422. Geometrical problems.

by Virgil Nicula, Mar 28, 2015, 11:47 PM

PP1 (Cristian Tello). Let an $A$-right $\triangle ABC$ with the $A$-altitude $AD$ , where $D\in (BC)$ and $c>b$ . Denote $:$ the incircle $w_1=\mathbb C\left(I_1,r_1\right)$

of $\triangle ADB$ and the incircle $w_2=\mathbb C\left(I_2,r_2\right)$ of $\triangle ADC\ ;$ the tangent line $CX$ to $w_1$ at $X\in w_1$ and the tangent line $BY$ to $w_2$ at $Y\in w_2$ , where

$\left\{\begin{array}{c}
U\in CX\cap AD\\\\
V\in BY\cap AD\end{array}\right\|\ ;$ the incircle $w_3=\mathbb C\left(I_3,r_3\right)$ of $\triangle BVD$ and the incircle $w_4=\mathbb C\left(I_4,r_4\right)$ of $\triangle CUD\ .$ Prove that $\tan C=\sqrt{\frac {r_2r_3\left(r_1-r_4\right)}{r_1r_4\left(r_2-r_3\right)}}\ .$


Proof. Let $\left\{\begin{array}{ccc}
M\in BC\cap w_1 & ; & N\in BC\cap w_2\\\\
P\in BC\cap w_3 & ; & R\in BC\cap w_4\end{array}\right\|$ . Thus, $\left\{\begin{array}{c}
B\in I_3I_2\\\\
C\in I_4I_1\end{array}\right\|$ and $\left\{\begin{array}{ccccc}
I_1M\parallel I_4R\implies\frac {I_1M}{I_4R}=\frac {CM}{CR} & \implies & \frac {r_1}{r_4}=\frac {\frac{b^2}a+r_1}{\frac {b^2}a-r_4} & \implies & \frac {r_1-r_4}{r_1r_4}=\frac {2a}{b^2}\\\\
I_2N\parallel I_3P\implies\frac {I_2N}{I_3P}=\frac {BN}{BP} & \implies & \frac {r_2}{r_3}=\frac {\frac{c^2}a+r_2}{\frac {c^2}a-r_3} & \implies & \frac {r_2-r_3}{r_2r_3}=\frac {2a}{c^2}\end{array}\right\|\implies$

$\frac {\frac {r_1-r_4}{r_1r_4}}{\frac {r_2-r_3}{r_2r_3}}=\frac {\frac {2a}{b^2}}{\frac {2a}{c^2}}\implies$ $\frac {r_2r_3\left(r_1-r_4\right)}{r_1r_4\left(r_2-r_3\right)}=\left(\frac cb\right)^2=\tan^2C\implies$ $\tan C=\sqrt{\frac {r_2r_3\left(r_1-r_4\right)}{r_1r_4\left(r_2-r_3\right)}}\ .$


PP2 (Ruben Dario). Let $A$-right $\triangle ABC$ with $b\ne c$ and altitude $AD$ , where $D\in (BC)$ . Prove that $(\stackrel{\cdot}{\exists})\ P\in (AD)$ so that $\left\{\begin{array}{c}
E\in BP\cap AC\\\\
F\in CP\cap AB\end{array}\right\|$ with $AE=AF=x$ and in this

case, if denote $AD=h$ and $\left\{\begin{array}{ccc}
DB=m& ; & DC=n\\\
BF=u & ; & CE=v\end{array}\right\|$ , then $x=\sqrt{uv}\ ;\ a=\sqrt {u+v}\left(\sqrt{u}+\sqrt {v}\right)\ ;\ h=\frac {a\sqrt{uv}}{u+v}\ ;\ [DF$ and $[DE$ are the bisectors of $\widehat{ADB}$ and $\widehat {ADC}$.


Proof 1. Apply the Ceva's theorem $:$ $\frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=1\iff$ $\frac mn\cdot \frac vx\cdot\frac xu=1\implies$ $ \frac mu=\frac nv=\frac a{u+v}\implies\odot$ $\begin{array}{cccc}
\nearrow & m=\frac {au}{u+v} & (1) & \searrow\\\\
\searrow & n=\frac {av}{u+v} & (2) & \nearrow\end{array}\odot$ . Apply the theorem of cathetus $:$

$\blacktriangleright\ AB^2=BD\cdot BC \implies (u+x)^2=ma\implies$ $m=\frac {(u+x)^2}a\ \stackrel{1}{\implies}\  \frac {(u+x)^2}a=\frac {au}{u+v}\implies$ $ (u+x)\sqrt{u+v}=a\sqrt u\ (3)\ .$

$\blacktriangleright\ AC^2=CD\cdot BC \implies (v+x)^2=na\implies$ $ n=\frac {(v+x)^2}a\ \stackrel{2}{\implies}\ \frac {(v+x)^2}a=\frac {av}{u+v} \implies $ $(v+x)\sqrt{u+v}=a\sqrt v\ (4)\ .$

The difference of relations $(3)$ and $(4)\ \implies\ (u-v)\sqrt{u+v}=$ $a\left(\sqrt u-\sqrt v\right)$ , i.e. $\boxed{a=\left(\sqrt u+\sqrt v\right)\sqrt {u+v}}\ (5)$ . Exists at least one $P\in (AD)$ so that $AE=AF=x\iff$

$(u+x)^2+(v+x)^2=a^2\iff$ $2x^2+2x(u+v)+u^2+v^2-a^2=0\ \stackrel{5}{\iff}\ 2x^2+2x(u+v)+u^2+v^2-(u+v)\left(u+v+2\sqrt{uv}\right)=0\iff$

$2x^2+2x(u+v)-2\sqrt{uv}\left(u+v+\sqrt{uv}\right)=0$ $\begin{array}{cc}
\nearrow & x_1=\sqrt{uv}\\\\
\searrow & x_2<0\end{array}\ .$ In conclusion, there is only one positive root $\boxed{x=\sqrt{uv}}$ , i.e. there is only one $P$ which respects mentioned

conditions. Thus, $h^2=mn=\frac {a^2uv}{(u+v)^2}\implies$ $\boxed{h=\frac {\sqrt{uv}\left(\sqrt u+\sqrt v\right)}{\sqrt{u+v}}}$ and $\frac {DA}{DB}=\frac hm=\frac {\frac {a\sqrt{uv}}{u+v}}{\frac {au}{u+v}}=$ $\frac {\sqrt v}{\sqrt u}=\frac xu=\frac {FA}{FB}\implies$ $\boxed{\frac {DA}{DB}=\frac {FA}{FB}}$ , i.e. the ray $[GF$ is the bisector of $\widehat{ADB}$

Proof 2. Apply the Ceva's theorem $:\ \frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=1\iff$ $\frac mn\cdot \frac vx\cdot\frac xu=1\implies$ $ \boxed{\frac mn=\frac uv}\ (*)$ . Apply the theorem of the symmedian $:\ \frac {DB}{DC}=\left(\frac {AB}{AC}\right)^2$ $\iff$

$\frac mn=\left(\frac {u+x}{v+x}\right)^2\ \stackrel{*}{\iff}\ \frac uv=$ $\left(\frac {u+x}{v+x}\right)^2\iff$ $\frac {\sqrt u}{\sqrt v}=\frac {u+x}{v+x}\ \stackrel{u\ne v}{\iff}\ \boxed{x=\sqrt{uv}}\ (1)\ .$ Hence $AB^2+AC^2=BC^2\iff$ $(x+u)^2+(x+v)^2=a^2\ \stackrel{1}{\iff}$

$\left(\sqrt{uv}+u\right)^2+\left(\sqrt{uv}+v\right)^2=a^2\iff$ $u\left(\sqrt u+\sqrt v\right)^2+v\left(\sqrt u+\sqrt v\right)^2=$ $a^2\iff$ $(u+v)\left(\sqrt u+\sqrt v\right)^2=$ $a^2\iff$ $a=\sqrt {u+v}\left(\sqrt u+\sqrt v\right)$ a.s.o.

Remark. $\frac {DA}{DB}=\frac hm=\tan B=$ $\frac {AC}{AB}=\sqrt{\frac {DC}{DB}}=\sqrt{\frac nm}=\sqrt{\frac vu}=\frac {\sqrt v}{\sqrt u}=$ $\frac {\sqrt {uv}}u=\frac xu=\frac {FA}{FB}\implies$ $\frac {DA}{DB}=\frac {FA}{FB}\implies$ the ray $[GF$ is the bisector of $\widehat{ADB}$ . Let $d$

so that $A\in d\ ,\ d\parallel BC$ and $\left\{\begin{array}{c}
X\in DF\cap d\\\\
Y\in DE\cap d\end{array}\right\|$ . Prove easily that $AX=AY=l$ and $\frac hm=\frac xu=\frac lm\implies h=m$ . Hence $AX=AD=AY$ and $DX\perp DY$ .


An easy extension. Let $\triangle ABC$ with $A$-symmedian $AD$ , where $D\in (BC)$ . Suppose that exists $P\in (AD)$ so that $\left\{\begin{array}{c}
E\in BP\cap AC\\\\
F\in CP\cap AB\\\\
AE=AF=x\end{array}\right\|\ .$

Let $\left\{\begin{array}{c}
DB=m\ ;\ DC=n\\\\
BF=u\ ;\ CE=v\end{array}\right\|$ . Prove that $x=\sqrt{uv}$ , $AD=\frac {\left(\sqrt u+\sqrt v\right)\sqrt{u+v+2x\cos A}}{u+v}$ and $a=\left(\sqrt{u}+\sqrt {v}\right)\sqrt {u+v-2x\cos A}\  .$



PP3 (M. Ochoa Sanchez). Let an acute $\triangle ABC$ with orthocenter $H\ ,$ circumcircle $w=\mathbb C(O,R)\ ,\ S\in OH\cap BC$ and $m\left(\widehat{BSH}\right)=\theta\ .$ Prove that $\tan\theta =\frac {3-\tan B\tan C}{\tan B-\tan C}\ (*)$

Proof. Suppose w.l.o.g. $a>c$ and let $m\left(\widehat{BOH}\right)=\phi$ . Prove easily $\left\{\begin{array}{ccc}
m\left(\widehat{HBO}\right)=A-C & ; & m\left(\widehat{OBS}\right)=90^{\circ}-A\\\\
\phi =90^{\circ}+\theta -A & ; & m\left(\widehat{BHO}\right)=90^{\circ}+C-\theta\end{array}\right\|$ . Apply the theorem of Sines

in $\triangle ABC\ :\ \frac{BH}{\sin\widehat{BOH}}=\frac {BO}{\sin\widehat{BHO}}\iff$ $\frac {2R\cos B}{\sin\phi}=\frac R{\sin\left(\phi +A-C\right)}\iff$ $\frac {2\cos B}{\cos (A-\theta)}=\frac 1{\sin\left(90^{\circ}+\theta -C\right)}\iff$ $2\cos B\cos (C-\theta )=\cos (A-\theta )\iff$

$\cos (B+C-\theta )+\cos (B+\theta -C)=$$\cos (A-\theta)$ $\iff$ $\cos (A+\theta )+\cos (A-\theta )=\cos (B-C+\theta )\iff$ $\boxed{2\cos A\cos \theta =\cos (B-C+\theta )}\iff$

$2\cos A=\cos (B-C)-\sin (B-C)\tan\theta\iff$ $\tan\theta =\frac {\cos (B-C)+2\cos (B+C)}{\sin (B-C)}=$ $\frac {3\cos B\cos C-\sin B\sin C}{\sin B\cos C-\sin C\cos B}=$ $\frac {3-\tan B\tan C}{\tan B-\tan C}\implies$ the relation $(*)$ .

Remark. $\theta = 60^{\circ}\iff \frac {3-\tan B\tan C}{\tan B-\tan C}=\sqrt 3\iff$ $\tan B\tan C+\sqrt 3(\tan B-\tan C)-3=0\iff$

$\tan B(\tan C+\sqrt 3)=\sqrt 3(\tan C+\sqrt 3)\iff $ $\tan B=\sqrt 3\iff B=60^{\circ}\iff \triangle ABC$ is equilateral.



PP4 (M. Ochoa Sanchez). Let $\triangle ABC$ with $(A,B,C)=\left(60^{\circ},96^{\circ},24^{\circ}\right)$ and $D\in (BC)$ so that $BC=\sqrt 3\cdot AD$. Prove that $m\left(\widehat{DAB}\right)=30^{\circ}$ .

Proof. Denote $m\left(\widehat{DAB}\right)=\phi$ . Apply the theorem of Sines in the triangles $:\ \left\{\begin{array}{cccc}
\triangle ABD\ : & \frac {AB}{AD} & = & \frac {\sin \widehat{ADB}}{\sin\widehat{ABD}}\\\\
\triangle ABC\ : & \frac {BC}{BA} & = & \frac {\sin\widehat{BAC}}{\sin\widehat{BCA}}\end{array}\right\|$ $\bigodot\implies$ $\frac {BC}{AD}=\frac {\sin \widehat{ADB}}{\sin\widehat{ABD}}\cdot \frac {\sin\widehat{BAC}}{\sin\widehat{BCA}}\iff$

$\sqrt 3=\frac {\sin\left(84^{\circ}-\phi\right)}{\sin 96^{\circ}}\cdot \frac {\sin 60^{\circ}}{\sin 24^{\circ}}\iff$ $2\sin 24^{\circ}\sin 96^{\circ}=\cos\left(6^{\circ}+\phi\right)\iff$ $\cos 72^{\circ}-\cos 120^{\circ}=\cos\left(6^{\circ}+\phi\right)\iff$ $\sin 18^{\circ}+\frac 12=\cos\left(6^{\circ}+\phi\right)\iff$

$\frac {\sqrt 5 -1}4+\frac 12=\cos\left(6^{\circ}+\phi\right)\iff$ $\frac {\sqrt 5+1}4=\cos\left(6^{\circ}+\phi\right)\iff$ $\cos 36^{\circ}=\cos\left(6^{\circ}+\phi\right)\iff$ $36^{\circ}=6^{\circ}+\phi\iff$ $\phi =30^{\circ}$ .



PP5. Let $\triangle ABC$ with $:\ \left\{\begin{array}{cccc}
\mathrm{incircle} & w & = &\mathbb C\left(I,r\right)\\\
\mathrm{A-excircle} & w_a & = & \mathbb C\left(I_a,r_a\right)\end{array}\right\|\ ;$ $\left\{\begin{array}{ccc}
M\in (BC) & , & MB=MC\\\
D\in BC & , & AD\perp BC\end{array}\right\|\ ;$ $\left\{\begin{array}{c}
E\in AD\cap MI\\\
F\in AD\cap MI_a\end{array}\right\|$ . Prove that $\left\{\begin{array}{ccc}
AE & = & r\\\
AF & = & r_a\end{array}\right\|\ .$

Proof. Suppose w.l.o.g. $b>c$ . Let $AD=h_a$ and $\left\{\begin{array}{ccc}
S\in BC\cap w & ; & AE=x\\\
T\in BC\cap w_a & ; & AF=y\end{array}\right\|$ . Is well-known that $MS=MT=\frac {b-c}2$ and $MD=\frac {b^2-c^2}{2a}$ . Therefore $:$

$\blacktriangleright\ DE\parallel IS\iff$ $\frac {DE}{IS}=\frac {MD}{MS}\iff$ $\frac {h_a-x}{r}=\frac {\frac {b^2-c^2}{2a}}{\frac {b-c}2}=\frac {b+c}a\iff$ $ah_a-ax=r(b+c)\iff$ $(b+c+a)r-ax=r(b+c)\iff x=r$ .

$\blacktriangleright\ DF\parallel I_aT\iff$ $\frac {DF}{I_aT}=\frac {MD}{MT}\iff$ $\frac {h_a+y}{r_a}=\frac {\frac {b^2-c^2}{2a}}{\frac {b-c}2}=\frac {b+c}a\iff$ $ah_a+ay=r_a(b+c)\iff$ $(b+c-a)r_a+ay=r_a(b+c)\iff y=r_a$ .



L1. $(\forall\ )\ \triangle ABC$ there is the equivalence $A=90^{\circ}\iff 2r^2=\left(r_b-r\right)\left(r_c-r\right)$ (standard notations).

Proof. Observe that $sr=S=(s-a)r_a\iff s(r_a-r)=ar_a\iff$ $\boxed{r_a-r=\frac {ar_a}s}\ (*)$ a.s.o. Thus, $2r^2=\left(r_b-r\right)\left(r_c-r\right)\ \stackrel{(*)}{\iff}$ $2s^2r^2=bcr_br_c\iff$

$2S^2=\frac {bcS^2}{(s-b)(s-c)}\iff$ $2(s-b)(s-c)=bc\iff$ $(a+b-c)(a+c-b)=2bc\iff$ $a^2-(b-c)^2=2bc\iff$ $a^2=b^2+c^2\iff$ $A=90^{\circ}$ .

Remark 1. Denote the midpoint $M$ of $[BC]$ , the incircle $w=\mathbb C(I,r)\ ,\ D\in BC\cap w$ and the $A$-excircle $\mathbb C\left(I_a,r_a\right)\ ,\ D_a\in BC\cap w_a$ . Is well-known that $M$

is the midpoint of $DD_a$ , the midpoint $S$ (south) of $[II_a]$ belongs to the circumcircle of $\triangle ABC$ and from the trapezoid $IDI_aD_a$ obtain that $\boxed{2s_a=r_a-r}\ (1)$ ,

where $s_a$ is the length of the arrow of $\overarc{BC}$ . Prove easily that the Ruben Dario's equivalence $r^2=2s_bs_c\ \stackrel {(!)}{\iff}\ 2r^2=$ $\left(r_b-r\right)\left(r_c-r\right)\ \stackrel{\mathrm{(L1)}}{\iff}\ A=90^{\circ}$ .

Remark 2. $(\forall )\ \triangle ABC\ ,\ \frac {s_bs_c}{r^2}=$ $\frac {\left(r_b-r\right)\left(r_c-r\right)}{4r^2}=$ $\frac 14\cdot\left(\frac {r_br_c}{r^2}-\frac {r_b+r_c}{r}+1\right)=$ $\frac 14\cdot\left[\frac {s^2}{(s-b)(s-c)}-\frac {as}{(s-b)(s-c)}+1\right]=$

$\frac 14\cdot\left[1+\frac {s(s-a)}{(s-b)(s-c)}\right]=$ $\frac 14\cdot\left(1+\cot^2\frac A2\right)\implies$ $4s_bs_c=r^2\left(1+\cot^2\frac A2\right)\implies$ $r^2=4s_bs_c\sin^2\frac A2\implies$ $\boxed{r^2=2s_bs_c(1-\cos A)}$.



PP6 (Ruben Dario). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ which touches $\triangle ABC$ at $M\in AB$ , $L\in BC$ and $T\in CA$ . Let $\left\{\begin{array}{ccc}
P & \in & CI\cap LM\\\\
Q & \in & BI\cap LT\end{array}\right\|$ . Prove that $PQ=AT$ .

Proof. Prove easily or is well-known that $PA\perp PI$ and $QA\perp QI$ . Thus, the points $M,T,P,Q$ belong to the circle with the dameter $[AI]$ .

In conclusion, $PQ=AI\sin\widehat{PIQ}=$ $AI\sin\widehat{BIC}=$ $AI\sin\left(90^{\circ}+\frac A2\right)=$ $AI\cos\frac A2=AT\implies PQ=AT$ . Nice problem!



P7 (Ruben Dario). Let $\triangle ABC$ with $\left\{\begin{array}{ccc}
M\in (AB) & ; & P\in BN\cap CM\\\\
N\in (AC) & ; & L\in MN\cap AP\end{array}\right\|$ . Prove that $\frac {BA}{BM}+\frac {CA}{CN}=\frac {PA}{PL}$ .


Proof 1. Apply Menelaus' theorem to $:\ \left\{\begin{array}{cc}
\overline{CPM}/\triangle LAN\ : & \frac {PA}{PL}\cdot\frac {ML}{MN}\cdot\frac {CN}{CA}=1\\\\
\overline{BPN}/\triangle LAM\ : & \frac {PA}{PL}\cdot\frac {NL}{NM}\cdot\frac {BM}{BA}=1\end{array}\right\|$ $\bigoplus\implies$ $\frac {CA}{CN}+\frac{BA}{BM}=\frac {PA}{PL}\cdot\left(\frac {ML}{MN}+\frac {NL}{NM}\right)\implies$ $\frac {BA}{BM}+\frac {CA}{CN}=\frac {PA}{PL}$ .

Proof 2. Denote $S\in AP\cap BC$ . Is well-known that $(A,P;L,S)$ is an harmonical division, i.e. $\boxed{\frac {LA}{LP}=\frac{SA}{SP}}\ (*)$ . Apply the Van Aubel's relation $\frac {MA}{MB}+\frac {NA}{NC}=\frac {PA}{PS}$ ,

i.e. $\left(1+\frac {MA}{MB}\right)+\left(1+\frac {NA}{NC}\right)=1+\left(1+\frac {PA}{PS}\right)\implies$ $\frac {BA}{BM}+\frac {CA}{CN}=$ $1+\frac {SA}{SP}\ \stackrel {(*)}{\implies}\ \frac {BA}{BM}+\frac {CA}{CN}=$ $1+\frac {LA}{LP}\implies$ $\frac {BA}{BM}+\frac {CA}{CN}=\frac {PA}{PL}$ .



PP8 (Ruben Dario Auqui). Let $\triangle ABC$ with the incircle $w=C(I,r)$ and $\left\{\begin{array}{ccc}
D\in BC\cap AI & ; & \{A,M\}=AI\cap w\\\\
E\in CA\cap BI & ; & \{B,N\}=BI\cap w\\\\
F\in AB\cap CI & ; & \{C,P\}=CI\cap w\end{array}\right\|$ . Prove that $\sqrt {\frac {DA}{DM}\cdot\frac {EB}{EN}\cdot\frac {FC}{FP}}=\frac {a+b+c}{R}$ .

Proof 1. Observe that $\frac b{DC}=\frac c{DB}=\frac {b+c}{a}\ (*)$ and $\frac {DA}{DM}=\frac {DA^2}{DA\cdot DM}=$ $\frac {DA^2}{DB\cdot DC}=$ $\frac {bc-DB\cdot DC}{DB\cdot DC}=$ $\frac b{DC}\cdot \frac c{DB}-1\stackrel{(*)}{=}$ $\left(\frac {b+c}{a}\right)^2-1\implies$ $\boxed{\frac {DA}{DM}=\frac {4s(s-a)}{a^2}}$ .

Otherwise. $\frac {AI}{AI_a}=\frac {s-a}{s}=\frac r{r_a}=\frac {DI}{DI_a}\implies\{I,I_a;A,D\}$ is h.d. So $M$ is the midpoint of $II_a\implies$ $\frac {MA}{MD}=\left(\frac {IA}{ID}\right)^2=\left(\frac {b+c}{a}\right)^2\implies$ $\boxed{\frac {DA}{DM}=\frac {4s(s-a)}{a^2}}$ .

In conclusion, $\sqrt {\prod \frac {DA}{DM}}=$ $\sqrt {\prod\frac {4s(s-a)}{a^2}}=$ $\sqrt{\frac {64s^3(s-a)(s-b)(s-c)}{a^2b^2c^2}}=$ $\sqrt{\frac {64s^3\cdot sr^2}{(4Rsr)^2}}=$ $\sqrt{\frac {4s^2}{R^2}}\implies$ $\sqrt {\frac {DA}{DM}\cdot\frac {EB}{EN}\cdot\frac {FC}{FP}}=\frac {a+b+c}{R}$ .

Proof 2. $\frac {DA}{DM}=\frac {h_a}{\frac {r_a-r}{2}}\implies$ $\boxed{\frac {DA}{DM}=\frac {2h_a}{r_a-r}}\implies$ $\prod\frac {DA}{DM}=\frac {8h_ah_bh_c}{-(r-r_a)(r-r_b)(r-r_c)}=$ $\frac {2h_ah_bh_c}{Rr^2}=$ $\frac {16S^3}{abc\cdot Rr^2}=$ $\frac {4S^2}{R^2r^2}=\frac {4s^2}{R^2}\implies$ $\sqrt {\prod\frac {DA}{DM}}=\frac {a+b+c}{R}$ .

Remark. I used the equation $f(x)=x^3-(4R+r)x^2+s^2x-s^2r=0\odot\begin{array}{ccc}
\nearrow & r_a & \searrow\\\\
\rightarrow & r_b & \rightarrow\\\\
\searrow & r_c & \nearrow\end{array}\odot$ and $f(r)=(r-r_a)(r-r_b)(r-r_c)=$ $r^3-(4R+r)r^2+s^2r-s^2r=-4Rr^2$ .



PP9. An acute $\triangle ABC$ with orthocenter $H$ , incenter $I$ , circumcircle $w=C(O,R)$ and $\left\{\begin{array}{c}
\{A,Q\}=AH\cap w\\\\
\{A,T\}=AI\cap w\end{array}\right\|$ . Prove $QI\perp QT\iff \cos B+\cos C=1\iff  IH\perp IA$ .

Proof. Denote the incircle $C(I,r)$ and the diameter $[TN]$ of the circumcircle $w=C(O,R)$ . Therefore:

$\blacktriangleright\ QI\perp QT\iff$ $N\in QI\iff$ $AQTN$ is an isosceles trapezoid $\iff IO\parallel BC\iff$ $r=R\cos A\iff$ $\cos A=\frac rR\iff$ $\boxed{\cos B+\cos C=1}$ .

$\blacktriangleright\ IH\perp IA\iff$ $IA=AH\cos\frac {B-C}{2}\iff$ $s-a=2R\cos A\cos\frac {B-C}{2}\cos \frac A2\iff$ $s-a=R\cos A(\sin B+\sin C)\iff$ $b+c-a=(b+c)\cos A\iff$

$\boxed{(b+c)(1-\cos A)=a}\iff$ $2\sin^2\frac A2=\frac a{b+c}=\frac {\sin A}{\sin B+\sin C}\iff$ $2\sin^2\frac A2=\frac {2\sin\frac A2\cos\frac A2}{2\cos \frac A2\cos\frac {B-C}{2}}\iff$ $2\sin\frac A2\cos\frac {B-C}{2}=1\iff$ $\boxed{\cos B+\cos C=1}$ .

Otherwise. Denote $P\in AH\cap BC$ and $D\in AI\cap BC$ . Thus, $IH\perp IA\iff$ $PHJD$ is cyclically $\iff$ $AH\cdot AP=AI\cap AD\iff$ $h_a\cdot 2R\cos A=\frac {b+c}{2s}\cdot AD^2\iff$

$bc\cos A=\frac {b+c}{2s}\cdot \frac {4bcs(s-a)}{(b+c)^2}\iff$ $(b+c)\cos A=b+c-a\iff$ $\boxed{(b+c)(1-\cos A)=a}$ a.s.o.



PP10 (Miguel Ochoa Sanchez). Let an $A$-right $\triangle ABC$ , the midpoint $M$ of $[BC]$ , the tangent points $D\in BC$ , $E\in CA$ and $F\in AB$

of its incircle $w=C(I,r)$ and $X\in MI\ ,\ AX\perp BC$ . Define $P\in EX\cap w$ and $Q\in FX\cap w$ . Prove that $PQ\parallel BC$ .


Proof. Is well-known that in $\triangle ABC$ there is the relation $AX=r$ and $AB\perp AC\iff r=s-a$ . Thus, $AE=AF=AX=r$ , i.e.$\triangle XAE$ , $\triangle XAF$ are $A$-isosceles and

$\left\{\begin{array}{c}
m\left(\widehat {AEX}\right)=45^{\circ}+\frac C2\\\\
m\left(\widehat {AFX}\right)=45^{\circ}+\frac B2\end{array}\right\|$ $\implies$ $\left\{\begin{array}{c}
m\left(\widehat{PED}\right)=180^{\circ}-\left(45^{\circ}+\frac C2\right)-\left(90^{\circ}-\frac C2\right)=45^{\circ}\\\\
m\left(\widehat{QFD}\right)=180^{\circ}-\left(45^{\circ}+\frac B2\right)-\left(90^{\circ}-\frac B2\right)=45^{\circ}\end{array}\right\|$ $\implies\widehat{PED}\equiv\widehat{QFD}\implies\delta_{BC}(P)=\delta_{BC}(Q)=r\implies$ $I\in PQ\parallel BC$ .


General case. Let $\triangle ABC$. Is well-known that $AX=r$ . Let $\left\{\begin{array}{c}
m\left(\widehat{AEX}\right)=\alpha\\\\
m\left(\widehat{PED}\right)=\phi\end{array}\right\|$. Thus, $\left\{\begin{array}{c}
m\left(\widehat{AXE}\right)=90^{\circ}+C-\alpha\\\\
\phi +\alpha =90^{\circ}+\frac C2\end{array}\right\|$ . Apply Theorem of Sines in $\triangle AXE\ :$

$\frac {AX}{\sin \widehat{AEX}}=\frac {AE}{\sin \widehat{AXE}}\iff$ $\frac{r}{\sin \alpha}=\frac {s-a}{\cos (\alpha -C)}\iff$ $\tan\frac A2=\frac {\tan\alpha}{\cos C+\sin C\tan\alpha}\iff$ $\boxed{\tan\alpha=\frac {\tan\frac A2\cos C}{1-\tan\frac A2\sin C}}\ (1)$ . Since $\tan\alpha =\tan\left(90^{\circ}+\frac C2-\phi\right)=$

$\cot\left(\phi -\frac C2\right)=$ $\frac {1+\tan\phi\tan\frac C2}{\tan\phi -\tan\frac C1}$ . Using $(1)$ obtain the relation $\frac {\tan\frac A2\cos C}{1-\tan\frac A2\sin C}=$ $\frac {1+\tan\phi\tan\frac C2}{\tan\phi-\tan\frac C2}\iff$ $\tan\phi =\frac {1+\tan\frac A2\tan\frac C2\cos C-\tan\frac A2\sin C}{\tan\frac A2\cos C+\tan\frac A2\tan\frac C2\sin C-\tan\frac C2}$ .

Let $\left\{\begin{array}{c}
\tan\frac A2=m\\\\
\tan\frac C2=p\end{array}\right\|$ . Thus, $\tan\phi =\frac {1+mp\cdot\frac {1-p^2}{1+p^2}-m\cdot\frac {2p}{1+p^2}}{m\cdot\frac {1-p^2}{1+p^2}+mp\cdot\frac{2p}{1+p^2}-p}=$ $\frac {1+p^2-mp^3-mp}{m+mp^2-p-p^3}=$ $\frac {\left(1+p^2\right)(1-mp)}{\left(1+p^2\right)(m-p)}\implies$ $\tan\phi =\frac {1-mp}{m-p}$ , i.e. $\boxed{\tan\phi =\frac {1-\tan\frac A2\tan\frac C2}{\tan\frac A2-\tan\frac C2}}\ (2)$ .

Obtain analogously that $\boxed{\tan\psi =\frac {1-\tan\frac A2\tan\frac B2}{\tan\frac A2-\tan\frac B2}}\ (3)$ , where $m\left(\widehat{QFD}\right)=\psi$ . Thus, $\sin\phi =\frac {\sin\frac B2}{\sqrt{\sin^2\frac B2+\sin^2\frac {A-C}{2}}}=$ $\frac {\sqrt 2\sin\frac B2}{\sqrt{2+\cos (A+C)-\cos (A-C)}}\implies$

$\sin\phi =\frac {\sqrt 2\sin\frac B2}{\sqrt{2(1-\sin A\sin C)}}$ . In conclusion, $\left\{\begin{array}{ccccc}
\sin\phi =\frac {\sin\frac B2}{\sqrt{1-\sin A\sin C}} & \implies & \delta_{BC}(P)=2r\sin^2\phi  &\implies & \delta_{BC}(P)=r\cdot \frac {1-\cos B}{1-\sin A\sin C}\\\\
\sin\psi =\frac {\sin\frac C2}{\sqrt{1-\sin A\sin B}} & \implies & \delta_{BC}(Q)=2r\sin^2\psi  &\implies & \delta_{BC}(Q)=r\cdot \frac {1-\cos C}{1-\sin A\sin B}\end{array}\right\|$ . Prove easily that

$\boxed{\tan\left(\frac {\pi}{4}-\phi \right)=\tan\left(\frac A2-\frac {\pi}{4}\right)\tan\left(\frac C2+\frac {\pi}{4}\right)}$ . Observe that $:\ \frac {\delta_{BC}(P)}{\delta_{BC}(Q)}=\frac {b(s-c)}{c(s-b)}\cdot\frac {2R-h_c}{2R-h_b}$ . Try to show $PQ\parallel BC\iff $ $\delta_{BC}(P)=\delta_{BC}(Q)\iff$ $AB\perp AC$ .



PP11 (Francisco Garcia Capitan). Let $\triangle ABC$ with $b<c$, where have the midpoint $M$ of $[BC]$, the tangent point $T\in (BC)$

of the $A$-excircle with the line $BC$ and $N\in AC$ so that $MN\parallel TA$. Prove that $NA=TC\iff a^2=(b-c)(b-3c)$.


Proof. Is well-known that $TB=s-c$ and $TC=s-b$ . Let $NA=n$ . Thus, $MN\parallel AT\iff$ $\frac {BT}{BM}=\frac {BA}{BN}\iff$ $\frac {s-c}{\frac a2}=\frac {c}{c+n}\iff$ $(a+b-c)(c+n)=ac\iff$

$\boxed{n(a+b-c)=c(c-b)}\ (*)$ . So $NA=TC\iff$ $2n=a+c-b\iff$ $2c(c-b)=(a+b-c)(a+c-b)\iff$ $2c^2-2bc=a^2-(b-c)^2\iff$ $a^2=(b-c)(b-3c)$ .


PP12. Let a $B$-right $\triangle ABC$ , where have the midpoint $M$ of $[BC]$ , the tangent point $T\in (BC)$ of the $A$-excircle with $BC$ and $N\in AB$ so that $MN\parallel TA$ . Prove that $NA=TC$ .

Proof. Is well-known that $TB=s-c$ and $TC=s-b$ . Let $NA=n$ . Thus, $MN\parallel AT\iff$ $\frac {BT}{BM}=\frac {BA}{BN}\iff$ $\frac {s-c}{\frac a2}=\frac {c}{c-n}\iff$ $(a+b-c)(c-n)=ac\iff$

$n(a+b-c)=c(b-c)\iff$ $\boxed{n=\frac {c(b-c)}{a+b-c}}\ (*)$ . So $NA=TC\iff$ $n=s-b\iff$ $2c(b-c)=(a+b-c)(a+c-b)\iff$ $2c(b-c)=a^2-(b-c)^2\iff$

$b^2=a^2+c^2$ - truly. If $P$ , $R$ are the midpoints of $[AC]$, $[NT]$, then prove generally that $NA=TC\ ,\ AC$ doesn't separate $N$ and $T\implies PR$ is parallel with the $B$-bisector.



PP13. Let an isosceles trapezoid $ABCD$ with $\left|\begin{array}{c}
AB\parallel CD\\\\
P\in AD\cap BC\end{array}\right|$, its circumcircle $w=C(O,r)$ and $\left|\begin{array}{c}
X\in (AD)\\\\
Y\in (BC)\end{array}\right|$ so that $PXOY$ is cyclic. Prove that $AX=CY$.

Proof. $\left\{\begin{array}{ccc}
PXOY\ \mathrm{is\ cyclic} & \implies & \widehat{OXA}\equiv\widehat{OYC}\\\\
\widehat{OAX}\equiv\widehat{OBC}\equiv\widehat{OCB} & \implies & \widehat{OAX}\equiv\widehat{OCY}\\\\
O\ \mathrm{circumcenter\ of}\ ABCD & \implies & OA=OC\end{array}\right\|$ $\implies$ $\triangle OXA\stackrel{(a.a.s.)}{\equiv}\triangle OYC$ $\implies$ $AX=CY$ . Otherwise. $\left\{\begin{array}{c}
PXOY\ \mathrm{cyclic}\\\\
\widehat{OPX}\equiv\widehat{OPY}\end{array}\right\|$ $\implies OX=OY$ a.s.o.


PP14. Let $\triangle ABC$ with $AB=c=6$ , $BC=a=7$ and $AC=b=8$ . Let $w=\mathbb C(X,x)$ be the circle with the center $X\in (BC)$ , $B\in w$ and which is tangent to $AC$ . Find $x$.

Proof 1. Show easily that $\triangle ABC$ is acute. Denote the projection $D$ of $A$ on $BC$ and $AD=h_a$. Since $BX=x=\delta_{AC}(X)$ , i.e. $DC=a-x$ obtain that

$h_a(a-x)=2[ADC]=xb\iff$ $\boxed{x=\frac {ah_a}{b+h_a}}\ (*)$ . Thus, denote $DB=u\ ,\ DC=v$ and $AD\perp BC\iff$ $DC^2-DB^2=AC^2-AB^2\iff$ $v^2-u^2=28$ and

$u+v=7$ . Therefore, $\left\{\begin{array}{ccc}
v+u & = & 7\\\
v-u & = & 4\end{array}\right\|$ , i.e. $\frac u3=\frac v{11}=\frac 12$ . Obtain easily that $h_a^2+u^2=c^2\iff$ $h_a^2=6^2-\frac 94=$ $\frac {12^2-3^2}{4}=\frac {15\cdot 9}{4}$ $\implies \boxed{h_a=\frac {3\sqrt{15}}2}$ . Otherwise, can

use the Heron's formula $S=\sqrt{s(s-a)(s-b)(s-c)}$ . Indeed, $\left\{\begin{array}{ccc}
s=\frac {21}2 & ; & s-a=\frac 72\\\\
s-b=\frac 52 & ; & s-c=\frac 92\end{array}\right\|$ and $S^2=\frac {21\cdot 7\cdot 5\cdot 9}{16}\iff$ $S=\frac {3\cdot 7\cdot  \sqrt {15}}4\iff$ $\boxed{S=\frac {21\sqrt {15}}4}$ . Thus,

$h_a=\frac {21\sqrt{15}}{2\cdot 7}$ , i.e. $h_a=\frac {3\sqrt {15}}2$ . In conclusion, using the relation $(*)$ obtain that $x=\frac {7\cdot\frac {3\sqrt {15}}2}{8+\frac {3\sqrt {15}}2}=$ $\frac {21\sqrt{15}}{16+3\sqrt{15}}=$ $\frac {21\sqrt{15}\left(16-3\sqrt{15}\right)}{121}\implies$ $\boxed{x=\frac {21\left(16\sqrt{15}-45\right)}{121}}$ .

Proof 2. Observe that $\cos B=\frac {a^2+c^2-b^2}{2ac}=\frac {49+36-64}{2\cdot \cdot 6} =\frac {85-64}{12\cdot 7}\implies$ $\boxed{\cos B=\frac 14}\ (1)$ . Denote: $Y\in AC\cap w$ and $YC=y$ , i.e. $AY=8-y$; $\{B,Z\}=AB\cap w$

and $BZ=z$ , i.e. $AZ=6-z$. Thus, $XB=XZ=XY=x$ . Apply the power of $A$ w.r.t. $w\ :$ $p_w(A)=AZ\cdot AB=AY^2\iff$ $6(6-z)=(8-y)^2\ \stackrel{(1)}{\iff}$

$\boxed{y^2-16y+28+3x=0}\ (2)$ . Since $YX\perp YC$ obtain that $CX^2=YX^2+YC^2\iff$ $(7-x)^2=x^2+y^2\iff$ $\boxed{y^2=7(7-2x)}\ (3)$. From the relations $(2)$

and $(3)$ eliminate $y^2$ and get $11x+16y=77$ $\implies$ $\boxed{y=\frac {11(7-x)}{16}}\ (4)$ . From $(3)$ get $7(7-2x)=\left[\frac {11(7-x)}{16}\right]^2\iff$ $\boxed{121\cdot x^2+135\cdot 14\cdot x-49\cdot 135=0}$ .

But $\Delta'=7^2\cdot 16^2\cdot 3^2\cdot 15$ . Hence $x=\frac {-7\cdot 135+7\cdot 16\cdot\cdot 3\sqrt {15}}{121}\iff$ $\boxed{x=\frac {21\left(16\sqrt {15}-45\right)}{121}}$ .

Proof 3. Denote $T\in AC\cap w$ , where $TC=y$ , i.e. $AT=8-y$ . Apply the Stewart's theorem to the cevian $AX\ :$ $AX^2\cdot BC+BC\cdot XB\cdot XC=$

$AB^2\cdot XC+AC^2\cdot XB\iff$ $7\cdot AX^2+7x(7-x)=36(7-x)+64x\iff$ $\boxed{AX^2=x^2-3x+36}\ (*)$ . Thus, $XT\perp AC\iff$ $XA^2-XC^2=$

$TA^2-TC^2\ \stackrel{(*)}{\iff}\ \left(x^2-3x+36\right)-$ $(7-x)^2=$ $(8-y)^2-y^2$. Thus, $\boxed{11x+16y=77}\implies$ $\boxed{y=\frac {11(7-x)}{16}}\ (1)$ . Since $YX\perp YC$ obtain that

$CX^2=YX^2+YC^2\iff$ $(7-x)^2=x^2+y^2\iff$ $7(7-2x)=y^2\ \stackrel{(1)}{\implies}\ 7(7-2x)=$ $\left[\frac {11(7-x)}{16}\right]^2\iff$ $\boxed{121\cdot x^2+135\cdot 14\cdot x-49\cdot 135=0}$ .

But $\Delta'=7^2\cdot 16^2\cdot 3^2\cdot 15$ . Hence $x=\frac {-7\cdot 135+7\cdot 16\cdot 3\sqrt {15}}{121}\iff$ $\boxed{x=\frac {21\left(16\sqrt {15}-45\right)}{121}}$ .



PP15 (Finala conc. Saraghin-2015). Let $\triangle ABC$ with the circumcentre $O$ . Denote the midpoints $D$ , $E$ and $F$ of the

sides $[BC]$ , $[CA]$ and $[AB]$ respectively. Define the points $\left\{\begin{array}{ccc}
P\in OE & ; & BP\perp BC\\\\
Q\in OF & ; & CQ\perp CB\end{array}\right\|$ . Prove that $PQ\perp AD$ .


Proof. $\left\{\begin{array}{ccc}
PA^2=PC^2 & = & BC^2+BP^2\\\\
QA^2=QB^2 & = & CB^2+CQ^2\end{array}\right\|$ $\implies \underline{\underline{AP^2-AQ}}^2=BP^2-CQ^2=$ $\left(DP^2-DB^2\right)-\left(DQ^2-DC^2\right)=$ $\underline{\underline{DP^2-DQ}}^2\implies AD\perp PQ$ .


PP16 (M. Ochoa Sanchez). Let an $A$-isosceles $\triangle ABC$ with $A=48^{\circ}$ . Exists an interior point $D$ for which $\left\{\begin{array}{ccc}
m\left(\widehat{DBC}\right)=48^{\circ}\\\\
m\left(\widehat{DCB}\right)=54^{\circ}\end{array}\right\|$ . Prove that $AD^2+BC^2=DB^2+DC^2$ .

Proof. $\left\{\begin{array}{ccc}
\sin 18^{\circ}=\frac{-1+\sqrt 5}4\\\\
\cos 36^{\circ}=\frac {1+\sqrt 5}4\end{array}\right\|\implies$ $\boxed{4\sin 18^{\circ}\sin 54^{\circ}=1}\ (*)$ . Thus, $\left\{\begin{array}{ccc}
m\left(\widehat{DBA}\right)=18^{\circ} & ; & m\left(\widehat{DCA}\right)=12^{\circ}\\\\
m\left(\widehat{DAB}\right)=x & ; & m\left(\widehat{DAC}\right)=48^{\circ}-x\end{array}\right\|$ . Apply the trigonometric form of the Ceva's theorem $:$

$\sin\widehat{DAB}\sin\widehat{DBC}\sin\widehat{DCA}=\sin\widehat{DAC}\sin\widehat{DCB}\sin\widehat{DBA}\iff$ $\sin x\sin 48^{\circ}\sin 12^{\circ}=\sin(48^{\circ}-x)\sin 18^{\circ}\sin54^{\circ}\stackrel{(*)}{\iff}$ $4\sin x\cos 42^{\circ}\sin 12^{\circ}=\cos (42^{\circ}+x)\iff$

$2\sin x(\sin 54^{\circ}-\sin 30^{\circ})=\cos (42^{\circ}+x)\iff$ $\sin x(2\cos 36^{\circ}-1)=\cos (42^{\circ}+x)\iff$ $\sin x\left(\frac {1+\sqrt 5}2-1\right)=\cos (42^{\circ}+x)\iff$ $2\sin x\sin 18^{\circ}=\cos (42^{\circ}+x)$

$\iff$ $\cos (18^{\circ}-x)-\cos (18^{\circ}+x)=\cos (42^{\circ}+x)\iff$ $\cos (18^{\circ}-x)-\cos (42^{\circ}+x)=\cos (18^{\circ}+x)\iff$ $2\sin 30^{\circ}\sin (x+12^{\circ})=\cos (18^{\circ}+x)\iff$

$\cos (78^{\circ}-x)=\cos (18^{\circ}+x)\iff$ $78^{\circ}-x=18^{\circ}+x\iff$ $\boxed{\ x=30^{\circ}\ }\ (1)$ . Denote $AB=AC=b$ and $\left\{\begin{array}{ccc}
BC=a & ; & DA=p\\\\
DB=m & ; & DC=n\end{array}\right\|$ . Apply the generalized Pythagoras'

theorem
to the side $BC/\triangle BDC\ :\ \boxed{a^2=m^2+n^2-2mn\sin 12^{\circ}}\ (2)$ . Apply the theorem of Sines in $\triangle ADC\ :\ \frac {AC}{\sin \widehat {ADC}}=\frac {DA}{\sin \widehat{DCA}}\iff$ $\frac b{\sin 30}=\frac p{\sin 12}\iff$

$\boxed{2b\sin 12^{\circ}=p}\ (3)$ . Denote $E\in (DB)$ so that $m\left(\widehat{BAE}\right)=12^{\circ}$ . Observe that $\left\{\begin{array}{ccc}
\triangle ABE\equiv \triangle CAD & \implies & AE=n\ ,\  BE=p\ ,\ DE=m-p\\\\
\triangle DAE\sim\triangle DBA & \implies & \frac {DA}{DB}=\frac {AE}{BA}\ ,\ \mathrm{i.e.}\ \boxed{mn=pb}\ (4)\end{array}\right\|$ .

In conclusion, $a^2\ \stackrel{(4)}{=}\ m^2+n^2-2pb\sin 12^{\circ}\ \stackrel{(3)}{=}\ m^2+n^2-p^2\implies$ $a^2+p^2=m^2+n^2$ (Angel Lazo HK & V.N.).



PP17 (Ruben Dario). Let an equilateral $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R)$ . For $S\in w$ let $\left\{\begin{array}{ccc}
D\in BC & ; & SD\perp BC\\\\
E\in CA & ; & SE\perp CA\\\\
F\in AB & ; & SF\perp AB\end{array}\right\|$ . Prove that $SD^2+SE^2+SF^2=\frac 34\cdot AB^2$ .

Proof 1. Suppose w.l.o.g. that $S\in\ \mathrm{small}\ \overarc{BC}$ . Denote $AB=a$ and $\left\{\begin{array}{ccc}
SA & = & m\\\
SB & = & n\\\
SC & = & p\end{array}\right\|$ . The Pompeiu's theorem $\boxed{SB+SC=SA}\ (*)$ , i.e. $n+p=m$ is well-known or can prove

easily it. In this case prove easily that $\boxed{n+p=m\iff m^2\left(n^2+p^2\right)+n^2p^2=\left(n^2+p^2+np\right)^2=a^4}\ (1)$ . Apply the well-known identity in any $\triangle ABC\ :\ 2Rh_a=bc$ for the

triangles $:\ \left\{\begin{array}{ccc}
2R\cdot SD & = & np\\\\
2R\cdot SE & = & pm\\\\
2R\cdot SF & = & mr\end{array}\right\|$ and $\sum SD^2=\frac 1{4R^2}\cdot \sum n^2p^2\ \stackrel{(1)}{=}\ \frac {a^4}{4R^2}$ . Since $a=R\sqrt 3$ obtain that the required relation $SD^2+SE^2+SF^2=\frac 34\cdot AB^2$ .

Remark. Generalized Pythagoras' theorem $:\ \left\{\begin{array}{cc}
\triangle ASB\ : & m^2+n^2-mn=a^2\\\\
\triangle ASC\ : & m^2+p^2-mp=a^2\end{array}\right\|$ $\implies$ $n^2-p^2=m(n-p)\implies$ $n=p\ \vee\ \ n+p=m\ (*)$ (Pompeiu's).

The relation $(1)\ :\ \sum n^2p^2=m^2\left(n^2+p^2\right)+n^2p^2=(n+p)^2\left(n^2+p^2\right)+n^2p^2=$ $\left(n^2+p^2\right)^2+2np\left(n^2+p^2\right)+(np)^2=$ $\left[\left(n^2+p^2\right)+(np)\right]^2\implies$ $\sum n^2p^2=a^4$ .

Proof 2. $[ASB]+[ASC]=[ABSC]=[BCA]+[BCS]\iff$ $a\cdot SF+a\cdot SE=ah_a+a\cdot SD\iff$ $\boxed{SF+SE=h_a+SD}\ (1)\ .$ On other hand,

$[DSE]+[DSF]=[ESF]\iff$ $SD\cdot SF\cdot\sin \widehat{DSF}+SD\cdot SE\cdot\sin \widehat{DSE}=$ $SE\cdot SF\cdot\sin \widehat{ESF}\iff$ $\boxed{SD\cdot SF+SD\cdot SE=SE\cdot SF}\ (2)\ .$ From the

relation $(1)$ obtain that $(SF+SE-SD)^2=h_a^2\iff$ $SD^2+SE^2+SF^2-2(SD\cdot SE+SD\cdot SF-SE\cdot SF)=$ $\frac {3a^2}4\ \stackrel {(2)}{\iff}\ SD^2+SE^2+SF^2=\frac {3a^2}4$ .



PP18 (Ruben Dario). Let an equilateral $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R)$ . For a point $T\in w$ denote

its projections $D$ , $E$ , $F$ on the tangent $TT$ in the point $T\in w$ to $w$ . Prove that $AD^2+BE^2+CF^2=\frac 32\cdot AB^2$ .


Proof (Miguel Ochoa Sanchez). Suppose w.l.o.g. $T\in\ \mathrm{small}\ \overarc{BC}$ . Denote $AB=a=R\sqrt 3$ and $m\left(\widehat{BTE}\right)=\phi$ . Thus, $m\left(\widehat{ATD}\right)=60^{\circ}+\phi$ and $m\left(\widehat{CTF}\right)=60^{\circ}-\phi$ .

Thus $:\ \left\{\begin{array}{ccccccc}
AD & = & AT\sin(60^{\circ}+\phi ) & \implies & AD & = & 2R\sin^4(60^{\circ}+\phi )\\\\
BE & = & BT\sin\phi & \implies & BE & = & 2R\sin^4\phi\\\\
CF & = & CT\sin (60^{\circ}-\phi ) & \implies & CF & = & 2R\sin^4(60^{\circ} -\phi )\end{array}\right\|$ . In conclusion, $AD^2+BE^2+CF^2=$ $4R^2\left[\sin^4\phi+\sin^4(60^{\circ}+\phi )+\sin^4(60^{\circ}-\phi )\right]$ .

Since $4R^2=\frac {4a^2}3$ and $\boxed{\sin^4\phi+\sin^4(60^{\circ}+\phi )+\sin^4(60^{\circ}-\phi )=\frac 98}\ (*)$ obtain that the required identity $AD^2+BE^2+CF^2=\frac 32\cdot AB^2$ .

Remark. $E=\sin^4\phi+\sin^4(60^{\circ}+\phi )+\sin^4(60^{\circ} -\phi )$ $\iff$ $4E=(1-\cos 2\phi )^2+\left[1-\cos (120^{\circ}+2\phi )\right]^2+\left[1-\cos (120^{\circ}-2\phi )\right]^2=$ $(1-\cos 2\phi )^2+$

$\left[1+\cos (60^{\circ}-2\phi )\right]^2+\left[1+\cos (60^{\circ}+2\phi )\right]^2=$ $3+\cos^22\phi +\sin^2(30^{\circ}+2\phi )+\sin^2(30^{\circ}-2\phi )+2\left[\cos (60-2\phi )+\cos (60+2\phi )-\cos 2\phi\right]\iff$

$8E=6+1+\cos 4\phi +\left[1-\cos (60^{\circ}+4\phi )\right]+\left[1-\cos (60^{\circ}-4\phi )\right]=$ $9+\cos 4\phi -2\cos 60^{\circ}\cos 4\phi =9\iff$ $E=\frac 98$ , i.e. the identity $(*)$ .



PP19 (Miguel Ochoa Sanchez). Let $ACDF$ be a trapezoid so that $AF\parallel CD$ and $AC\perp AF$ . Denote

$E\in AD\cap CF$ and suppose that there is $B\in (DF)$ so that $\widehat{ABF}\equiv\widehat{
CBD}$ . Prove that $\frac {BD}{BF}=\frac {\tan\widehat{EBA}}{\tan\widehat{EBC}}\ .$


Proof.

http://i944.photobucket.com/albums/ad288/GemenLeu/27360da2-b5be-46df-bd2e-d4ea59c126fd_zpsgsaxzqjg.jpg


PP20 (IMO ShortList 2003). Let an isosceles $\triangle ABC$ with $AC=BC$, whose incentre is $I$. Let $P$ be a point on the circumcircle of the triangle $AIB$ lying inside $\triangle ABC$. The lines through $P$ parallel
to $CA$ and $CB$ meet $AB$ at $D$ and $E$, respectively. The line through $P$ parallel to $AB$ meets $CA$ and $CB$ at $F$ and $G$, respectively. Prove that $DF$ and $EG$ intersect on the circumcircle of $\triangle ABC\ .$
Commentary. The enunciation of this problem conceals vainly in its debut that the circumcircle of $\triangle AIB$ is in fact the circle with the diameter $II_{c}\ ,$ where $I_{c}$ is the $C$- exincenter of the triangle $ABC\ .$


Proof. Let : the circumcircle $w$ of $\triangle ABC$ ; the circle $\delta$ with the diameter $[II_{c}]$ ; the circumcircles $w_{a}$ , $w_{b}$ of the isosceles trapezoids $AFPL$ , $BGPD$ respectively ;
the second intersection point $R$ between the line $\overline{FPG}$ and the circle $\delta$ ; the intersection $L\in FD\cap GE\ .$ Prove easily that the lines $CA$ , $CB$ are the tangents from
$C$ to the circle $\delta\ .$ From the relation $FA^{2}=FR\cdot FP$ obtain $\frac{FA}{AD}=\frac{GP}{PE}\ ,$ i.e. the quadrilaterals $FADP$ , $GPEB$ are similarly as $FADP\sim GPEB\ .$ Thus,

$\begin{array}{cc}1\blacktriangleright & \begin{array}{c}\widehat{AEL}\equiv\widehat{GEB}\equiv\widehat{FDP}\equiv\widehat{AFD}\equiv\widehat{AFL}\Longrightarrow\widehat{AEL}\equiv\widehat{AFL}\Longrightarrow L\in w_{a}\\\\ \widehat{BDL}\equiv\widehat{FDA}\equiv\widehat{GEP}\equiv\widehat{BGE}\equiv\widehat{BGL}\Longrightarrow\widehat{BDL}\equiv\widehat{BGL}\Longrightarrow L\in w_{b}\end{array}\Longrightarrow\boxed{\ \widehat{DLE}\equiv\widehat{ABC}\ }\\\\ 2\blacktriangleright & \begin{array}{c}\widehat{ALD}\equiv\widehat{ALF}\equiv\widehat{APF}\\\\ \widehat{BLE}\equiv\widehat{BLG}\equiv\widehat{BPG}\end{array}\Longrightarrow \widehat{ALD}+\widehat{BLE}\equiv\widehat{APF}+\widehat{BPG}\equiv\widehat{AI_{a}B}\equiv\widehat{ABC}\Longrightarrow \boxed{\ \widehat{ALD}+\widehat{BLE}\equiv\widehat{ABC}\ }\end{array}$ $\Longrightarrow$

$\widehat{ALB}\equiv\widehat{ALD}+\widehat{BLE}+\widehat{DLE}=$ $2\cdot\widehat{ABC}=$ $180^{\circ}-\widehat{ACB}$ $\Longrightarrow$ $\boxed{\ \widehat{ALB}+\widehat{ACB}=180^{\circ}\ }$ $\Longrightarrow$ $L\in w\ .$


Variation on the same theme. Let $ABC$ be a fixed isosceles triangle $(AB=AC)$ and let $M\in [AB$ , $N\in [AC$ be two mobile points so that $MN\parallel BC$ and exists a point $P\in (MN)$
for which $PM\cdot PN=BM^{2}\ .$ Construct the points $\{S,T\}\subset (BC)$ for which $PS\parallel BM\ ,\ PT\parallel NC\ .$ Ascertain the geometrical locus of the intersection $L\in MS\cap NT\ .$
Answer.
This post has been edited 274 times. Last edited by Virgil Nicula, Mar 13, 2018, 7:44 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a