31.Some nice metrical problems.

by Virgil Nicula, Apr 26, 2010, 11:36 PM

PP1.

$\boxed{\ \mathrm{A\ cyclic\ ABCD\ for\ which}\ \left|\begin{array}{ccccc}
I\in AC\cap BD & ; & J\in AB\cap CD & ; & K\in AD\cap BC\\\\
AB=a & ; & BC=b & ; & CD=c\\\\
DA=d & ; & AC=e & ; & BD=f\end{array}\right|\ \implies\ \left|\begin{array}{c}
\frac {IA}{da}=\frac {IB}{ab}=\frac {IC}{bc}=\frac {ID}{cd}=\frac e{bc+da}=\frac f{ab+cd}=\sqrt{\frac {R^2-OI^2}{abcd}}\\\\
\frac {JA}{de}=\frac {JB}{bf}=\frac {JC}{be}=\frac {JD}{df}=\frac a{de-bf}=\frac c{df-be}=\sqrt {\frac {OJ^2-R^2}{bdef}}\\\\
\frac {KA}{ae}=\frac {KB}{af}=\frac {KC}{ce}=\frac {KD}{cf}=\frac d{ae-cf}=\frac b{af-ce}=\sqrt{\frac {OK^2-R^2}{acef}}\end{array}\right|\ }$


Remark. Can prove easily these relations. If $w=\mathbb C(O,R)$ is the circumcircle of $ABCD$, then power $p_w(I)$ of $I$ w.r.t. $w$ is given by $-p_w(I)=IA\cdot IC=IB\cdot ID=R^2-IO^2$ a.s.o.

Application. Let an equilateral $\triangle ABC$ with the circumcircle $w$ and $AB=l$ . For $D\in w$ so that $BC$ separates $D\ ,$

$A$ and denote $\left\{\begin{array}{ccc}
DA & = & a\\\\
DB & = & b\\\\
DC & = & c\end{array}\right\|$ and $\left\{\begin{array}{ccc}
G\in BC\cap AD\ ; & DG=g\\\\
E\in AC\cap BD\ : & DE=e\\\\
F\in AB\cap CD\ ; & DF=f\end{array}\right\|$ . Prove that $\boxed{efg(e+f+g)=l^4}$ .


Proof. Ptolemy's theorem to $ABDC\implies$ $\boxed{a=b+c}\ (*)$ . i.e. $GA=a-g$ . Generalized Pythagoras' theorem: $\left\{\begin{array}{cc}
\triangle ABC\ :\ l^2=b^2+c^2+bc\ \stackrel{(*)}{\implies}\ l^2+bc=a^2 & (1)\\\\
 \triangle ABD\ :\ l^2=a^2+b^2-ab\ \stackrel{(*)}{\implies}\ l^2=b^2+ac & (2)\\\\ 
\triangle ACD\ :\ l^2=a^2+c^2-ac\ \stackrel{(*)}{\implies}\ l^2=c^2+ab & (3)\end{array}\right\|$ .

Using upper property $\frac {GA}{GD}=\frac {AB\cdot AC}{DB\cdot DC}$ obtain that $\frac {a-g}g=\frac {l^2}{bc}\iff$ $g=\frac {abc}{l^2+bc}\implies$ $g=\frac {abc}{a^2}\stackrel{(1)}{\implies}$ $\boxed{g=\frac {bc}{a}}\ (4)$ . Thus, $ECD\sim EBA$ $\implies$ $\frac {EC}{EB}=$ $\frac {CD}{BA}=$ $\frac {ED}{EA}$ $\implies$

$\frac {EC}{b+e}=\frac cl=$ $\frac e{EC+l}\implies$ $\frac {c(b+e)}l=EC=$ $\frac {l(e-c)}c\implies$ $c^2(b+e)=l^2(e-c)\implies$ $e=\frac{c\left(l^2+bc\right)}{l^2-c^2}=$ $\frac {ca^2}{ab}\implies$ $\boxed{e=\frac {ac}b}\ (5)$ . Obtain analogously $FBD\sim FCA\implies$

$\frac {FB}{FC}=\frac {BD}{CA}=$ $\frac {FD}{FA}\implies$ $\frac {FB}{c+f}=$ $\frac bl=\frac f{FB+l}\implies$ $\frac {b(c+f)}l=FB=$ $\frac {l(f-b)}b\implies$ $b^2(c+f)=l^2(f-b)\implies$ $f=\frac{b\left(l^2+bc\right)}{l^2-b^2}=$ $\frac {ba^2}{ac}\implies$ $\boxed{f=\frac {ab}c}\ (6)\ .$ Observe

that $efg=abc$ and $(1)$ implies $l^2=a^2-bc\implies$ $l^4=a^2\left(a^2-2bc\right)+b^2c^2=$ $a^2\left(b^2+c^2\right)+b^2c^2$ . Thus, $e+f+g=\frac {a^2b^2+b^2c^2+c^2a^2}{abc}\implies$ $efg(e+f+g)=l^4$ .



PP2 (Ruben Auqui Dario). Let a $B$-isosceles $\triangle ABC$ with $BA=x$ and $\left\{\begin{array}{c}
\mathrm{line}\ d\ :\ \{M,N\}\subset d\ ,\ B\in (MN)\\\\
AM\perp d\ ,\ AM=m\ :\ CN\perp d\ ,\ CN=n\end{array}\right\|$ . Prove $\boxed{x^2\sin^2B=a^2+c^2-2ac\cos B}$ .

Proof 1. Let $:\ P\in (AC)\ ,\ PA=PC=p$ ; $BP=h$ and $\left\{\begin{array}{ccccc}
BM=m=\sqrt{x^2-a^2}\\\\
BN=n=\sqrt{x^2-c^2}\end{array}\right\|$ . Apply the Ptolemy's theorem to $:\ \left\{\begin{array}{cccc}
MAPB\ : & x\cdot BA=ah+mp\\\\
NCPB\ : & x\cdot BC=ch+np\end{array}\right\|$ $\implies$

$ah+mp=ch+np\implies$ $h(c-a)=p(m-n)\implies$ $m-n=(c-a)\cot\frac B2$ . Since $m^2-n^2=c^2-a^2$ obtain that $\left\{\begin{array}{ccc}
m-n & = & (c-a)\cot\frac B2\\\\
m+n & = & (c+a)\tan\frac B2\end{array}\right\|\implies$

$2m=(c-a)\cot\frac B2+(c+a)\tan\frac B2\iff$ $2m\sin\frac B2\cos\frac B2=(c-a)\cos^2\frac B2+(c+a)\sin^2\frac B2\iff$ $m\sin B=c-a\cos B\iff$

$\left(x^2-a^2\right)\sin^2B=c^2+a^2\cos^2B-2ac\cos B\iff$ $x^2\sin^2B=a^2+c^2-2ac\cos B$ .

Proof 2. Let $\left\{\begin{array}{c}
m\left(\widehat{ABM}\right)=u\\\
m\left(\widehat{CBN}\right)=v\end{array}\right\|$ . Thus, $B+(u+v)=180^{\circ}$ and $\cos B=-\cos (u+v)=\sin u\sin v-\cos u\cos v\implies$

$x^2\cos B=(x\sin u)(x\sin v)-(x\cos u)(x\cos v)=$ $ac-mn\implies$ $\boxed{mn=ac-x^2\cos B}\iff$ $\left(x^2-a^2\right)\left(x^2-c^2\right)$

$=a^2c^2-2acx^2\cos B+x^4\cos^2B\iff$ $x^4\left(1-\cos^2B\right)=x^2\left(a^2+c^2\right)-2acx^2\cos B\iff$ $x^2\sin^2B=a^2+c^2-2ac\cos B$ .

Proof 3. $AC=2x\sin\frac B2\iff$ $AC^2=2x^2(1-\cos B)$ and $(m+n)^2+(c-a)^2=AC^2\iff$

$2x^2-\left(a^2+c^2\right)+2mn+\left(a^2+c^2\right)-2ac=2x^2(1-\cos B)\iff$ $\boxed{mn=ac-x^2\cos B}$ a.s.o.



PP3. Let $ABCD$ be a quadrilateral and $\left\{\begin{array}{ccc}
M\in (AC) & \mathrm{so\ that} & BM\parallel AD\\\
N\in (BD) & \mathrm{so\ that} & AN\parallel BC\end{array}\right\|$ . Prove that $MN\parallel CD$ .

Method I (with the Thales' theorem). $\left\{\begin{array}{ccc}
BM\parallel AD & \implies & \frac {IM}{IA}=\frac {IB}{ID}\\\\
AN\parallel BC & \implies & \frac {IA}{IC}=\frac {IN}{IB}\end{array}\right\|\ \bigodot\ \implies$ $\frac {IM}{IC}=\frac{IN}{ID}\implies MN\parallel CD$ .

Method II (with areas). I"ll use the following simple property : "Let $\{A,B\}$ be two fixed points and $\{X,Y\}$ be two mobile points so that the line $AB$ doesn't separate $\{X,Y\}$ and

$[AXB]=[AYB]\ .$ Then $XY\parallel AB$" . Let $\left\{\begin{array}{c}
I\in AC\cap BD\\\\
K\in CN\cap DM\end{array}\right\|$ $\implies$ $\odot\begin{array}{ccccc}
\nearrow & ABMD\ (BM\parallel AD) & \implies & [AIB]=[DIM] & \searrow\\\\
\searrow & ABCN\ (AN\parallel BC) & \implies & [AIB]=[CIN] & \nearrow\end{array}\odot $ $\implies$

$[DIM]=[CIN]\implies$ $[DKN]=[CMK]\implies$ $[CND]=[CMD]\implies MN\parallel CD$

Method III (with trigonometry). Denote $\left\{\begin{array}{cccc}
m\left(\widehat{ACB}\right)=m\left(\widehat{CAN}\right)=x & ; & m\left(\widehat{ADB}\right)=m\left(\widehat{DBM}\right)=y\\\\
m\left(\widehat{CBM}\right)=m\left(\widehat{NAD}\right)=z & ; & m\left(\widehat{AID}\right)=m\left(\widehat{BIC}\right)=\phi\end{array}\right\|$ $\implies$

$\left\{\begin{array}{cccc}
\triangle IBC\ : & \frac {MI}{MC}=\frac {\sin\widehat{BCI}}{\sin\widehat{BIC}}\cdot\frac {\sin\widehat{MBI}}{\sin\widehat{MBC}} & \implies & \frac {MI}{MC}=\frac {\sin x}{\sin\phi}\cdot\frac {\sin y}{\sin z}\\\\
\triangle IAD\ : & \frac {NI}{ND}=\frac {\sin\widehat{ADI}}{\sin\widehat{AID}}\cdot\frac {\sin\widehat{NAI}}{\sin\widehat{NAD}} & \implies & \frac {MI}{MC}=\frac {\sin y}{\sin\phi}\cdot\frac {\sin x}{\sin z}\end{array}\right\|$ $\implies $ $\frac {MI}{MC}=\frac {NI}{ND}\implies MN\parallel CD$ .



PP4. Let $d$ be a line and for $\{A,D,G\}\subset d\ ,\ D\in (AG)\ ,\ AD<DG$ construct two similar triangles $ABD\sim DEG$ so that the line $d$

doesn't separate $\{B,E\}$ . Denote $\{X,Y,Z\}\subset BE$ so that $AX\parallel GY\parallel DZ$ and $AX=a\ ,\ GY=b\ ,\ DZ=x$ . Prove that $ab=x^2$ .


Proof 1. Let $L\in AG\cap BE$ and $\left\{\begin{array}{ccc}
AB=p\ ; & DE=r\\\
BD=m\ ; & EG=n\end{array}\right\|$ where $\boxed{\frac mn=\frac pr}\ (*)$ , i.e. $mr=pn$ . Thus, $\left\{\begin{array}{ccccc}
\frac ax=\frac {AX}{DZ}\ \stackrel{(AX\parallel DZ)}{=}\ \frac {LA}{LD}\ \stackrel{(AB\parallel DE)}{=}\ \frac {AB}{DE}=\frac pr\\\\
\frac bx=\frac {GY}{DZ}\ \stackrel{(DZ\parallel GY)}{=}\ \frac {LG}{LD}\ \stackrel{(GE\parallel DB)}{=}\ \frac {GE}{DB}=\frac nm\end{array}\right\|\bigodot\stackrel{(*)}{\implies}$ $ab=x^2$ .

Proof 2. $\left\{\begin{array}{ccc}
\triangle ZDE\sim\triangle XAB & \implies & \frac {ZD}{XA}=\frac {DE}{AB}\\\\
\triangle DEG\sim\triangle ABD & \implies & \frac {DE}{AB}=\frac {EG}{BD}\\\\
\triangle EGY\sim\triangle BDZ & \implies & \frac {EG}{BD}=\frac {GY}{DZ}\end{array}\right\|$ $\implies$ $\frac {ZD}{XA}=\frac {DE}{AB}=\frac {EG}{BD}=\frac {GY}{DZ}\implies$ $\frac {ZD}{XA}=\frac {GY}{DZ}\implies$ $DZ^2=AX\cdot GY\implies ab=x^2$ .


PP5 (Ruben Dario). Let an $A$-right $\triangle ABC$ with incircle $w=\mathbb C(I,r)$ which touches $AB$, $AC$ at $E$, $F$. Let rectangle $BCYX$

so that $A\in (XY)$ and $\left\{\begin{array}{c}
M\in EF\cap BX\\\\
N\in EF\cap CY\end{array}\right|$ . Prove that $NF=2\cdot ME\iff \tan C=\frac 34$ , i.e. $\boxed{\frac a5=\frac b4=\frac c3}$ .


Proof. Denote the length $h$ of the $A$-altitude, i.e. $BX=CY=h=\frac {bc}{a}$ . Observe that $\triangle ABX\sim\triangle CAY$ , i.e. $\frac {AB}{CA}=\frac {BX}{AY}=\frac {AX}{CY}\iff$ $\frac bc=\frac h{AY}=\frac {AX}h$

$\implies\odot\begin{array}{ccc}
\nearrow & AY=\frac {bh}c & \searrow\\\\
\searrow & AX=\frac {ch}b & \nearrow\end{array}\odot$ . Denote the projection $U$ , $V$ of $F$ , $E$ on $XY$ . So $NF=2\cdot ME\iff$ $VY=2UX\iff$ $AY-AV=2(AX-AU)\iff$

$\frac {bh}c-r\cos C=2\left(\frac {ch}b-r\cos B\right)\iff$ $\frac {bh}c-\frac {rb}a=2\left(\frac {ch}b-\frac {rc}a\right)$ $\iff$ $2b\left(\frac hc-\frac ra\right)=2c\left(\frac hb-\frac ra\right)\iff$ $\frac {b(ah-cr)}{c}=\frac {2c(ah-br)}{b}\iff$

$\frac {b(2s-c)}{c}=\frac {2c(2s-b)}{b}\iff$ $\frac {b(a+b)}{c}=\frac {2c(a+c)}{b}\iff$ $2c^2(a+c)=b^2(a+b)\iff$ $a\left(2c^2-b^2\right)=b^3-2c^3\iff$ $\left(b^2+c^2\right)\left(2c^2-b^2\right)^2=$

$\left(b^3-2c^3\right)^2\ \stackrel{(c=bt)}{\iff}\ \left(t^2+1\right)$ $\left(2t^2-1\right)^2=\left(2t^3-1\right)^2\iff$ $4t^6-3t^2+1=4t^6-4t^3+1\iff$ $4t=3\iff$ $\tan C=\frac 34$ .



PP6 (Cristian Tello). Let: $U$- right $\triangle AUE$ so that $UA<UE\ ;$ $B\in (AE)$ so that $UB\perp AE\ ;$ the exterior squares $ABCD$ and $BEFG\ ;$ $\alpha =\mathbb C(I,r)$ with diameter $[UA]$ and

$\gamma =\mathbb C(O,R)$ with diameter $[UE]\ ;$ the common (exterior) tangent HJ of $\alpha$ , $\gamma$ , where $H\in\alpha$ , $J\in \gamma\ ;$ the tangent $DM$ to $\alpha$ from $D$ , where $M\in\alpha$ and the tangent $FN$ to $\gamma$ from

$F$ , where $N\in \gamma\ ;$ $K$ so that $KD=DM\ ,\ KF=FN$ and $DF$ separates $K$ and $G\ ;$ the midpoint $L$ of $[DF]$ . Prove that $HJ=KL$ .


Proof. Let $\left\{\begin{array}{ccc}
DM=DK=m\ ;\ FN=FK=n\\\\
BA=a\ ,\ BC=c\ ;\ BU=h\end{array}\right\|$ . Observe that $\left\{\begin{array}{c}
4r^2=h^2+a^2\\\\
4R^2=h^2+b^2\end{array}\right\|\ (1)$ and $OI=\frac {a+b}2$ . Thus, $HJ^2=IO^2-(OJ-IH)^2=$

$\left(\frac {a+b}2\right)^2-(R-r)^2\implies$ $4\cdot HJ^2=(a+b)^2-4(R-r)^2=$ $a^2+b^2+2ab-4\left(R^2+r^2-2Rr\right)=$ $2ab+8Rr-\left(4R^2-b^2\right)-\left(4r^2-a^2\right)\ \stackrel{(1)}{=}$

$2h^2+8Rr-h^2-h^2=8Rr\implies$ $\boxed{HJ^2=2Rr}$ . From $UA\cdot UC=AC\cdot UB$ obtain that $\boxed{4Rr=h(a+b)}$

i.e. $\boxed{2\cdot HJ^2=h(a+b)}\ (2)$ . On other hand, $\left\{\begin{array}{c}
DM^2=ID^2-IM^2=\frac {a^2}4+\left(a+\frac h2\right)^2-r^2\implies 4\cdot DM^2=a^2+(2a+h)^2-\left(a^2+h^2\right)\implies DM^2=a(a+h)\\\\
FN^2=OF^2-ON^2=\frac {b^2}4+\left(b+\frac h2\right)^2-R^2\implies 4\cdot DM^2=b^2+(2b+h)^2-\left(b^2+h^2\right)\implies FN^2=b(b+h)\end{array}\right\|$

Otherwise. Let $\left\{\begin{array}{cc}
Y\in DA\ , & YU\perp BU\\\\
W\in FC\ , & WU\perp CW\end{array}\right\|$ . I"ll use the power of $:\ \left\{\begin{array}{cccc}
DM^2=p_{\alpha}(D)=DA\cdot DY & \implies & DM^2=a(a+h)\\\\
FN^2=p_{\gamma}(F)=FC\cdot FW & \implies & FN^2=b(a+h)\end{array}\right\|\implies$ $\left\{\begin{array}{c}
KD^2=a(a+h)\\\\
KF^2=b(b+h)\end{array}\right\|$ .

Theorem of median in $\triangle DKF\ :\ 4\cdot KL=2\left(KD^2+KF^2\right)-DF^2=$ $2\left(a^2+b^2\right)+2h(a+b)-\left[(b+a)^2-(b-a)^2\right]=2h(a+b)\implies$

$\boxed{2\cdot KL^2=h(a+b)}\ (3)$ . In conclusion, from $(2)$ and $(3)$ get $2\cdot HJ^2=2\cdot KL^2=h(a+b)=4Rr$ , i.e. $\boxed{HJ=KL=\sqrt {2Rr}=\sqrt{\frac{h(a+b)}2}}$ .



PP7 (Miguel Ochoa Sanchez). Let a cyclic $ABCD$ for which suppose that exists an interior $P$ so that $\widehat{PAB}\equiv\widehat{PBC}\equiv\widehat{PCD}\equiv\widehat{PAB}$ . Prove $AB\cdot CD=AD\cdot BC$ .

Proof (Rubén HG). Let $m\left(\widehat{PAB}\right)=x$ . Thus, $A+C=B+D=$ $(A-x)+(C+x)=(B-x)+(D+x)=$ $(C-x)+(A+x)=(D-x)+(B+x)=180^{\circ}$ .

Prove easily $:\ \left\{\begin{array}{ccc}
m\left(\widehat{BPC}\right)=A & ; & m\left(\widehat{CPD}\right)=B\\\\
m\left(\widehat{DPA}\right)=C & ; & m\left(\widehat{APB}\right)=D\end{array}\right\|$ and I"ll use identity $\boxed{\sin^2x-\sin^2y=\sin (x+y)\sin (x-y)}$ . Apply the theorem of Sines in the triangles $:$

$\blacktriangleright\ \left\{\begin{array}{ccc}
\triangle PAB\implies\frac {AB}{\sin D}=\frac {PB}{\sin x}=\frac {PA}{\sin (B-x)}\\\\
\triangle PCD\implies\frac {CD}{\sin B}=\frac {PD}{\sin x}=\frac {PC}{\sin (B+x)}\end{array}\right|$ $\bigodot\implies$ $\frac {AB\cdot CD}{\sin^2B}=$ $\frac {PB\cdot PD}{\sin^2x}=$ $\frac {PA\cdot PC}{\sin^2B-\sin^2x}=\frac {PB\cdot PD+PA\cdot PC}{\sin^2B}\implies $ $AB\cdot CD=PA\cdot PC+PB\cdot PD$ .

$\blacktriangleright\ \left\{\begin{array}{ccc}
\triangle PBC\implies\frac {BC}{\sin A}=\frac {PC}{\sin x}=\frac {PB}{\sin (A+x)}\\\\
\triangle PDA\implies\frac {DA}{\sin C}=\frac {PA}{\sin x}=\frac {PD}{\sin (A-x)}\end{array}\right|$ $\bigodot\implies\frac {BC\cdot DA}{\sin^2A}=$ $\frac {PA\cdot PC}{\sin^2x}=$ $\frac {PB\cdot PD}{\sin^2A-\sin^2x}=\frac {PA\cdot PC+PB\cdot PD}{\sin^2A}\implies $ $BC\cdot DA=PA\cdot PC+PB\cdot PD$ .




$\boxed{\mathrm{cyclic\ ABCD\ for\ which}\begin{array}{ccccccc}
\nearrow & I\in AC\cap BD & ; & J\in AB\cap CD & ; & K\in AD\cap BC & \searrow\\\\
\rightarrow & AB=a & ; & BC=b & ; & CD=c & \rightarrow\\\\
\searrow & DA=d & ; & AC=e & ; & BD=f & \nearrow\end{array}\implies\begin{array}{cc}
\nearrow & \frac {IA}{da}=\frac {IB}{ab}=\frac {IC}{bc}=\frac {ID}{cd}=\frac e{bc+da}=\frac f{ab+cd}=\sqrt{\frac {R^2-OI^2}{abcd}}\\\\
\rightarrow & \frac {JA}{de}=\frac {JB}{bf}=\frac {JC}{be}=\frac {JD}{df}=\frac a{de-bf}=\frac c{df-be}=\sqrt {\frac {OJ^2-R^2}{bdef}}\\\\
\searrow & \frac {KA}{ae}=\frac {KB}{af}=\frac {KC}{ce}=\frac {KD}{cf}=\frac d{ae-cf}=\frac b{af-ce}=\sqrt{\frac {OK^2-R^2}{acef}}\end{array}}$
This post has been edited 321 times. Last edited by Virgil Nicula, Nov 22, 2016, 2:49 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a