326. Some problems from trigonometry.

by Virgil Nicula, Oct 29, 2011, 6:26 PM

A trigonometric characterization of an harmonic division.

Lemma. Let $ d = AB$ be a line and $ C\in (AB)$ , $ D\in d$ so that $ B\in (AD)$ . For a point $ P\not\in d$ denote $ \left\{\begin{array}{c} m(\widehat {APC}) = \alpha\\\\
m(\widehat {CPB}) = \beta\\\\
m(\widehat {BPD}) = \gamma\end{array}\right\|$ . Then the points $ C$ , $ D$

are harmonic conjugate w.r.t. the points $ A$ , $ B$ , i.e. $ \frac {CA}{CB} = \frac {DA}{DB}$ if and only if $ \boxed {\ \cos\ (\ \alpha\ + \ \gamma\ )\ = \ \cos\ (\ \alpha\ + \ \beta\ )\ \cdot\ \cos\ (\ \beta\ + \ \gamma\ )\ }$ .



Proof. $ \frac {CA}{CB} = \frac {DA}{DB}\ \Longleftrightarrow\ \frac {PA}{PB}\cdot\frac {\sin \widehat {CPA}}{\sin\widehat {CPB}} =$ $ \frac {PA}{PB}\cdot\frac {\sin \widehat {DPA}}{\sin\widehat {DPB}}\ \Longleftrightarrow\ \frac {\sin \alpha}{\sin \beta} =$ $ \frac {\sin (\alpha + \beta + \gamma )}{\sin \gamma}\ \Longleftrightarrow$ $ \sin \alpha\cdot\sin \gamma = \sin \beta\cdot\sin (\alpha + \beta + \gamma )$ $ \Longleftrightarrow$ $ \cos (\alpha - \gamma ) - \cos (\alpha + \gamma ) =$

$ \cos (\alpha + \gamma ) - \cos (\alpha + 2\beta + \gamma )$ $ \Longleftrightarrow$ $ 2\cdot\cos (\alpha + \gamma ) = \cos (\alpha - \gamma ) + \cos (\alpha + 2\beta + \gamma )$ $ \Longleftrightarrow$ $ \boxed {\ \cos\ (\ \alpha\ + \ \gamma\ )\ = \ \cos\ (\ \alpha\ + \ \beta\ )\ \cdot\ \cos\ (\ \beta\ + \ \gamma\ )\ }\ \ (*)$ .

Remark. Prove easily that if $ C$ , $ D$ are harmonic conjugate w.r.t. $ A$ , $ B$ , i.e. relation $ (*)$ is truly, then $ PA\perp PC$ i.e. $ \alpha + \beta = 90^{\circ}\ \Longleftrightarrow$ the ray $ [PB$ is the bisector of $ \widehat {CPD}$ i.e. $ \beta = \gamma$ .



PP1. $ \triangle\ ABC$ and $ \left\|\begin{array}{ccccccc}
E\in AC & , & BE\perp AC & ; & F\in AB & , & CF\perp AB\\\\
M\in (BC) & , & BM=2\cdot MC & ; & C\in (BN) & , & CN=BC\end{array}\right\|$ $ \Longrightarrow$ $ \frac {FM}{FN}=\frac {EM}{EN}$

Proof. Observe that $\frac {MB}{MC}=\frac {NB}{NC}=2$ , i.e. the division $(B,C;M,N)$ is harmonically. Hence the pencils $F(B,C;M,N)$ and $E(B,C;M,N)$

are harmonically. In conclusion, $\left\{\begin{array}{ccccc}
FC\perp FB & \iff & \widehat{CFM}\equiv\widehat {CFN} & \iff &  \frac {FM}{FN}=\frac {CM}{CN}=\frac 13\\\\
 EC\perp EB & \iff & \widehat{CEM}\equiv\widehat {CEN} & \iff &  \frac {EM}{EN}=\frac {CM}{CN} =\frac 13\end{array}\right\|\implies$ $\boxed{\frac {FM}{FN}=\frac {EM}{EN} =\frac 13}$ .



PP2. Solve the equation $\sin\ \left(45^{\circ}+x\right)\sin\ 15^{\circ}=\sin x\sin\ 30^{\circ}$ , where $x\in\left(0,\frac {\pi}{2}\right)$ .

Proof 1. $\sin\left(\ 45^{\circ}+x\right)\sin\ 15^{\circ}=$ $\sin x\sin 30^{\circ}\iff$ $\Longleftrightarrow$ $\sqrt 2\cdot (\sin x+\cos x)\cdot\frac{\sqrt 6-\sqrt 2}{4}=\sin\ x$ $\Longleftrightarrow (\sin x+\cos x)\cdot\frac{\sqrt 3-1}{2}=\sin x$ .

Since $x\in\left(0,\frac{\pi}2\right)$ can divide by $\sin x$ and obtain : $1+\cot x=\frac{2}{\sqrt 3-1}\Longleftrightarrow\cot x=\sqrt 3$ . Hence $x=30^{\circ}$ is the zero of the given equation.

Proof 2. $\sin\ \left(\ 45^{\circ}\ +\ x\ \right)\ \cdot\ \sin\ 15^{\circ}=$ $\sin\ x\ \cdot\ \sin\ 30^{\circ}\Longleftrightarrow$ $\sin(45+x)=2\sin x\cos 15\Longleftrightarrow$ $\sin(45+x)=\sin (x+15)+\sin (x-15)\Longleftrightarrow$

$\sin(45^{\circ}+x)-\sin (x-15^{\circ})=\sin (x+15^{\circ})\Longleftrightarrow$ $2\sin 30^{\circ}\cos (x+15^{\circ})=\sin (x+15^{\circ})\Longleftrightarrow$ $\tan (x+15^{\circ})=1\Longleftrightarrow x+15^{\circ}=45^{\circ}\Longleftrightarrow x=30^{\circ}$ .



PP3 Prove that in any $\triangle ABC$ there is the equivalence $A=90^{\circ}\iff 1+\cos B+\cos C=\frac {r_a}{R}$ .

Proof. $1+\cos B+\cos C=\frac {r_a}{R}\iff$ $2+\frac rR=\frac {r_a}{R}+\cos A\iff$ $2R=\left(r_a-r\right)+R\cos A\iff$ $2R=a\tan\frac A2+R\cos A\iff$ $2=2\sin A\tan\frac A2+\cos A\ \stackrel {\left(\tan\frac A2=t\right)}{\iff}$

$2=2\cdot\frac {2t}{1+t^2}\cdot t+\frac {1-t^2}{1+t^2}$ . Thus, $2\left(t^2+1\right)=3t^2+1\iff$ $t^2=1\iff t=1\iff\tan\frac A2=1\iff A=90^{\circ}$ . Otherwise: $2=2\sin A\tan\frac A2+\cos A\iff$

$2=2\cdot 2\sin\frac A2\cos\frac A2\cdot\frac {\sin\frac A2}{\cos\frac A2}+\cos A\iff$ $ 2=4\sin^2\frac A2+\cos A\iff$ $2\left(1-2\sin^2\frac A2\right)=\cos A\iff$ $2\cos A=\cos A\iff$ $\cos A=0\iff A=90^{\circ}$ .



PP4. Let $n\in\mathbb N$ , $\{a,b\}\subset (0,\infty)$ and $x\in R$ so that $\frac{\sin^4x}{a}+\frac{\cos^4x}{b}=\frac{1}{a+b}$ . Prove $\boxed{\frac{\sin^{2n}x}{a^{n-1}}+\frac{\cos^{2n}x}{b^{n-1}}=\frac {1}{(a+b)^{n-1}}}$ .

Proof. $\left\{\begin{array}{c}
4\sin^4x=(2\sin^2x)^2=(1-\cos 2x)^2\\\\
4\cos^4x=(2\cos^2x)^2=(1+\cos 2x)^2\end{array}\right\|$ . Thus, $\frac{\sin^4x}{a}+\frac{\cos^4x}{b}=\frac{1}{a+b}\iff$ $b(a+b)(1-\cos 2x)^2+$

$a(a+b)(1+\cos 2x)^2=$ $4ab\iff$ $(a+b)^2\cos^22x+2(a^2-b^2)\cos 2x+(a-b)^2=0\iff$ $\left[(a+b)\cos 2x+(a-b)\right]^2=0$

$\iff$ $\cos 2x=\frac {b-a}{b+a}$ . So $\left\{\begin{array}{c}
\sin^2x=\frac {a}{a+b}\\\\
\cos^2x=\frac {b}{a+b}\end{array}\right\|\iff$ $\frac{\sin^{2n}x}{a^{n-1}}+\frac{\cos^{2n}x}{b^{n-1}}=\frac {1}{(a+b)^{n-1}}$ .



PP5. Prove that in a triangle $ABC$ there is the following implication $:\ \boxed{b+c=2a\ \Longrightarrow\ a=2\sqrt {r(2R-r)}}\ (*)\ .$

Proof. $b+c=2a\iff\sin B+\sin C=2\sin A\iff$ $\sin \frac {B+C}2\cos\frac {B-C}2=2\sin\frac A2\cos\frac A2$ $\iff$ $\boxed{\cos\frac {B-C}2=2\sin\frac A2}\ (1)\ .$

$\blacktriangleright\ b+c=2a\iff$ $(b+c)^2=8a(s-a)\iff$ $(b+c)^2=\frac {8abc(s-a)}{bc}\iff$ $(b+c)^2=\frac {32Rrs(s-a)}{bc}\iff$ $b+c=4R\cdot\sqrt {\frac {s(s-a)}{bc}\cdot\frac {2r}R}\iff$

$\sin B+\sin C=2\cos\frac A2\cdot \sqrt {\frac {2r}R}\iff$ $2\sin\frac {B+C}2\cos\frac {B-C}2=2\cos\frac A2\cdot \sqrt {\frac {2r}R}\iff$$\boxed{\cos\frac {B-C}2=\sqrt {\frac {2r}R}}\ (2)\ .$ From the relations $(1)$ and $(2)$ obtain that

$\boxed{\sin\frac A2=\sqrt{\frac r{2R}}\ \ \ ;\ \ \cos\frac A2=\sqrt {\frac {2R-r}{2R}}}\ (3)$ . In conclusion, $a=2R\sin A=$ $4R\sin\frac A2\cos\frac A2\ \stackrel{(3)}{=}\ 4R\cdot \sqrt{\frac r{2R}}\cdot \sqrt {\frac {2R-r}{2R}}\implies $ $\boxed{a=2\sqrt {r(2R-r)}}$ .



PP6. Denote $f(x)=\sin x\sin 2x\sin 3x$ , where $x\in\mathbb R$ . Prove that $f(x)\le \frac 34$ for any $x\in\mathbb R$ and find all zeroes of the equation $4f(x)=3$ .

Proof. $4f(x)=$ $2\sin 2x\cdot 2\sin x\sin 3x=$ $2\sin 2x(\cos 2x-\cos 4x)=$ $\sin 4x-2\sin 2x\cos 4x$ $\implies$ $4f(x)-3=(\sin 4x-1)-$

$2(\sin 2x\cos 4x+1)\le 0$ because $\left\{\begin{array}{ccc}
\sin 4x-1 & \le & 0\\\\
\sin 2x\cos 4x+1 & \ge & 0\end{array}\right\|$ . In conclusion, $4f(x)-3\le 0$ , i.e. $f(x)\le\frac 34$ and $4f(x)=3\iff$

$\left\{\begin{array}{ccc}
\sin 4x & = & 1\\\\
\sin 2x\cos 4x & = & -1\end{array}\right\|\iff x\in\emptyset$ because $\sin 4x=1\implies \cos 4x=0\implies \sin 2x\cos 4x=0$ .



PP7. Solve the trigonometrical equation $:\ \sin x\sin 10\sin 30=\sin 20\sin 40\sin (80-x)\ .$

Proof 1. $\sin x\sin 10\sin 30=$ $\sin 20\sin 40\sin (80-x)\iff$ $\sin x\sin 10=(\cos 20-\cos 60)\cos (x+10)\iff$ $\cos (x-10)-\cos (x+10)=$

$(2\cos 20-1)\cos (x+10)\iff$ $\cos (x-10)=2\cos 20\cos (x+10)\iff$ $\cos (x-10)=\cos (x+30)+\cos (x-10)\iff$ $\cos (x+30)=0\iff$

$\tan x=\cot 30\iff \boxed{x\in\left(\pi\mathbb Z+\frac {\pi}3\right)}\ .$

Proof 2. $\sin x\sin 10\sin 30=$ $\sin 20\sin 40\sin (80-x)\iff$ $\tan x\sin 10=2\sin 20\sin 40(\cos 10-\sin 10\tan x)$ $\iff$ $\tan x=\frac {2\cos 10\sin 20\sin 40}{\sin 10(1+2\sin 20\sin 40)}$ $\iff$

$\tan x=\frac {\cos 10(\cos 20-\cos 60)}{\sin 10(1+\cos 20-\cos 60)}$ $\iff$ $\tan x=\frac {\cos 10(2\cos 20-1)}{\sin 10(1+2\cos 20)}$ $\iff$ $\tan x=\frac {2\cos 10\cos 20-\cos 10}{\sin 10+2\cos 20\sin 10}\iff$ $\tan x=\frac {\cos 30+\cos 10-\cos 10}{\sin 10+\sin 30-\sin 10}\iff$

$\tan x=\tan 60\iff \boxed{x\in\left(\pi\mathbb Z+\frac {\pi}3\right)}\ .$



PP8. Solve the trigonometrical equation $:\ \sin (20^{\circ}+x)=2\cos 40^{\circ}\sin x\ .$

Proof 1. $\sin (20^{\circ}+x)=2\cos 40^{\circ}\sin x\iff$ $\sin20^{\circ}+\cos 20^{\circ}\tan x=2\cos 40^{\circ}\tan x\iff$ $\tan x=\frac {\sin 20^{\circ}}{2\cos 40^{\circ}-\cos 20^{\circ}}=$ $\frac {\sin 20^{\circ}}{\cos 40^{\circ}-(\cos 20^{\circ}-\cos 40^{\circ})}=$

$\frac {\sin 20^{\circ}}{\sin 50^{\circ}-2\sin 30^{\circ}\sin 10^{\circ}}=$ $\frac {\sin 20^{\circ}}{\sin 50^{\circ}-\sin 10^{\circ}}=$ $\frac {\sin 20^{\circ}}{2\sin 20^{\circ}\cos 30^{\circ}}=$ $\frac 1{\sqrt 3}\implies$ $\tan x=\frac 1{\sqrt 3}\implies$ $\boxed{x\in \left(30^{\circ}+\pi\mathbb Z\right)}\ .$

Proof 2. $\sin (20^{\circ}+x)=2\cos 40^{\circ}\sin x\iff$ $\sin (20^{\circ}+x)=\sin (40^{\circ}+x)-\sin (40^{\circ}-x)\iff$ $\sin (20^{\circ}+x)+\sin (40^{\circ}-x)=\sin (40^{\circ}+x)\iff$

$2\sin 30^{\circ}\cos (x-10^{\circ})=\sin (40^{\circ}+x)\iff$ $\cos(x-10^{\circ})=\cos (50^{\circ}-x)\iff$ $(x-10^{\circ})\in 2\pi\mathbb Z\pm (50^{\circ}-x)\iff$ $2x-60^{\circ}\in 2\pi\mathbb Z\iff$ $\boxed{x\in \left(30^{\circ}+\pi\mathbb Z\right)}\ .$
This post has been edited 66 times. Last edited by Virgil Nicula, Jan 27, 2016, 8:13 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404423
  • Total comments: 37
Search Blog
a