456. Probleme de Algebra.

by Virgil Nicula, Aug 4, 2017, 12:56 PM

P1. $P(X)=X^3-mX^2+nX-p$ is a polynomial with the real coefficients and $P(x)=0$ has only real roots $\{a,b,c\}\ .$ Find $|(a-b)(b-c)(c-a)|$ depending on $\{m,n,p\}\ .$

Proof. $S_k=a^k+b^k+c^k\ ,\ (\forall ) k\in\mathbb N^*$ and $\left\{\begin{array}{ccccc}
s_1 & \equiv  & a+b+c & = & m\\\\
s_2 & \equiv & ab+bc+ca & = & n\\\\
s_3 & \equiv & abc & = & p\end{array}\right\|\ \implies\ \left\{\begin{array}{ccccc}
S_1=s_1=m\\\\
S_2=s_1^2-2s_2=m^2-2n\\\\
S_3=s_1^3-3s_1s_2+3s_3=m^3-3mn+3p\\\\
S_4=s_1^4-4s_1^2s_2+4s_1s_3-2s_2^2=m^4-4m^2n+4mp+2n^2\end{array}\right\|\ .$

From $\Delta=\det\left\|\begin{array}{ccc}
1 & 1 & 1\\\\
a & b & c\\\\
a^2 & b^2 & c^2\end{array}\right\|=(a-b)(b-c)(c-a)$ obtain $\Delta^2=\det\left(\left\|\begin{array}{ccc}
1 & 1 & 1\\\\
a & b & c\\\\
a^2 & b^2 & c^2\end{array}\right\|\cdot\left\|\begin{array}{ccc}
1 & a & a^2\\\\
1 & b & b^2\\\\
1 & c & c^2\end{array}\right\|\right)=$ $\det\left\|\begin{array}{ccc}
3 & s_1 & S_2\\\\
s_1 & S_2 & S_3\\\\
S_2 & S_3 & S_4\end{array}\right\|=$

$3S_2S_4+2s_1S_2S_3-$ $\left(S_2^3+3S_3^2+s_1^2S_4\right)=$ $3\left(m^2-2n\right)\left(m^4-4m^2n+4mp+2n^2\right)+$ $2m\left(m^2-2n\right)\left(m^3-3mn+3p\right)-$

$\left[\left(m^2-2n\right)^3+3\left(m^3-3mn+3p\right)^2+m^2\left(m^4-4m^2n+4mp+2n^2\right)\right]=$ $-4m^3p+m^2n^2+18mnp-4n^3-27p^2\implies$

$\boxed{|\Delta|=\sqrt{-4m^3p+m^2n^2+18mnp-4n^3-27p^2}}\ .$ Observe that $\boxed{\{a,b,c\}\subset \mathbb R\implies 4m^3p+4n^3+27p^2\le m^2n^2+18mnp}\ .$



P2 (Israel Diaz ACHA: click => here). Let $Q(x)=x^3+4x^2-11x-43=0\implies \odot\begin{array}{ccc}
\nearrow & x_1=a & \searrow\\\\
\rightarrow & x_2=b & \rightarrow\\\\
\searrow & x_3=c & \nearrow\end{array}\odot\ ,$ where $\{a,b,c\}\subset\mathbb R^*\ ,$

$a<b<c$ and $\left\{\begin{array}{ccccc}
s_1 & \equiv  & a+b+c & = & -4\\\\
s_2 & \equiv & ab+bc+ca & = & -11\\\\
s_3 & \equiv & abc & = & 43\end{array}\right\|\ .$ Find the polynominal $P\in \mathbb R[X]\ ,\ \mathrm{gr}(P)=2$ such that $\left\{\begin{array}{ccc}
P(a) & = & c\\\\
P(b) & = & a\\\\
P(c) & = & b\end{array}\right\|\ .$


Proof. Exist $\{m,n,p\}\subset \mathbb R\ ,\ P(X)=m(X-b)(X-c)+n(X-c)(X-a)+p(X-a)(X-b)\implies$

$\left\{\begin{array}{ccccc}
P(a)=c & \implies & m(a-b)(a-c)=c & \implies & m=\frac c{(a-b)(a-c)}\\\\
P(b)=a & \implies & n(b-c)(b-a)=a & \implies & n=\frac a{(b-c)(b-a)}\\\\
P(c)=b & \implies & p(c-a)(c-b)=b & \implies & p=\frac b{(c-a)(c-b)}\end{array}\right\|\implies$ $\boxed{\frac m{c(c-b)}=\frac n{a(a-c)}=\frac p{b(b-a)}=\frac 1k}\ ,$ where $\boxed{k=(a-b)(b-c)(c-a)}\ (*)\ .$

Thus, $P(X)=(m+n+p)X^2-[m(b+c)+n(c+a)+p(a+b)]X+mbc+nac+pab\implies$ $k\cdot P(X)=X^2\cdot\sum\limits_{\mathrm{cyc}} c(c-b)-X\cdot\sum\limits_{\mathrm{cyc}}c(c-b)(b+c)+$

$\sum\limits_{\mathrm{cyc}}bc^2(c-b)\ .$ See
here. So $a<b<c\implies k>0$ and from upper problem P1 get $k=|\Delta|=\sqrt{2401}=49\implies \boxed{k=49}\ .$

Now I"ll calculate the coefficients of the required polynominal $P(X)\ .$ Denote $\boxed{u_1=\sum b^2c\ ,\ v_1=\sum\limits_{\mathrm{cyc}}  bc^3\ ;\ u_2=\sum bc^2\ ,\ v_2=\sum\limits_{\mathrm{cyc}}  b^3c}\ .$ Therefore $:$

$\blacktriangleright\ \sum\limits_{\mathrm{cyc}} c(c-b)=$ $\sum\limits_{\mathrm{cyc}}\left(c^2-bc\right)=$ $S_2-s_2=s_1^2-3s_2=m^2-3n=(-4)^2-3(-11)=16+33=49$ $\implies \boxed{\sum\limits_{\mathrm{cyc}} c(c-b)=49}\ .$

$\blacktriangleright\ \sum\limits_{\mathrm{cyc}}c(c-b)(c+b)=$ $\sum\limits_{\mathrm{cyc}}\left(c^3-b^2c\right)=S_3-\sum\limits_{\mathrm{cyc}} b^2c=\left(s_1^3-3s_1s_2+3s_3\right)-u_1\ ;\ \sum\limits_{\mathrm{cyc}}bc^2(c-b)=$ $\sum\limits_{\mathrm{cyc}}\left(bc^3-b^2c^2\right)=v_1-\sum\limits_{\mathrm{cyc}} (bc)^2=v_1-\left(s_2^2-2s_1s_3\right)\ .$

Observe that $:\ \left\{\begin{array}{ccccc}
u_2+u_1=\sum\limits_{\mathrm{cyc}}bc(b+c)=s_1s_2-3s_3=s_1s_2-3s_3=-85 & \implies & u_2+u_1 & = & -85 \\\\
u_2-u_1=\sum\limits_{\mathrm{cyc}}bc(c-b)=(a-b)(b-c)(c-a)=k=49 & \implies & u_2-u_1 & = & 49\end{array}\right\|\implies$ $\left\{\begin{array}{ccc}
u_1 & = & -67\\\\
u_2 & = & -18\end{array}\right\|\ ;$

$\left\{\begin{array}{ccccc}
v_1+v_2=\sum\limits_{\mathrm{cyc}}bc\left(b^2+c^2\right)=\sum\limits_{\mathrm{cyc}}\left(s_2S_2-s_1s_3\right)=s_1^2s_2-2s_2^2-s_1s_3=-246 & \implies & v_1+v_2 & = & -246\\\\
v_1-v_2=\sum\limits_{\mathrm{cyc}}bc\left(c^2-b^2\right)=(a-b)(b-c)(c-a)(a+b+c)=ks_1=-196  & \implies & v_1-v_2 & = & -196\end{array}\right\|\implies$ $\left\{\begin{array}{ccc}
v_1 & = & -221\\\\
v_2 & = & -25\end{array}\right\|\ .$

Thus, $\sum\limits_{\mathrm{cyc}}c(c-b)(c+b)=$ $\left(s_1^3-3s_1s_2+3s_3\right)-u_1=0$ and $\sum\limits_{\mathrm{cyc}}bc^2(c-b)=$ $\sum\limits_{\mathrm{cyc}}\left(bc^3-b^2c^2\right)=$

$v_1-\sum\limits_{\mathrm{cyc}} (bc)^2=v_1-\left(s_2^2-2s_1s_3\right)=-686\implies 49\cdot P(X)=49X^2-686\implies$ $\boxed{P(X)=X^2-14}\ .$



P3 (Turan BEY). Let $x\in \mathbb C$ satisfying the relation $x^2-x\sqrt 3+1=0\
 .$ Find the value $f(x)=\left(3+\sqrt{12}\right)\cdot g(x)\ ,$ where $g(x)=\frac {\left(x^5+1\right)^2}{x^{10}+1}\ .$

Proof. Observe that $\boxed{x+\frac 1x=\sqrt 3}$ and $g(x)=\frac {x^{10}+2x^5+1}{x^{10}+1}=$ $1+\frac {2x^5}{x^{10}+1}=$ $1+\frac 2{x^5+\frac 1{x^5}}\implies$ $g(x)=1+\frac 2{S_5}\ ,$ where $S_k=x^k+\frac 1{x^k}\ ,\ k\in\mathbb N^{*}\ ,$ $\underline{S_1=\sqrt 3}\ .$

Prove easily $\boxed{S_{k+2}=S_1\cdot S_{k+1}-S_k\ ;\ (\forall )\ k\in\mathbb N^{*}}\ .$ Hence, $S_2=S_1^2-2=1\implies \underline{S_2=1}\implies$ $S_3=S_1S_2-S_1=0\implies$ $\underline{S_3=0}\implies$ $S_4=S_1S_3-S_2=-1\implies$

$\underline{S_4=-1}\implies$ $S_5=S_1S_4-S_3=-\sqrt 3\implies$ $\boxed{S_5=-\sqrt 3}\ .$ In conclusion, $g(x)=1-\frac 2{\sqrt 3}=-\frac {2-\sqrt 3}{\sqrt 3}\implies$ $f(x)=-\frac {\left(2-\sqrt 3\right)\left(3+2\sqrt 3\right)}{\sqrt 3}\implies$ $\boxed{f(x)=-1}\ .$



P4. Let the function $f:\mathbb R\rightarrow\mathbb R\ ,$ where $f(x)= a_0x^3+a_1x^2+a_2x+a_3\ ,\ a_0\ne 0$ and three collinear points $\left\{P_k\ ,\ k\in\overline{1,3}\right\}\subset \mathbb G_f\ .$

For any $k\in\overline{1,3}$ the tangent $P_kP_k$ to graph $\mathbb G_f$ at the point $P_k\in \mathbb G_f$ meet again $\mathbb G_f$ in $Q_k\ .$ Prove that the points $Q_k\ ,\ k\in\overline {1,3}$ are collinearly.


Proof. $P_k\left(x_k,f\left(x_k\right)\right)\in\mathbb G_f\ ,\ k\in\overline{1,3}$ are collinearly $\iff$ $\left|\begin{array}{ccc}
x_1 & f\left(x_1\right) & 1\\\\
x_2 & f\left(x_2\right) & 1\\\\
x_3 & f\left(x_3\right) & 1\end{array}\right|=0\iff$ $\left(x_2-x_1\right)\left(x_3-x_1\right)\left(x_2-x_3\right)\left[a_0\left(x_1+x_2+x_3\right)+a_1\right]=0\iff$

$\boxed{x_1+x_2+x_3=-\frac {a_1}{a_0}}\ (*)\ .$ Let $Q_k\left(y_k,f\left(y_k\right)\right)\in\mathbb G_f\ ,\ k\in\overline{1,3}\ .$ Thus, $(\forall )\ k\in\overline{1,3}\ ,$ $\left\{P_k,P_k,Q_k\right\}$ are collinearly $\iff (\forall )\ k\in\overline{1,3}\ ,$ $2x_k+y_k=-\frac {a_1}{a_0}$ $\implies$

$2\sum x_k+\sum y_k=-\frac {3a_1}{a_0}\ \stackrel{(*)}{\iff}\ -\frac {2a_1}{a_0}+\sum y_k=$ $-\frac {3a_1}{a_0}\iff\sum y_k=-\frac {a_1}{a_0}\iff$ the points $Q_k\ ,\overline{1,3}$ are collinearly.

Particular case. If there is at least an extremum point, then the extremum points and the inflection point are collinearly.



P5 (Javier CRUZ).. Solve over $\mathbb R$ the following system of the equations $\boxed{\ \odot\begin{array}{ccccccc}
\nearrow & x^3 & - & y^3 & = & 74 & \searrow\\\\
\searrow & x^2 & + & y^2 & = & 26 & \nearrow\end{array}\odot\ }$ .

Proof. Let $S=x+y\ ,$ $P=xy$ and $D=x-y\ .$ Our system becomes $\odot\begin{array}{ccccc}
\nearrow & D\left(S^2-P\right) & = & 74 & \searrow\\\\
\rightarrow & S^2-4P & = & D^2\ & \rightarrow\\\\
\searrow & S^2-2P & = & 26 & \nearrow\end{array}\odot\implies$ $\odot\begin{array}{cccccc}
\nearrow & S^2+D^2 & = & 52 & \searrow\\\\
\searrow & 2P+26 & = & S^2 & \nearrow\end{array}\bigoplus\implies$ $\left\{\begin{array}{cc}
\boxed{\ S^2=52-D^2\ } & (1)\\\\
\boxed{\ 2P=26-D^2\ } & (2)\end{array}\right\|\ .$ Thus, $D\left(S^2-P\right)=74\ \stackrel{1\wedge 2}{\iff}\ D\left[\left(52-D^2\right)-\frac {26-D^2}2\right]=74\iff$ $D^3-78D+148=0\iff$ $D\in\left\{\ 2\ ,\ -1\pm 5\sqrt 3\ \right\}$ a.s.o.


P6. Solve over $\mathbb R$ the irrational equation $\sqrt {5-x^2}+x\sqrt{5-x^2}+x=5\ .$

Proof. Denote $\boxed{y=\sqrt {5-x^2}}\ (*)\ ,$ i.e. $\boxed{x^2+y^2=5}\ (1)\ .$ Observe that $\sqrt {5-x^2}+x\sqrt{5-x^2}+x=5$ $\iff$ $y+xy+x=5\iff$ $\boxed{(1+x)(1+y)=6}\ (2)\ ,$

where $\boxed{-1<x\le \sqrt 5}\ .$ From the system of the relations $(1\ \wedge\ 2)$ with the substitution $\boxed{x+y=t\ (3)}$ obtain that $2xy=t^2-5$ and the equation $1+t+\frac {t^2-5}2=6\ ,$

i.e. $t^2+2t-15=0\begin{array}{ccccccccccc}
\nearrow & t_1=-5 & \implies & x+y & = & -5 & \implies & xy & = & 10 & \searrow\\\\
\searrow & t_2=3 & \implies & x+y & = & 3 & \implies & xy & = & 2 & \nearrow\end{array}\odot \implies$ $\left\{\begin{array}{ccc}
x+y & = & 3\\\\
xy & = & 2\end{array}\right\|\implies$ $\{x,y\}=\{2,3\}\ .$



P7. Problema propusa (<= click) pentru clasa a VII - a. SUCCES!

Proof. $\boxed{\ \left\{\begin{array}{cccc}
x^2-x+1=0 & \implies & \boxed{\ x^2=x-1\ } & (1)\\\\
x^3+1=(x+1)\left(x^2-x+1\right) & \stackrel{(1)}{\implies} & \boxed{\ x^3=-1\ } & (2)\end{array}\right\|\implies\ \left\{\begin{array}{cccc}
x^5=x^3\cdot x^2\ \stackrel{(1\wedge 2)}{=}\ (-1)(x-1) & \implies & \boxed{\ x^5=1-x\ } & (3)\\\\
\frac 1{x^5}=\frac x{x^6}=\frac x{\left(x^3\right)^2}\ \stackrel{(2)}{=}\ \frac x{(-1)^2}=x & \implies & \boxed{\  \frac 1{x^5}=x\ } & (4)\end{array}\right\|\ \stackrel{(3\wedge 4)}{\implies}\ \boxed{x^5+\frac 1{x^5}=1}\ }$
This post has been edited 221 times. Last edited by Virgil Nicula, Mar 16, 2019, 6:29 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a