ get $3\left(b^2+c^2\right)-4bc=3c^2-b^2$ , i.e. $\boxed{\ b=c=\sqrt 3\ }$ . In conclusion, $S=\frac {bc\sin A}{2}=\frac {\sqrt 3\cdot\sqrt 3\cdot\frac {\sqrt 5}{3}}{2}\iff$ $\boxed{\ S=\frac {\sqrt 5}{2}\ }$ .

Proof 2 (GANITEE). $\boxed{\sin A=\frac {\sqrt 5}{3}}$ and $\frac {\sin A}{a}=\frac {\sin B}{b}\iff$ $\frac {\sqrt 5}{3\sqrt 2}=\frac {\sqrt 5\cdot\cos C}{b}\iff$ $\boxed{\cos C=\frac {b}{3\sqrt 2}}$ . Using the well-known identity

$b=a\cdot\cos C+c\cdot\cos A$ obtain that $b=\sqrt 2\cdot \frac {b}{3\sqrt 2}+\frac 23\cdot c\iff$ $3b=b+2c\iff$ $\boxed{\ b=c\ }$ . In conclusion,

$\frac {b}{3\sqrt 2}=\cos C=\frac {\frac a2}{b}=\frac {1}{b\sqrt 2}\iff b^2=3\iff$ $b=c= \sqrt 3\implies$ $S=\frac {bc\sin A}{2}=\frac {\sqrt 3\cdot\sqrt 3\cdot\frac {\sqrt 5}{3}}{2}\iff$ $\boxed{\ S=\frac {\sqrt 5}{2}\ }$ .


An easy extension. Let $ABC$ be a triangle with $A\ne 90^{\circ}$ . Then $\boxed{\ \tan \frac A2=\frac {\cos C}{\sin B}\ \iff\ b=c\ \iff\ S=\frac {a^2\cot\frac A2}{4}\ }$ .


Proof.

$\blacktriangleright\ \tan \frac A2=\frac {\cos C}{\sin B}\iff$ $\sin\frac A2\sin B=\cos\frac A2\cos C\iff$ $\cos\left(B-\frac A2\right)-\cos\left(B+\frac A2\right)=\cos\left(C+\frac A2\right)+\cos\left(C-\frac A2\right)\ .$ Since

$\left(B+\frac A2\right)+\left(C+\frac A2\right)=180^{\circ}$ obtain that $\cos\left(B+\frac A2\right)+\cos\left(C+\frac A2\right)=0$ . Therefore, $\tan \frac A2=\frac {\cos C}{\sin B}\iff$ $\cos\left(B-\frac A2\right)=\cos\left(C-\frac A2\right)\iff$

$\left(B-\frac A2=C-\frac A2\right)\ \vee\ \left(B-\frac A2+C-\frac A2=0\right)\ \iff$ $B=C\ \ \vee\ \ B+C=A\iff$ $b=c$ because $A\ne 90^{\circ}$ .

$\blacktriangleright\ S=\frac {a^2\cot\frac A2}{4}\iff$ $\frac {a^2\sin B\sin C}{2\sin A}=\frac {a^2\cot\frac A2}{4}\iff$ $2\sin B\sin C\sin \frac A2=\sin A\cos\frac A2\iff$

$\sin B\sin C=\cos^2\frac A2$ $\iff$ $\cos (B-C)-\cos (B+C)=1+\cos A\iff$ $\cos (B-C)=1\iff$ $B=C\iff b=c$ .

Remark. The proposed problem is a particular case of this characterization because $\tan\frac A2=\frac {\cos C}{\sin B}\iff$ $\frac {\sin A}{1+\cos A}={\cos C}{\sin B}\iff$ $\frac {\frac{\sqrt 5}{3}}{1+\frac 23}=\frac {1}{\sqrt 5}$ , what is truly. Thus,

$b=c$ , $\cot\frac A2=\sqrt 5$ and denote $h=AD$ , where $D$ is the midpoint of $[BC]$ . Then $\tan\frac A2=\frac {a}{2h}$ , i.e. $h=\frac a2\cdot\cot\frac A2$ and $S=\frac {ah}{2}=\frac {a^2\cot\frac A2}{4}=\frac {(\sqrt 2)^2}{4}\cdot\sqrt 5=\frac {\sqrt 5}{2}$ .



PP6. An isosceles triangle has its orthocentre lying on its incircle. Prove that $\boxed{\ \cos B=\frac 23\ }$ .

Proof. Let $ABC$ be an $A$-isosceles triangle with the incircle $C(I,r)$ and the circumcircle $C(O,R)$ . Denote midpoint $D$ of $[BC]$ . Thus,

$DH=DS=OS-OD=$ $R-R\cos A=R(1-\cos A)=$ $2R\sin^2\frac A2=$ $2R\sin^2\left(90^{\circ}-B\right)\implies$ $\boxed{HD=2R\cos^2B}$ .

$\blacktriangleright\ H\in C(I,r)\iff$ $HD=2r\iff$ $\cos^2B=\frac rR\iff$ $1+\cos^2B=1+\frac rR\iff$ $1+\cos^2B=\cos A+2\cos B\iff$

$1+\cos^2B=\left(1-2\cos^2B\right)+2\cos B\iff$ $3\cos^2B=2\cos B\iff$ $\cos B=\frac 23\iff$ $\frac {a}{2b}=\frac 23\iff$ $\frac a4=\frac b3$ .

Remark. I used the remarkable identity $\boxed{\ \cos A+\cos B+\cos C=1+\frac rR\ }$ . In the particular

case $B=C$ this identity becomes $1+\frac rR=-\cos 2B+2\cos B=1-2\cos^2B+2\cos B$ .


PP7. An $A$-isosceles triangle $ABC$ has its circumcentre lying on its incircle. Prove that $\boxed{\ \cos B=1-\frac {\sqrt 2}{2}\ }$ .

Proof. $\boxed{\ OD=R\cos A\ }$ and $O\in C(I,r)\iff$ $R\cos A=2r\iff$ $\cos A=2(\cos A+2\cos B-1)\stackrel{(\cos A=-\cos 2B)}{\iff}$

$-\cos 2B+4\cos B=2\iff$ $1-2\cos^2B+4\cos B=2\iff$ $2\cos^2B-4\cos B+1=0\iff$ $\cos B=1-\frac {\sqrt 2}{2}$ .


PP8. An $A$-isosceles triangle $ABC$ has its Nagel point lying on its incircle. Prove that $\boxed{\ \cos B=\frac 13\ }$ .

Proof. Denote $E\in AC\cap BN$ , where $N$ is the Nagel point of $\triangle ABC$ , i.e. $AE=s-c=s-b$ and $EC=s-a$ .

Apply the Menelaus' theorem to the transversal $\overline{BNE}$ for $\triangle ABC\ :\ \frac {BD}{BC}\cdot\frac {EC}{EA}\cdot\frac {NA}{ND}=1\iff$ $\frac 12\cdot\frac {2b-a}{a}\cdot\frac {NA}{ND}=1\iff$

$\frac {NA}{2a}=\frac {ND}{2b-a}=\frac {h}{2b+a}\iff$ $\boxed{\ ND=\frac {h(2b-a)}{2b+a}\ }$ . Therefore, $N\in C(I,r)\iff$ $ND=2r\iff$ $\frac {h(2b-a)}{2b+a}=2r\iff$

$h(2b-a)=2r(2b+a)\iff$ $(2b+a)(2b-a)=2a(2b+a)\iff$ $2b=3a$ and $\cos B=\frac {a}{2b}\iff$ $\cos B=\frac 13$ .



PP9. In a triangle $ ABC$ , $ A=\frac{\pi}{4}$ and $b\cdot \sin\left(\frac{\pi}{4}+C\right)-c\cdot \sin\left(\frac{\pi}{4}+B\right)=a$ . Find the value $ B-C$ . (China JiangXi 2012)

Proof. $ A=\frac{\pi}{4}\ \ \wedge\ \ b\cdot \sin\left(\frac{\pi}{4}+C\right)-c\cdot \sin\left(\frac{\pi}{4}+B\right)=a\iff$ $b\cdot\sin (A+C)+c\cdot\sin (A+B)=a\iff$ $\sin^2B-\sin^2C=\sin A\iff$

$\sin (B-C)\sin (B+C)=\sin A\iff$ $\sin (B-C)=1\iff$ $B-C=90^{\circ}$ . I used the well-known identity $\boxed{\sin^2x-\sin^2y=\sin (x-y)\sin (x+y)}$ .



PP10. Let $\triangle ABC$ with the circymcircle $w=C(O,R)$ . Let $M$ be the midpoint of $[BC]$ and $AD\perp B\ ,\ D\in BC$ such that $AD = \frac {abc}{b^2 - c^2}$ , where $b > c$ . Prove that $B-C=90^{\circ}$ .

Method 1. $h_a=\frac {abc}{b^2-c^2}\iff$ $\frac {bc}{2R}=\frac {abc}{2a\cdot DM}\iff$ $DM=R\iff$ $OA\cdot\cos \widehat{AND}$ , where $N\in AO\cap BC\iff$ $R\cos \left(90^{\circ}-B+C\right)=R\iff$ $B=C+90^{\circ}$ .

Method 2. Denote $T\in AA\cap BC$ , where $AA$ is the tangent in $A$ to $w$ . Prove easily that $AT=\frac {abc}{b^2-c^2}\ge AD\implies$ $AD=\frac {abc}{b^2-c^2}\iff AD\equiv AT\iff B=C+90^{\circ}$ .



PP11. Solve the equation $\boxed{8\sin x = \frac{\sqrt{3}}{\cos x}+\frac{1}{\sin x}}$ .

Proof. $8\sin x = \frac{\sqrt{3}}{\cos x}+\frac{1}{\sin x}\iff$ $8\sin^2x\cos x=\sqrt 3\cdot\sin x+\cos x\iff$ $2\cos x\cdot 2\sin^2x=\sin\left(x+30^{\circ}\right)\iff$ $2\cos x(1-\cos 2x)=\cos \left(60^{\circ}-x\right)\iff$

$2\cos x-(\cos 3x+\cos x)=\cos \left(60^{\circ}-x\right)\iff$ $\cos x-\cos 3x=\cos \left(60^{\circ}-x\right)\iff$ $\cos x-\cos \left(60^{\circ}-x\right)=\cos 3x\iff$ $2\sin 30^{\circ}\sin\left(30^{\circ}-x\right)=\cos 3x\iff$

$\cos\left(60^{\circ}+x\right)=\cos 3x\iff$ $3x\in\left\{\left|2k\pi\pm\left(60^{\circ}+x\right)\right|k\in\mathbb Z\right\}\iff$ $x\in\left\{\left|k\pi +\frac {\pi}{6}\ ;\ \frac {k\pi}{2}-\frac {\pi}{12}\right|k\in\mathbb Z\right\}$ .



PP12. Solve the equation $\boxed{\tan^2x + \cot^2x + \cot^22x = \frac{11}{3}}$ .

Proof. $\tan^2x + \cot^2x + \cot^22x = \frac{11}{3}\iff$ $\left(1+\tan^2x\right) +\left(1+ \cot^2x \right)+\left(1+ \cot^22x\right) =3+ \frac{11}{3}\iff$ $\frac {1}{\cos^2x}+\frac {1}{\sin^2x}+\frac {1}{\sin^22x}=\frac {20}{3}\iff$

$\frac {1}{\sin^2x\cos^2x}+\frac {1}{\sin^22x}=\frac {20}{3}\iff$ $\frac{4}{\sin^22x}+\frac {1}{\sin^22x}=\frac {20}{3}\iff$ $\frac {5}{\sin^22x}=\frac {20}{3}\iff$ $\frac {1}{\sin^22x}=\frac 43\iff$ $\sin^22x=\frac 34\iff$ $2\sin^22x=\frac 32\iff$

$1-\cos 4x=\frac 32\iff$ $\cos 4x=-\frac 12\iff$ $4x\in\left\{\left|2k\pi \pm\frac {2\pi}{3}\right|k\in\mathbb Z\right\}\iff$ $\boxed{x\in\left\{\left|\frac {k\pi}{2}\pm\frac {\pi}{6}\right|k\in\mathbb Z\right\}}$ .



PP13. Solve the equation $\boxed{\tan x - \sin 2x - \cos 2x + \lambda\left(2\cos x-\frac{1}{\cos x}\right)=0}$ , where $\lambda\in\mathbb R$ .

Proof. $\tan x - \sin 2x - \cos 2x + \lambda\left(2\cos x-\frac{1}{\cos x}\right)=0\iff$ $\sin x-\cos x (\sin 2x+\cos 2x)+\lambda \cos 2x=0$ and $\boxed{\cos x\ne 0}\iff$

$2\sin x-(\sin 3x+\sin x)-(\cos 3x+\cos x)+2\lambda\cos 2x=0\iff$ $(\sin x-\cos x)-\left(3\sin x-4\sin^3x\right)-\left(4\cos^3x-3\cos x\right)+2\lambda\cos 2x=0\iff$

$(\sin x-\cos x)-3(\sin x-\cos x)+4(\sin x-\cos x)(1+\sin x\cos x)+$ $2\lambda\left(\cos^2x-\sin^2x\right)=0\iff$ $\boxed{\tan x=1}\ \ \vee\ \ -2+4(1+\sin x\cos x)-$

$-2\lambda (\sin x+\cos x)=0\iff$ $1+2\sin x\cos x-\lambda (\sin x+\cos x)=0\iff$ $(\sin x+\cos x)^2=\lambda (\sin x+\cos x)\iff$ $\boxed{\tan x=-1}\ \ \vee\ \ \boxed{\sin x+\cos x=\lambda}$ a.s.o.



PP14. Let $ ABCD $ be a rhombus.The circumradius of $\triangle ABC $ is $ R $ and the circumradius of $\triangle ABD $ is $r$ . Find the area of rhombus.

Proof. Let $AB=a$ and $m(\angle ABC)=\phi$ . Thus, $a=2r\sin\frac {\phi}{2}=2R\cos\frac {\phi}{2}\implies$ $\boxed{\tan\frac {\phi}{2}=\frac Rr}$ and $[ABCD]=a^2\sin\phi=$

$4r^2\sin^2\frac {\phi}{2}\sin\phi =$ $4r^2\cdot \frac {\tan^2\frac {\phi}{2}}{1+\tan^2\frac {\phi}{2}}\cdot$ $\frac {2\tan\frac {\phi}{2}}{1+\tan^2\frac {\phi}{2}}=$ $4r^2\cdot\frac {R^2}{R^2+r^2}\cdot\frac {2Rr}{R^2+r^2}\implies$ $\boxed{\ [ABCD]=\frac {8R^3r^3}{\left(R^2+r^2\right)^2}\le 2Rr\ }$ .



PP15. Let $\triangle ABC$and $\ D\in (AC)$ such that $\left\{\begin{array}{ccc}
 AD=BC & ; & BD=CD\\\\
 A=3x & ; & C=2x\end{array}\right|$ . Find $x$ .

Proof 1 (trigonometric). $\left\{\begin{array}{c}
m\left(\widehat{ABD}\right)=180-7x\\\\
m\left(\widehat{BDC}\right)=180-4x\end{array}\right|\implies$ $\frac {\sin\widehat{ABD}}{\sin A}=$ $\frac{DA}{DB}=\frac {BC}{DB}=$ $\frac {\sin\widehat{BDC}}{\sin C}$ $\implies$ $\frac {\sin 7x}{\sin 3x}=$ $\frac {\sin 4x}{\sin 2x}=2\cos 2x$ $\implies$ $\sin 7x=2\cos 2x\sin 3x$

$\implies$ $\sin 7x=\sin 5x+\sin x\implies$ $\sin 7x-\sin 5x=\sin x\implies$ $2\sin x\cos 6x=\sin x\implies$ $\cos 6x=\frac 12\implies$ $6x=60^{\circ}\implies$ $\boxed{x=10^{\circ}}$ .

Proof 2 (trigonometric). $\left\{\begin{array}{c}
\frac {a}{\sin 3x}=\frac {b}{\sin 5x}\\\\
a=2(b-a)\cos 2x\end{array}\right|\implies$ $\sin 3x=2(\sin 5x-\sin 3x)\cos 2x\iff$ $\sin 3x=\sin 7x+\sin 3x-(\sin 5x+\sin x)\iff$

$\sin 7x=\sin 2x+\sin x\iff$ $\sin 7x-\sin 5x=\sin x\implies$ $2\sin x\cos 6x=\sin x\implies$ $\cos 6x=\frac 12\implies$ $6x=60^{\circ}\implies$ $\boxed{x=10^{\circ}}$ .

Proof 3 (trigonometric). Let $E\in BC$ so that $B\in (CE)$ and $F\in DE\cap AB$ . Thus, $\left\{\begin{array}{c}
\frac {FE}{FD}=\frac {BE}{BD}\cdot\frac {\sin\widehat{FBE}}{\sin\widehat{FBD}}=\frac {\sin 5x}{\sin 7x}\\\\
\frac {FE}{FD}=\frac {FE}{FA}=\frac {\sin\widehat{EAF}}{\sin\widehat{AEF}}=\frac {\cos 4x}{\cos 2x}\end{array}\right| \implies$

$\frac {\sin 5x}{\sin 7x}=\frac {\cos 4x}{\cos 2x}\iff$ $\sin 5x\cos 2x=\sin 7x\cos 4x\iff$ $\sin 7x=\sin 11x\iff$ $7x+11x=180^{\circ}\iff$ $\boxed{x=10^{\circ}}$ .



PP16. $\frac{\sin B\cos C}{\sin A} =\frac{\sin C\cos A}{\sin B} = \frac{\sin A\cos B}{\sin C}\implies$ $ABC$ is an equilateral triangle.

Proof 1. \[\frac{\sin B\cos C}{\sin A} =\frac{\sin C\cos A}{\sin B} = \frac{\sin A\cos B}{\sin C}\]\[\frac ba\cdot\frac {a^2+b^2-c^2}{2ab} =\frac cb\cdot\frac {b^2+c^2-a^2}{2bc} =\frac ac\cdot\frac {c^2+a^2-b^2}{2ca}\]\[\frac {b^2-c^2}{a^2}=\frac {c^2-a^2}{b^2}=\frac {a^2-b^2}{c^2}=\frac {\left(b^2-c^2\right)+\left(c^2-a^2\right)+\left(a^2-b^2\right)}{a^2+b^2+c^2}\]\[a=b=c\]Proof 2. \[\frac{\sin B\cos C}{\sin A} =\frac{\sin C\cos A}{\sin B} = \frac{\sin A\cos B}{\sin C}\]\[\frac {\sin (B-C)}{\sin (B+C)} =\frac {\sin (C-A)}{\sin (C+A)} =\frac {\sin (A-B)}{\sin (A+B)}\]\[\frac {\sin B\cos C}{\sin C\cos B}=\frac {\sin C\cos A}{\sin A\cos C}=\frac {\sin A\cos B}{\sin B\cos A}\]\[\frac {\tan B}{\tan C}=\frac {\tan C}{\tan A}=\frac {\tan A}{\tan B}=\sqrt [3]{\frac {\tan B}{\tan C}\cdot\frac {\tan C}{\tan A}\cdot\frac {\tan A}{\tan B}}=1\]\[\tan A=\tan B=\tan C\]\[a=b=c\]


PP17. Let $\triangle BC$ and the midpoint $D$ of $[AC]$ such that $m\left(\widehat{DBC}\right)=A$ and $m\left(\widehat{ADB}\right)=45^{\circ}$ . Prove that $\angle A=30^{\circ}$ .

Proof. $m\left(\widehat{DBC}\right)=A\iff$ $\triangle ABC\sim\triangle BDC\iff$ $\frac {c}{m_b}=\frac {a}{\frac b2}=\frac {b}{a}\iff b^2=2a^2$ and $B=m\left(\widehat{BDC}\right)\implies$ $B=135^{\circ}\implies$ $b^2=a^2+c^2+ac\sqrt 2\iff$

$a^2=c^2+ac\sqrt 2\iff$ $a^2=c\left(c+a\sqrt 2\right)\iff a^2=c(c+b)\stackrel{(*)}{\iff}$ $A=2C\iff A=30^{\circ}$ . I used the well-known property $\boxed{a^2=c(c+b)\iff A=2C}\ (*)$ .



PP18. Let $ABC$ be an $A$-isosceles with the ortocenter $H$ and the incircle $w=C(I,r)$ . Prove that $H\in w\iff \cos A=\frac 19$ .

Proof. Let the midpoint $D$ of $[BC]$ and suppose w.l.o.g. $DB=DC=1\ ,\ AB=AC=x>1$ . Thus, $\left\{\begin{array}{ccc}
s & = & x+1\\\
s-a & = & x-1\end{array}\right|$ , $\sin\frac A2=\frac 1x$ . Thus,

$H\in w\iff $ $b\cos A+r\cos\frac A2=s-a\iff$ $b\cdot \left(1-2\sin^2\frac A2\right)+(s-a)\sin\frac A2=s-a\iff$ $x\cdot \left(1-\frac {2}{x^2}\right)+(x-1)\cdot\frac 1x=x-1\iff$

$x-\frac 2x+1-\frac 1x=x-1\iff$ $x=\frac 32\iff$ $\boxed{\sin\frac A2=\frac 23}\iff$ $\cos A=\frac 19$ .

Otherwise. $H\in w\iff \frac {HD}{2}=R\cos B\cos C=r\iff$ $\cos ^2B=\frac rR\iff$ $1+\sin^2\frac A2=\cos A+2\sin\frac A2\iff$

$\left(1-\sin\frac A2\right)^2=\cos A\iff$ $\boxed{\sin\frac A2=\frac 23}\iff$ $\cos A=\frac 19$ . I used the identities $\cos B=\sin\frac A2$ and $\sum\cos A=1+\frac rR$ .

Remark. In any triangle $ABC$ there is the equivalence $\boxed{\delta_{BC}(H)=2\cdot\delta_{BC}(I)\ \iff\ \cos A=(1-\cos B)(1-\cos C)}\ (*)$ .

If $b=c$ , then $(*)$ becomes $\cos A=\left(1-\sin\frac A2\right)^2\iff$ $1-2\sin^2\frac A2=1-2\sin\frac A2+\sin^2\frac A2\iff$ $\boxed{\sin\frac A2=\frac 23}$ a.s.o.



PP19. If in a triangle $\ ABC$, median $\ BD$ is such that $A=3C$ and $m(\angle ADB)=45^0$ , then prove that $C=\frac {90^{\circ}}{4}$ .

Proof 1 (synthetic). Denote $E\in AC\ ,\ \widehat{EBA}\equiv\widehat {EBC}$ and the second intersection $S$ of $BE$ with the circumcircle of $\triangle ABC$ .

Prove easily that $\triangle DBC\stackrel{(a.s.a.)}{\equiv}\triangle DBS\implies$ $DS=DC\implies SA\perp SC\implies BA\perp BC$ . In conclusion, $C=\frac {90^{\circ}}{4}$ .

Proof 2. $\left\{\begin{array}{c}
m\left(\widehat{DBA}\right)=135^{\circ}-3C\\\\
m\left(\widehat{DBC}\right)=45^{\circ}-C\end{array}\right|$ . Apply an well-known property $\frac {DA}{DC}=\frac {BA}{BC}\cdot\frac {\sin\widehat{DBA}}{\sin\widehat{DBC}}$ . Thus, $1=\frac {\sin C}{\sin 3C}\cdot\frac {\sin\left(135^{\circ}-3C\right)}{\sin\left(45^{\circ}-C\right)}\iff$ $\frac {\sin \left[3\left(45^{\circ}-C\right)\right]}{\sin\left(45^{\circ}-C\right)}=$

$\frac {\sin 3C}{\sin C}\iff$ $3-4\sin^2\left(45^{\circ}-C\right)=3-4\sin^2C\iff$ $\sin^2\left(45^{\circ}-C\right)=\sin^2C\iff$ $\cos\left(90^{\circ}-2C\right)=\cos 2C\iff$ $90^{\circ}-2C=2C\iff C=\frac {90^{\circ}}{4}$ .



PP20. Prove that $\frac{\tan (\theta+\alpha)}{a}=\frac{\tan (\theta+\beta)}{b}=$ $\frac{\tan (\theta+\gamma)}{c}\ \implies\ \sum \frac{b+c}{b-c}\cdot\sin^{2}(\beta-\gamma)=0$ .

Proof. $\frac{\tan (\theta+\beta)}{b}=$ $\frac{\tan (\theta+\gamma)}{c}\implies$ $\frac{\tan (\theta +\beta)+\tan (\theta +\gamma)}{b+c}=\frac {\tan (\theta +\beta)-\tan (\theta +\gamma)}{b-c}\implies$ $\frac{b+c}{b-c}=$ $\frac {\tan (\theta +\beta)+\tan (\theta +\gamma)}{\tan (\theta +\beta)-\tan (\theta +\gamma)}=$

$\frac {\sin (2\theta +\beta +\gamma )}{\sin (\beta -\gamma )}$ $\implies\sum_{\mathrm{cyc}}\frac {b+c}{b-c}\cdot\sin^{2}(\beta-\gamma)=$ $\sum_{\mathrm{cyc}}\sin (2\theta +\beta +\gamma )\cdot\sin(\beta-\gamma)=$ $\frac 12\cdot\sum_{\mathrm{cyc}}\left[\cos (2\gamma +2\theta )-\cos (2\beta +2\theta )\right]=0$ .



PP21. Find $x\in\mathbb R$ such that $\frac{\sin 3x+\cos 3x}{\sin x-\cos x}=2\cos 2x+\sqrt{2}-1\ (*)$ .

Proof. $\tan x\ne 1$ , i.e. $x\ne k\pi +\frac {\pi}{4}\ (\forall ) k\in\mathbb Z\implies$ $\frac{\sin 3x+\cos 3x}{\sin x-\cos x}=$ $\frac {\sqrt 2\cdot\sin\left(3x+\frac {\pi}{4}\right)}{\sqrt 2\cdot\sin\left(x-\frac {\pi}{4}\right)}=$ $-\frac {\sin\left[3\left(x-\frac {\pi}{4}\right)\right]}{\sin\left(x-\frac {\pi}{4}\right)}=$ $4\sin^2\left(x-\frac {\pi}{4}\right)-3=$

$2\left[1-\cos 2\left(x-\frac {\pi}{4}\right)\right]-3=-1-2\sin 2x$ . Therefore, $(*)\iff$ $\sin 2x+\cos 2x=-\frac {\sqrt 2}{2}\iff$ $\cos\left(2x-\frac {\pi}{4}\right)=-\frac 12\iff$

$\left(2x-\frac {\pi}{4}\right)\in \left|\left|2k\pi \pm\frac {2\pi}{3}\right|\ k\in\mathbb Z\right\|\iff$ $2x\in \left|\left| 2k\pi \pm\frac {2\pi}{3}+\frac {\pi}{4}\right|\ k\in\mathbb Z\right\|\iff$ $x\in \left|\left|k\pi \pm\frac {\pi}{3}+\frac {\pi}{8}\right|\ k\in\mathbb Z\right\|\iff$

$x\in \left|\left|k\pi +\frac {11\pi}{24}\right|\ k\in\mathbb Z\right\|\cup \left|\left|k\pi -\frac {5\pi}{24}\right|\ k\in\mathbb Z\right\|\ \stackrel{(k:=k+1)}{\iff}$ $\boxed{\ x\in \left|\left|k\pi +\frac {11\pi}{24}\right|\ k\in\mathbb Z\right\|\cup \left|\left|k\pi +\frac {19\pi}{24}\right|\ k\in\mathbb Z\right\|\ }$ . We can use

the standard notation $\left|\left|kp +\alpha\right|\ k\in\mathbb Z\right\|=\alpha +p\mathbb Z$ , where $p$ is the period. In the our case, $x\in \left(\frac {11\pi}{24}+\pi\mathbb Z\right)\cup \left(\frac {19\pi}{24}+\pi\mathbb Z\right)$ .



PP22. Solve the trigonometrical equation $\sin \left(2x-\frac{\pi}{4}\right)=\sin\left(x-\frac{\pi}{4}\right)+\frac{\sqrt{2}}{2}$ .

Proof. $\sin \left(2x-\frac{\pi}{4}\right)=\sin\left(x-\frac{\pi}{4}\right)+\frac{\sqrt{2}}{2}\iff$ $\frac {\sqrt 2}{2}\cdot (\sin 2x-\cos 2x)=\frac {\sqrt 2}{2}\cdot (\sin x-\cos x)+\frac {\sqrt 2}{2}\iff$ $\sin 2x-\cos 2x-$ $-\sin x+\cos x-1=0\iff$

$2\sin x\cos x-2\cos^2x-\sin x+\cos x=0\iff$ $(2\cos x-1)(\sin x-\cos x)=0\iff$ $\cos x=\frac 12\ \ \wedge\ \ \tan x=1\iff$ $x\in\left\{\left|\begin{array}{c}
2k\pi \pm\frac {\pi}{3}\\\\
k\pi+\frac {\pi}{4}\end{array}\right|k\in\mathbb Z\right\}$ .



PP23. Let $ABC$ be a triangle for which $ B=\frac{\pi}{3}$ and $2b^2=3ac$ . Find the value of $A$ .

Proof 1 (with lengths). $B=\frac {\pi}{3}\iff$ $b^2=a^2+c^2-ac$ , Therefore, $\left\{\begin{array}{ccc}
b^2 & = & a^2+c^2-ac\\\\
2b^2 & = & 3ac\end{array}\right|\iff$ $\left\{\begin{array}{c}
2a^2-5ac+2c^2=0\\\\
2b^2=3ac\end{array}\right|\iff$

$\left\{\begin{array}{ccc}
\frac ac\in\left\{\frac 12,2\right\}\\\\
2b^2=3ac\end{array}\right|\iff$ $\frac a2=\frac b{\sqrt 3}=\frac c1\ \ \vee\ \ \frac a1=\frac b{\sqrt 3}=\frac c2$ . These values correspond to a $90^{\circ}-60^{\circ}-30^{\circ}$ triangle.

Proof 2 (with angles). Firstly, by using the law of sines in the given equality i.e. $2b^2=3ac$ we obtain $2\sin^2B=3\sin A\sin C$ and since $B=\tfrac {\pi}3$ it means that $\boxed{\, \sin A\sin C=\tfrac 12\, }\ \ (1)$ .

On the other hand, by the law of cosines one has: $2b^2=2\left(c^2+a^2\right)-4ac\cos B$ which further rewrites as $3ac=2\left(c^2+a^2\right)-2ac\iff $ $a^2+c^2=$ $\tfrac 52\cdot ac\iff$

$ \sin^2A+\sin^2C=$ $\tfrac 52\cdot\sin A\sin C$ , where at the last step I used again the law of sines. But taking into account the above derived relation $(1)$ , the latter equality reduces

to: $\sin^2A+\tfrac 1{4\sin^2A}=\tfrac 54$ . Now denote $x=\sin^2A\ne 0$ to rewrite the previous relation as a quadratic equation: $4x^2-5x+1=0$ , which has the solutions $x\in \left\{\tfrac 14,1\right\}$ .

Hence $\sin^2A\in\left\{\tfrac 14,1\right\}$ and thus $\sin A\in\left\{\pm\tfrac 12,\pm 1\right\}$ but since $A\in\left(0,\pi\right)$ it means that the only possible values for $\sin A$ are $\tfrac 12$ or $1$ which leads to: $A\in\left\{\tfrac {\pi}6,\tfrac {\pi}2\right\}$ .

Now it's easy to check that these values fullfill the given conditions, as they correspond to a $90^{\circ}-60^{\circ}-30^{\circ}$ triangle.



PP24. Solve the equation $\sin x\cos^2x+\sin y\cos^2y=2(1-\sin x\sin y)\ (*)$ .

Proof. The relation $(*)\iff$ $\sin x\cos^2 x+\sin y\cos^2 y=\cos^2 x+\cos^2 y+(\sin x-\sin y)^2$ $\iff$

$0\ge 4\cos^2 x(\sin x -1)+\cos^2 y(\sin y-1)=(\sin x-\sin y)^2\ge 0\iff$ $(x,y)\in\left\{\left|\left(\ 2m\pi+\frac {\pi}{2}\ ,\ 2n\pi+\frac {\pi}{2}\ \right)\ ;\ \left(\ 2m\pi-\frac {\pi}{2}\ ,\ 2n\pi-\frac {\pi}{2}\ \right)\ \right|\ \{m,n\}\subset\mathbb Z\ \right\}$ .



PP25. Let $ABC$ be a triangle for which $\cot\frac A2=\frac {b+c}{a}$ . What type of triangle is this ?

Proof 1 (trig. - vanstraelen). $\cot\frac A2=\frac {b+c}{a}\iff$ $\cot\frac A2=\frac {\sin B+\sin C}{\sin A}\iff$ $\frac {\cos\frac A2}{\sin\frac A2}=\frac {\cos\frac A2\cos\frac {B-C}{2}}{\sin\frac A2\cos\frac A2}\iff$

$\cos\frac {B-C}{2}=\cos\frac A2\iff$ $B-C=A\ \ \vee\ \ B-C=-A\iff$ $B=A+C\ \ \vee\ \ C=A+B\iff$ $90^{\circ}\in\{B,C\}$ .

Proof 2 (metric - Faustus). $\cot\frac A2=\frac {b+c}{a}\iff$ $\frac {s(s-a)}{(s-b)(s-c)}=\frac {(b+c)^2}{a^2}\iff$ $a^2\cdot \left[(b+c)^2-a^2\right]=(b+c)^2\cdot\left[a^2-(b-c)^2\right]\iff$

$a^4=\left(b^2-c^2\right)^2\iff$ $a^2=b^2-c^2\vee a^2=c^2-b^2\iff$ $a^2+c^2=b^2\ \ \vee\ \ a^2+b^2=c^2\iff$ $90^{\circ}\in\{B,C\}$ .

Proof 3 (algebraic - Farenhajt). Denote $\left\{\begin{array}{c}
s-a=x\\\
s-b=y\\\
s-c=z\end{array}\right\|$ , where $a=y+z$ and $b+c=s+x$ . Thus, $\cot\frac A2=\frac {b+c}{a}\iff$

$\frac {yz}{sx}=\left(\frac {y+z}{s+x}\right)^2\iff$ $yz(s+x)^2=sx(y+z)^2\iff$ $yz\cdot x^2-x\left(y^2+z^2\right)\cdot s+x^2yz=0\iff$ $s\in\left\{\frac{xy}{z},\frac {xz}{y}\right\}\iff$

$sz=xy\ \ \vee\ \  sy=xz\iff$ $s(s-c)=(s-a)(s-b)\ \vee s(s-b)=(s-a)(s-c)\iff$ $1\in\left\{\tan\frac C2,\tan\frac B2\right\}\iff$ $90^{\circ}\in\{B,C\}$ .



PP26. Let $ABCD$ be a rectangle with $BC=3\cdot AB$ . Let $\{P,Q\}\subset (BC)$ so that $P\in (BQ)$ and $BP=PQ=QC$ . Show that $m\left(\widehat{DBC}\right)+m\left(\widehat{DPC}\right)=m\left(\widehat{DQC}\right)$ .

Proof 1 (trigonometric). Suppose w.l.o.g. that $AB=1$ . Thus, $BP=PQ=QC=1$ and $m\left(\widehat{DQC}\right)=45^{\circ}$ , $\tan\widehat{DBC}=\frac 13$ and $\tan\widehat{DPC}=\frac 12$ .

In conclusion, $\tan\left(\widehat{DBC}+\widehat{DPC}\right)=$ $\frac {\frac 13+\frac 12}{1-\frac 16}=1$ $\implies$ $\tan\left(\widehat{DBC}+\widehat{DPC}\right)=$ $\tan\left(\widehat{DQC}\right)$ $\implies$ $m\left(\widehat{DBC}\right)+$ $m\left(\widehat{DPC}\right)=$ $m\left(\widehat{DQC}\right)$ .

Proof 2 (trigonometric). Denote $S\in AD$ and $R\in SQ$ such that $SR\perp BC$ and $QS=QR$ . Prove easily that $\triangle DRS\equiv\triangle RBQ\equiv\triangle DPC$ . Obtain that

$DBR$ is $R$-rightangled and isosceles triangle and $m\left(\widehat{DBC}\right)+$ $m\left(\widehat{DPC}\right)=$ $m\left(\widehat{DBC}\right)+$ $m\left(\widehat{CBR}\right)=$ $ m\left(\widehat{DBR}\right)=45^{\circ}=m\left(\widehat{DQC}\right)$ .



PP27. Let $ABCD$ be a square with $AB=l$ and $M\in (BC)$ , $N\in (CD)$ so that $|BM|=a$ and $|DN|=b$ . Find $m(\widehat{MAN})$ .

Proof 1. Denote $X\in (AD)$ so that $MX\parallel AB$ and $\left\{\begin{array}{ccc}
m\left(\widehat{MAD}\right)=x & \implies & \tan x=\frac la\\\\
 m\left(\widehat{NAD}\right)=y & \implies & \tan y=\frac bl\end{array}\right\|$ . Observe that

$m\left(\widehat{MAN}\right)=x-y$ and $\tan\widehat{MAN}=\tan (x-y)=\frac {\tan x-\tan y}{1+\tan x\tan y}=$ $\frac {\frac la-\frac bl}{1+\frac ba}\implies$ $\boxed{\tan \widehat{MAN}=\frac {l^2-ab}{l(a+b)}}$ .

Proof 2. Denote $\left\{\begin{array}{ccc}
 m\left(\widehat{MAB}\right)=u & \implies & \tan u=\frac al\\\\
 m\left(\widehat{NAD}\right)=v & \implies & \tan v=\frac bl\end{array}\right\|$ . Observe that $m\left(\widehat{MAN}\right)=90^{\circ}-(u+v)$

and $\tan\widehat{MAN}=\cot (u+v)=\frac {1}{\tan (u+v)}=$ $\frac {1-\tan u\tan v}{\tan u+\tan v}=$ $\frac {1-\frac {ab}{l^2}}{\frac al+\frac bl}\implies$ $\boxed{\tan \widehat{MAN}=\frac {l^2-ab}{l(a+b)}}$ .

Remark. $m\left(\widehat{MAN}\right)=45^{\circ}\iff$ $l^2-ab=l(a+b)\iff$ $(l+a)(l+b)=2l^2$ .



PP28. Let $ABC$ be a triangle so that $\frac {\cos A}{25}=\frac {\cos B}{33}=\frac {\cos C}{39}$ . Prove that $\frac {a}{15}=\frac {b}{14}=\frac {c}{13}$ .

Proof. $\cos A=25k$ , $\cos B=33k$ , $\cos C=39k$ for some positive real number $k$ . Using the well-known identity $\sum \cos^2 A+2\prod \cos A=1$ obtain

that $64350k^3+3235k^2-1=0\iff$ $ (65k-1)(990k^2+65k+1)=0\implies$ $k=\frac{1}{65}$ and $\cos A=\frac{5}{13}$ , $\cos B=\frac{33}{65}$ ,

$\cos C=\frac{3}{5}\implies$ $\sin A=\frac{12}{13}$ , $\sin B=\frac{56}{65}$ , $\sin C=\frac{4}{5}$ . Therefore, $\frac {a}{15}=\frac {b}{14}=\frac {c}{13}$ .



PP29. Prove that in $\triangle ABC$ there is the implication $\left\{\begin{array}{ccc}
c^2-b^2 & = & ab\\\
a^2-b^2 & =& ac\end{array}\right|$ $\implies\ \frac 1a+$ $\frac 1c= \frac 1b$ .

Proof 1. Take regular $P_1P_2P_3P_4P_5P_6P_7$ with $\left\{\begin{array}{c}
P_1P_4=a\\\\
P_1P_2=b\\\\
P_1P_3=c\end{array}\right|$ . The Ptolemy's relation in $\left\{\begin{array}{ccc}
P_1P_2P_3P_4 & \implies & ab + b^2= c^2\\\\
P_1P_2P_4P_5 & \implies & ac + b^2 = a^2\\\\
P_1P_2P_3P_5 & \implies & bc + ab = ac\end{array}\right|$ $\implies$ $\frac{1}{a} + \frac{1}{c} = \frac{1}{b}$ .

Proof 2. $c^2-b^2=ab$ $\iff$ $c^2-\left(a^2+c^2-2ac\cdot\cos B\right)=ab$ $\iff$ $\boxed{a+b=2c\cdot\cos B}\ (1)$ $\iff$ $\sin A+\sin B=2\sin C\cos B$ $\iff$ $\cos\frac C2\cos\frac {A-B}{2}=$

$2\sin\frac C2\cos\frac C2\cos B$ $\iff$ $\cos\frac {A-B}{2}=\sin\left(B+\frac C2\right)+\sin\left(\frac C2-B\right)$ . Since $\left(B+\frac C2\right)+\frac {A-B}{2}=\frac {\pi}{2}$ obtain $c^2-b^2=ab$ $\iff$ $\sin\left(\frac C2-B\right)=0$ $\iff$ $C=2B\ (2)$

So $a^2-b^2=ac$ $\stackrel{(1)}{\iff}$ $2(a-b)\cos B=a$ $\iff$ $2(\sin A-\sin B)\cos B=\sin A$ $\iff$ $\sin C+\sin (A-B)=\sin 2B+\sin A$ $\stackrel{(2)}{\iff}$ $\sin (A-B)=\sin A$ $\iff$

$(A-B)+A=\pi$ $\iff$ $\boxed{A=\frac {\pi}{2}+\frac B2}\ (3)$ . From $(2)\ \wedge\ (3)$ obtain that $\boxed{\frac A4=\frac B1=\frac C2=\frac {\pi}{7}}\ (4)$ . But $\frac 1a+$ $\frac 1c= \frac 1b$ $\iff$ $b(a+c)=ac$ $\iff$

$\sin B(\sin A+\sin C)=\sin A\sin C$ $\stackrel{(4)}{\iff}$ $\sin B(\sin 4B+\sin 2B)=\sin 4B\sin 2B$ $\iff$ $2\sin B\sin 3B\cos B=\sin 2B\sin 4B$ $\iff$ $\sin 3B=\sin 4B$ $\iff$ $B=\frac {\pi}{7}$ - truly.

Proof 3. Let $C\in (AN)\ ,\ CN=a$ . So $\boxed{c^2=b(b+a)}$ $\implies$ $AB^2=AC\cdot AN$ $\implies$ $\triangle ABC\sim\triangle ANB\implies$ $\widehat{ABC}\equiv\widehat{BNC}\equiv\widehat{NBC}$ $\implies$ $\boxed{C=2B}$ . Denote

$M\in (BC)\ ,\ BM=c$ . Thus, $\boxed{b^2=a(a-c)}\implies$ $CA^2=CM\cdot CB\implies$ $\triangle CAM\sim\triangle CBA\implies$ $\left\{\begin{array}{c}
m\left(\widehat{AMC}\right)=90^{\circ}+\frac B2\\\\
m\left(\widehat{CAM}\right)=B\end{array}\right|$ . Thus $180^{\circ} =m\left(\widehat{CAM}\right)+$

$m\left(\widehat{AMC}\right)+m\left(\widehat{ACM}\right)=$ $B+\left(90^{\circ}+\frac B2\right)+2B\implies$ $B=\frac {\pi}{7}$ . Denote $A\in (BP)\ ,\ AP=b$ . Thus, $m\left(\widehat{CAP}\right)=3B$, $m\left(\widehat{ACP}\right)=$ $m\left(\widehat{APC}\right)=$ $90^{\circ}-\frac {3B}{2}=2B$

and $\triangle BAC\sim\triangle BCP\implies \boxed{a^2=c(c+b)}$ $\implies $ $a^2+b^2+c^2=$ $(c^2+bc)+(a^2-ac)+(b^2+ab\iff$ $ab+bc=ac\iff$ $\frac 1a+\frac 1c=\frac 1b$ .
This post has been edited 83 times. Last edited by Virgil Nicula, Nov 26, 2015, 12:42 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a