450. Nota matematica: "Asupra unei inegalitati remarcabile".

by Virgil Nicula, Nov 6, 2016, 12:38 PM

In articolul "O inegalitate intr-un triunghi" aparut in G.M.B.,2001 pag. 146 se propun si se demonstreaza de catre profesor univ. Laurentiu Panaitopol urmatoarele doua inegalitati $:$

$\left\{\begin{array}{ccccc}
LP1\ :  & \sqrt{s(s-a)}-h_a & \le & R-2r & (*)\\\\
LP2\ :  & m_a-h_a & \le & 2(R-2r) & (**)\end{array}\right\|\ .$ Vom prezenta demonstratiile acestora fara a utiliza relatiile trigonometrice. Reamintim cateva identitati cunoscute $:$

$\left\{\begin{array}{cc}
bc=s(s-a)+(s-b)(s-c)=(a-b)(a-c)+2a(s-a) & (1)\\\\
a^2+4(s-a)(s-2a)=a^2+8(s-a)^2-4s(s-a)=(b+c-2a)^2 & (2)\end{array}\right\|\ \wedge\ \left\{\begin{array}{cccc}
16S^2+\left(b^2-c^2\right)^2 & = & 4a^2m_a^2 & (3)\\\\
a\left(h_a-2r\right) & = & 2r(s-a) & (4)\\\\
a\left(h_a-4r\right) & = & 32r(s-2a) & (5)\end{array}\right\|$ (notatiile sunt standard).

Demonstratie LP1. Inegalitatea devine: $R-\sqrt{s(s-a)}+\left(h_a-2r\right)\ge 0\ |\odot 4aS\iff$ $4aSR-4aS\sqrt{s(s-a)}+4S\cdot a\left(h_a-2r\right)\ge 0\ \stackrel{4}{\iff}$

$a^2bc-4as(s-a)\sqrt{(s-b)(s-c)}+8Sr(s-a)\ge 0\iff$ $a^2[s(s-a)+(s-b)(s-c)]-4as(s-a)\sqrt{(s-b)(s-c)}+8(s-a)^2(s-b)(s-c)\ge 0\ \stackrel{2}{\iff}$

$a^2s(s-a)-$ $4as(s-a)\sqrt{(s-b)(s-c)}+(s-b)(s-c)\left[4s(s-a)+(b+c-a)^2\right]\ge 0\iff$ $a^2s(s-a)-4as(s-a)\sqrt{(s-b)(s-c)}+$

$4s(s-a)(s-b)(s-c)+(s-b)(s-c)(b+c-a)^2\ge 0\iff$ $s(s-a)\left[a^2-4a\sqrt{(s-b)(s-c)}+ 4(s-b)(s-c)\right]+$ $4(s-a)^2(s-b)(s-c)\ge 0\iff$

$s(s-a)\left[a-2\sqrt{(s-b)(s-c)}\right]^2+$ $4sr^2(s-a)\ge 0,$ what is true.

Observatie. $l_a=\frac 2{b+c}\cdot \sqrt{bcs(s-a)}=\frac {2\sqrt{bc}}{b+c}\cdot \sqrt{s(s-a)}\le \sqrt{s(s-a)}\stackrel{*}{\le}\ h_a+R-2r\implies$ $\boxed{l_a-h_a\le R-2r}\ .$ Din lantul de relatii $aR+2r(s-a)=$

$a(R-2r)+2rs\ \stackrel {*}{\ge}$ $a\left[\sqrt{s(s-a)}-h_a\right]+2rs=$ $a\sqrt{s(s-a)}-ah_a+2rs=a\sqrt{s(s-a)}$ rezulta $\boxed{aR+2r(s-a)\ge a\sqrt{s(s-a)}}\implies$ $\sum\left[aR+2r(s-a)\right]\ge $

$\sum a\sqrt{s(s-a)}\implies$ $2s(R+r)\ge \sum a\sqrt{s(s-a)}\implies$ $\boxed{\sum a\sqrt{s-a}\le 2(R+r)\sqrt s}\ .$ Aceasta inegalitate se poate obtine si altfel pentru un triunghi neobtuzunghic:

$m_a\ge \sqrt{s(s-a)}$ and $\sum am_a\le 2s(R+r)\implies$ $\sum a\sqrt{s(s-a)}\le\sum am_a\le 2s(R+r)\implies$ $\boxed{\sum a\sqrt{s-a}\le 2(R+r)\sqrt s}\ .$

Demonstratie LP2. Inegalitatea devine $:\ m_a-h_a\le 2(R-2r)\ |\odot a\iff$ $am_a\le 2sr+2a(R-2r)\iff$ $am_a\le 2aR+2r(s-2a)\le 0\ |\odot  2S\iff$

$2am_aS\le a^2bc+4sr^2(s-2a)\iff$ $2am_aS\le a^2\left[s(s-a)+(s-b)(s-c)\right]+4(s-a)(s-b)(s-c)(s-2a)$ $\iff$

$2am_aS\le a^2s(s-a)+(s-b)(s-c)\left[a^2+4(s-a)(s-2a)\right]\ \stackrel{2}{\iff}\ \boxed{a^2s(s-a)-2am_aS+(s-b)(s-c)(b+c-2a)^2\ge 0}\ (6).$

Cazul 1 $:\ A\le 90^{\circ}.$ Asadar, $a^2s(s-a)-2am_aS\ge 0\iff$ $a\sqrt{s(s-a)}-2m_a\sqrt{(s-b)(s-c)}\ge 0\iff$ $a^2s(s-a)-(s-b)(s-c)\left[2\left(b^2+c^2\right)-a^2\right]\ge 0\iff$

$a^2[s(s-a)+(s-b)(s-c)]-2(s-b)(s-c)\left(b^2+c^2\right)\ge 0\ | \odot 2\iff$ $2a^2bc-\left(b^2+c^2\right)\left[a^2-(b-c)^2\right]\ge 0\iff$ $\left(b^2+c^2-a^2\right)(b-c)^2\ge 0,$ what is true.

Observatie. Remarcam identitatea $E\equiv (s-b)(s-c)(b-c)^2+s(s-a)(b+c-2a)^2=$ $4\left[bcm_a^2-2as(s-a)^2\right].$ Intr-adevar, $E=(s-b)(s-c)\left[\left(b^2+c^2\right)-2bc\right]+$

$s(s-a)\left[\left(b^2+c^2\right)+2bc-4a(b+c)+4a^2\right]=$ $\left[s(s-a)+(s-b)(s-c)\right]\left(b^2+c^2\right)+$ $2bc\left[(s-a)-(s-b)(s-c)\right]-$ $4as(s-a)\left[(b+c)-a\right]=$

$bc\left(b^2+c^2\right)+2b^2c^2\cos A-8as(s-a)^2=$ $bc\left(b^2+c^2\right)+bc\left(b^2+c^2-a^2\right)-8as(s-a)^2=$ $bc\left[2\left(b^2+c^2\right)-a^2\right]-8as(s-a)^2=$ $4bcm_a^2-8as(s-a)^2=$

$4\left[bcm_a^2-2as(s-a)^2\right].$ Deoarece $E(a,b,c)\ge 0$ si $E(a,b,c)=0\iff$ $b=c,$ $b+c-2a=0$ adica $a=b=c$ rezulta inegalitatea $\boxed{m_a\sqrt{2Rr}\ge s(s-a)}\ (***)$

cu egalitate $\iff\ \triangle ABC$ este echilateral. Relativ la mediane reamintim cateva inegalitati cunoscute $:\ \left\|\begin{array}{ccc}
\sum m_a & \le & \frac{s^2}{3r}\\\\
2R\sum m_a & \ge & \sum a^2\\\\
\sum m_ar_a& \ge & s^2\sqrt{\frac {2r}R}\end{array}\right\|\ ;$ $\left\|\begin{array}{ccc}
\sum \frac {m_a}{s-a} & \ge & s\cdot \sqrt{\frac 2{Rr}}\\\\
\sum \frac {s-a}{m_a} & \le & \sum\frac 1a\cdot \sqrt{2Rr}\\\\
\sum \frac a{m_a} & \le & \frac {4R+r}s\cdot\sqrt{\frac {2R}r}\end{array}\right\|\ ;$

$\left\|\begin{array}{ccccc}
\frac s{\sqrt{2Rr}} & \le & \sum \frac {m_a}a & \le & \frac s{2r}\\\\
(4R+r)\sqrt{\frac {2r}{R}} & \le & \sum m_a & \le & 4R+r\\\\
6S & \le & \sum am_a & \le & 2s(R+r)\end{array}\right\|\ ;$ $\left\|\begin{array}{ccc}
am_a\le sR & ; & \sum \frac {m_a}a \le \frac s{2r}\\\\
m_a^2 \le R^2+h_a^2 & ; & s_am_a\le bc-\frac {a^2}4\end{array}\right\|\ \wedge\ \sum m_a^2 \le s^2  \le \sum m_al_a$ (notatiile sunt standard).
This post has been edited 77 times. Last edited by Virgil Nicula, Mar 13, 2019, 12:30 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a