390. Probleme de analiza matematica.

by Virgil Nicula, Nov 29, 2013, 9:03 AM

${\color{blue}\blacksquare}{\color[rgb]{0.95,0.95,0}\blacksquare}{\color{red}\blacksquare}$ ROMANIA - U.N.E.S.C.O. Singers GIL Gândeşte Inteligent şi Liber Wolfram LaTeX Dex Cal LiveScore Camp Google

$\blacktriangleright$ PP1. For $\triangle ABC$ denote the length $m_a$ of the $A$-median. Prove that $A$-median and $A$-symmedian trisect $\widehat {BAC}\iff$ $\boxed {\ m_a=\frac {\left|b^2-c^2\right|}{2\cdot\min\ \{b,c\}}}$ , adica $4b^2c^2+c^4=b^4+a^2c^2$ .

Proof. Denote the median $[AM]$ and the symmedian $[AS]$ from the vertex $A$ , where$\{M,N\}\subset (BC)$ . Suppose w.l.o.g. that $c<b$ . Prove easily that $BS=\frac {ac^2}{b^2+c^2}$

and $SM=\frac {a\left(b^2-c^2\right)}{2\left(b^2+c^2\right)}$ . Therefore, $[AS$ is the bisector of $\widehat{BAM}$ $\iff$ $\frac {AB}{AM}=\frac {BS}{SM}$ $\Longleftrightarrow$ $\frac {c}{m_a}=\frac {ac^2}{b^2+c^2}\cdot\frac {2\left(b^2+c^2\right)}{a\left(b^2-c^2\right)}$ $\Longleftrightarrow$ $m_a=\frac {\left|b^2-c^2\right|}{2\cdot\min\ \{b,c\}}$ .

Remark. Let $D$ be the projection of $A$ on $BC$ . Thus, $m_a=\frac {\left|b^2-c^2\right|}{2\cdot\min\ \{b,c\}}$ $\Longleftrightarrow$ $\sin \widehat{MAD}=\frac {\min\{b,c\}}{a}$ $\Longleftrightarrow$ $4b^2c^2+c^4=b^4+a^2c^2$ (for $b>c$).


$\blacktriangleright$ Extension. Let $ABC$ be a triangle for which denote two interior isogonal lines $AM$ , $AS$ from the vertex $A$ , where $\{M,S\}\subset (BC)$ .

Define $\frac {MB}{MC}=m$ . Prove that they trisect $\widehat {BAC}\iff$ $AM=\frac {\left|m^2b^2-c^2\right|}{(m+1)\cdot\min\ \{b,c\}}$ $\Longleftrightarrow$ $(3m+1)b^2c^2+c^4=$ $m^3b^4+a^2c^2$ for $b>c\ .$


$\blacktriangleright$ Let $\Delta (x,y)\equiv ax+by+c=0$ be the equation of $d$ . For a point $A\left(x_0,y_0\right)\not\in d$ define its projection $P_a\left(\alpha ,\beta\right)\in d$ of the point $A$ on the line $d$ and the symetrical point $S_a$ of $A$

w.r.t. the line $d$ , i.e. $A+S_a=2\cdot P_a$ . Thus, $P_a\in d\iff$ $ a\cdot \alpha +b\cdot \beta +c=0$ and $AP_a\perp d\iff \frac {x_0-\alpha }{a}=\frac {y_0-\beta }{b}$ . Thus, $\frac {a\left(x_0-\alpha\right)}{a^2}=$ $\frac {b\left(y_0-\beta \right)}{b^2}=$ $\frac {\Delta(x_0,y_0)}{a^2+b^2}\implies$

$\left\{\begin{array}{c}
P_a\left[\ x_0-\frac {a}{a^2+b^2}\cdot \Delta\left(x_0,y_0\right)\ ,\ y_0-\frac {b}{a^2+b^2}\cdot \Delta\left(x_0,y_0\right)\ \right]\\\\
S_a\left[\ x_0-\frac {2a}{a^2+b^2}\cdot \Delta\left(x_0,y_0\right)\ ,\ y_0-\frac {2b}{a^2+b^2}\cdot \Delta\left(x_0,y_0\right)\ \right]\end{array}\right\|$ . Observe that $AP_a=\sqrt {\left[\frac {a}{a^2+b^2}\cdot\Delta\left(x_0,y_0\right)\right]^2+\left[\frac {b}{a^2+b^2}\cdot\Delta\left(x_0,y_0\right)\right]^2}$ . i.e. $\boxed{AP_a=\frac {\left|\Delta\left(x_0,y_0\right)\right|}{\sqrt{a^2+b^2}}}$ .

Let $\{M,N\}\cap d=\emptyset$ , where $M\left(x_1,y_1\right)$ , $N\left(x_2,y_2\right)$ . Let $P\left(x_0,y_0\right)\in MN\cap d$ so that $\frac {\overline{PM}}{\overline {PN}}=\lambda\ne 1$ $\implies$ $\left\{\begin{array}{c}
x_0=\frac {x_1-\lambda x_2}{1-\lambda}\\\\
y_0=\frac {y_1-\lambda y_2}{1-\lambda}\end{array}\right\|$ , $P\in d\iff$ $ax_0+by_0+c=0\iff$

$a\cdot\frac {x_1-\lambda x_2}{1-\lambda} +b\cdot \frac {y_1-\lambda y_2}{1-\lambda}=0\iff$ $\Delta\left(x_1,y_1\right)-\lambda\cdot\Delta\left(x_2,y_2\right)=0\iff$ $\lambda=\frac {\Delta\left(x_1,y_1\right)}{\Delta\left(x_2,y_2\right)}$ . In conclusion, $\left\{\begin{array}{ccccc}
(MN)\cap d=\emptyset & \iff & \Delta (M)\cdot\Delta (N) & > & 0\ .\\\\
(MN)\cap d=\{P\} & \iff & \Delta (M)\cdot\Delta (N)\ & < & 0\ .\end{array}\right\|\ .$



$\blacktriangleright$ Let $A_n=\sum_{k=1}^n \frac 1k$ , $E_n=A_n-\ln n\ ,\ n\in\mathrm N^*$ . Thus, $(\forall )\ k\in \mathrm N^*\ ,\ \left(1+\frac 1k\right)^k<e<\left(1+\frac 1k\right)^{k+1}\iff$ $\frac {1}{k+1}<\ln (k+1)-\ln k<\frac 1k\implies$

$\sum_{k=1}^n\frac 1{k+1}<\ln (n+1)<\sum_{k=1}^n\frac 1k$ $\iff$ $\ln (n+1)<A_n<\ln (n+1)+\frac {n}{n+1}\implies$ $A_n\rightarrow\infty$ , $\ln\frac {n+1}{n}<E_n<\ln\frac {n+1}{n}+\frac {n}{n+1}\implies$ $E_n\rightarrow E\in (0,1)$ - Euler constant.

$\blacktriangleright$ $\lim_{x\to 0}\, \frac {\frac 4{\pi}\arctan\left(\frac x{\arctan x}\right)-1}{x^2}=\frac 4{\pi}\lim_{x\to 0}\, \frac {\arctan\left(\frac x{\arctan x}\right)-\arctan 1}{x^2}=$ $=\frac 4{\pi}\lim_{x\to 0}\, \frac {\arctan\left(\frac {\frac x{\arctan x}-1}{1+\frac x{\arctan x}}\right)}{x^2}=$ $\frac 4{\pi}\lim_{x\to 0}\, \frac {\arctan\left(\frac {x-\arctan x}{x+\arctan x}\right)}{x^2}=$

$\frac 4{\pi}\lim_{x\to 0}\, \left[\frac {\arctan\left(\frac {x-\arctan x}{x+\arctan x}\right)}{\frac {x-\arctan x}{x+\arctan x}}\cdot\frac {\frac {x-\arctan x}{x+\arctan x}}{x^2}\right]=$ $=\frac 4{\pi}\lim_{x\to 0}\, \frac {x-\arctan x}{x^2\left(x+\arctan x\right)}=\frac 4{\pi}\lim_{x\to 0}\, \frac {x-\arctan x}{x^3\left(1+\frac {\arctan x}x\right)}=$ $\frac 4{\pi}\cdot\frac 12\cdot\lim_{x\to 0}\, \frac {x-\arctan x}{x^3}$ $\ \stackrel{(\mathrm{l'H})}{=}\ \frac 2{3\pi}$


$\blacktriangleright\ \int\frac{x^2-2}{x^4+4}\ \mathrm{dx}=$ $\int\frac{1-\frac {2}{x^2}}{x^2+\frac {4}{x^2}}\ \mathrm{dx}=$ $\int\frac{\left(x+\frac 2x\right)'}{\left(x+\frac 2x\right)^2-4}\ \mathrm{dx}=$ $\frac 14\ln \left|\frac {x+\frac 2x-2}{x+\frac 2x+2}\right|+\mathbb C=$ $\frac 14\ln\frac {x^2-2x+2}{x^2+2x+2}+\mathbb C$ .

$\blacktriangleright\ \int\frac {1+\sin x}{\cos x}\ \mathrm{dx}=$ $\int\frac {\cos x}{1-\sin x}\ \mathrm{dx}=\int\frac {-\left(1-\sin x\right)'}{1-\sin x}\ \mathrm{dx}=$ $-\ln (1-\sin x)+\mathbb C$ , where $x\in\left(0,\frac {\pi}{2}\right)$ .


$\blacktriangleright$ PP2. Find $I\equiv \int\limits_{-1}^{1} \frac {|x|}{\left(x^2+x+1\right)\sqrt{x^4+3x^2+1}}\ \mathrm{dx}$ . Proof. I"ll use the relation $a>0\implies \int_{-a}^af(x)\ \mathrm{dx}=\int_0^a\left[f(x)+f(-x)\right]\ \mathrm{dx}$ . Therefore, $I=\int\limits_{-1}^{1} \frac {|x|}{\left(x^2+x+1\right)\sqrt{x^4+3x^2+1}}\ \mathrm{dx}=2J$ , where $J\equiv\int_0^1\frac {x\left(x^2+1\right)}{\left(x^4+x^2+1\right)\sqrt {x^4+3x^2+1}}=$ $\int_0^1\frac {1+\frac 1{x^2}}{\left[x^2+\frac 1{x^2}+1\right]\sqrt {x^2+\frac 1{x^2}+3}}\ \mathrm{dx}=$

$\int_0^1\frac {\left(x-\frac 1x\right)'}{\left[\left(x-\frac 1x\right)^2+3\right]\sqrt {\left(x-\frac 1x\right)^2+5}}\ \mathrm{dx}\stackrel{u=x-\frac 1x}{=}$ $\int_{-\infty}^0\frac {1}{\left(u^2+3\right)\sqrt {u^2+5}}\ \mathrm{du}\implies$ $J=\int_{0}^{\infty}\frac {1}{\left(x^2+3\right)\sqrt {x^2+5}}\ \mathrm{dx}$ . I"ll ude the substitution $\left\{\begin{array}{c}
x=\phi (t)=\sqrt 5\tan t\\\\
\phi '(t)=\frac {\sqrt 5}{\cos^2t}\end{array}\right|$ .

Thus, $J=\int_0^{\frac {\pi}{2}}\frac 1{\cos t\left(5\tan^2t+3\right)}\ \mathrm{dt}=$ $\int_0^{\frac {\pi}{2}}\frac {\cos t}{5\sin^2t+3\cos^2t}\ \mathrm{dt}=$ $\int_0^{\frac {\pi}{2}}\frac {(\sin t)'}{2\sin^2t+3}\ \mathrm{dt}=$ $\int_0^1\frac {1}{2x^2+3}\ \mathrm{dx}\implies$ $J=\frac {\sqrt 6}{6}\arctan \frac {x\sqrt 6}{3}$ . Therefore, $\boxed{I=\frac {\sqrt 6}{3}\arctan \frac {\sqrt 6}{3}}$ .



$\blacktriangleright$ PP3. Ascertain the indefinite integral $I=\int \frac{e^x(x^2+1)}{(x+1)^2}\ \mathrm{dx}$ .

Proof. $I=\int \frac{e^x(x^2+1)}{(x+1)^2}\ \mathrm{dx}=\int \frac{e^x[(x+1)^2-2x]}{(x+1)^2}\ \mathrm{d}x\implies$ $I=\int e^xdx-2\int \frac{xe^x}{(x+1)^2}\ \mathrm{dx}=$ $e^x-2\int \frac{e^x[(x+1)-1]}{(x+1)^2}\ \mathrm{dx}=$

$e^x-2\int e^x\left[\frac {1}{x+1}-\frac{1}{(x+1)^2}\right]\ \mathrm{dx}$ . Now put $ z=\frac{e^x}{x+1}$ . So $I=e^x-2\int dz=e^x-\frac{e^x}{x+1}+\mathcal C$ .



$\blacktriangleright\ \lim_{x\searrow 0} \frac{\sqrt{\cos  x- \sin  x + \tan x}-1}{x^2}= $ $\lim_{x\searrow 0}\frac{1}{\sqrt{\cos x-\sin x+\tan x}+1} \cdot \frac{\cos x+\tan x-\sin x -1}{x^2}= $ $\frac{1}{2}\lim_{x\searrow 0} \left(\frac{\cos x-1}{x^2} + \frac{x}{\cos x}\cdot\frac {\sin x}{x}\cdot \frac {1-\cos x}{x^2}\right) =-\frac 14$ .


$\blacksquare\ \left\|\ \begin{array}{cccc}
(x_n)_{n\ge 1}\ ,\ x_n>0 & ; & \lim\limits_{n\to\infty}\, \frac {x_{n+1}}{n^2x_n}=a>0 \\ \\  
(y_n)_{n\ge 1}\ ,\ y_n>0 & ; & \lim\limits_{n\to\infty}\, \frac {y_{n+1}}{ny_n}=b>0\ \end{array}\right\|$ ${\color{white}{.}}\implies\lim_{n\to\infty}\, \left(\sqrt[n+1]{\frac {x_{n+1}}{y_{n+1}}}-\sqrt[n]{\frac {x_n}{y_n}}\ \right)=\frac a{b\cdot \text{e}}$

Remark. In particular, for $x_n=\left(n!\right)^2$ and $y_n=n!$ we obtain Traian Lalescu's sequence i.e. $\lim_{n\to\infty}\, \left(\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!}\right)=\frac 1{\text{e}}$

Proof. Let us denote : $a_n=\sqrt[n]{\frac {x_n}{y_n}}$ . One can easily show, by Cauchy-d'Alembert criterion that : $\lim_{n\to\infty}\, \frac {a_n}n=\frac a{b\cdot\text{e}}$ . Moreover, we can obtain that $:$

$\left\{\ \begin{array}{ccc} 
\lim\limits_{n\to\infty}\, \frac {a_{n+1}}{a_n}=\lim\limits_{n\to\infty}\, \left[\frac {a_{n+1}}{n+1}\cdot\frac n{a_n}\cdot\frac {n+1}n\right]=\frac a{b\text{e}}\cdot\frac {b\text{e}}a\cdot 1=1 \\ \\ 
\lim\limits_{n\to\infty}\, \left(\frac {a_{n+1}}{a_n}\right)^n=\lim\limits_{n\to\infty}\, \left(\frac {x_{n+1}}{n^2x_n}\cdot\frac {ny_n}{y_{n+1}}\cdot n\sqrt[n]{\frac {y_n}{x_n}}\right)^{\frac n{n+1}}=\frac ab\cdot\frac {b\text{e}}a=\text{e}\ \end{array}\right\|$ . On the other hand, note that : $ \lim_{n\to\infty}\, \left(\sqrt[n+1]{\frac {x_{n+1}}{y_{n+1}}}-\sqrt[n]{\frac {x_n}{y_n}}\ \right)=$

$\lim_{n\to\infty}\, \left(a_{n+1}-a_n\right)=\lim_{n\to\infty}\, \left[a_n\cdot\left(\frac {a_{n+1}}{a_n}-1\right)\right]=$ $\lim_{n\to\infty}\ \left[\frac {a_n}n\cdot\frac {\text{e}^{\ln\left(\frac {a_{n+1}}{a_n}\right)}-1}{\ln\left(\frac {a_{n+1}}{a_n}\right)}\cdot\ln\left(\frac {a_{n+1}}{a_n}\right)^n\right]=\frac a{b\cdot\text{e}}\cdot 1\cdot\ln\text{e}=\frac a{b\cdot\text{e}}$ , as required.
This post has been edited 103 times. Last edited by Virgil Nicula, Dec 31, 2015, 5:02 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a