452. Working page II.
by Virgil Nicula, Dec 3, 2016, 9:13 PM
P1. Let
the midpoint
of
the midpoint
of
and the point
so that
Prove that
and 
Proof 1. Denote the midpoint
of
Observe that
is the middle line in
Hence
and
Observe that
is the midpoint of
i.e.
is the middle line in
Hence
and
Since
obtain that
i.e.
From the product of the relations
and
obtain that
i.e.
i.e. 
Proof 2. Apply the Menelaus' theorem to the
and the points

Apply the Menelaus' theorem to the transversal

Proof 3 (slicing and without words). Let
be the point so that
is the midpoint of
Prove easily or is evidently that
is the centroid of
and 
P2. Indraznesc sa va propun si eu o problema de informatica. Se da un vector-memorie de intrare/iesire de (n+1) elemente si doua locatii de manevra si/sau indice. Sa se determine coeficientii polinomului monic (coeficient dominant egal cu 1) de grad n ale carui radacini sunt date (de intrare) si introduse pe n pozitii in vectorul dat (una ramane disponibila) si in urma prelucrarii tot aici sa se obtina si iesirea, adica cei (n+1) coeficienti ai polinomului (evident ca datele de intrare nu ma intereseaza in iesire). Sa nu incepeţi cu relaţii Viete ca ma apucă ameteala, desi sunt doctor in matematici de multa vreme ... Succes !
P3. Let
so that
and
Prove that 
Proof 1.

Proof 2.

P4 (clasa a IX - a). Let two exterior circles
where
and its common exterior tangents are
so that 
Let two points
and
so that the lines
and
separate the points
Prove that
is cyclic
is cyclic.
https://cdn.artofproblemsolving.com/images/...5a6844c24eb.jpg
P5 (clasa a IX - a). Let
with the incircle
Denote:
the intersections
of 
with the angled-bisectors from
so that
the midpoint
of
and the intersection
Prove that 
Proof 1. Suppose w.l.o.g.
Thus,
(is well-known!) and

Apply the Menelaus' theorem to 
The relation
is well-known. Hence
i.e. 
Proof 2. Suppose w.l.o.g.
Thus,
(is well-known!) and

Apply Cristea's identity: 
i.e. 
P6. Let the secant circles
for which denote
A common tangent line touches
at
and
at
, the line
being closer to
than to
The line
meets again
at the point
Prove that the line
is a bisector of the angle 
Proof.
P7. Let
with the altitude
and the median
where the points
lie in this order on the line
Suppose
that the incenter
of
lie on the line
and the incenter
of
lies on the line
Find angles of 
Proof 1. Observe that

Therefore,
In conclusion, 
Proof 2.

P8 (Julio Orihuela). Let
be a triangle and the interior point
for which
and
Prove that 
Proof 1. Observe that
i.e.
and prove easily that
Apply the trigonometric form
of the Ceva's theorem


Proof 2. Let
Thus,
the ray
is the bisector of
Thus,


Proof 3 (synthetic). Let
be the symmetrical point of
w.r.t. the line
Prove easily that
is equilateral, i.e.
and
Thus,

P9 . Let
be a rhombus with
and its incircle
what touches
at

and
Let
and
so that
is tangent to
at
Prove that
Proof 1. Denote
and
Hence
Let
so that
Thus, 
Apply the theorem of Cosinus to 
Let 
Hence


i.e. the relation
what is true. In conclusion, 
Remark. Denote
Therefore, 
i.e. the relation 
Proof 2 (Kostas Theodoros Rekoumis). I"ll use same notations from upper proof. Apply the Brianchon's theorem to the particular case of the degenerated
hexagon
there is
Therefore,
Very nice idea!
P10 (Miguel Ochoa Sanchez). Let
with the incircle
and
Prove that the area ![$[PAQ]=\frac 14\cdot [BAC]\cdot\csc^2\frac A2.$](//latex.artofproblemsolving.com/d/1/7/d17791ce9c12dda8397fddfcaae3d8ece62cf8ef.png)
Proof. Denote the area
of
and
Apply the particular case of the Cristea's theorem for the incircle 
![$\frac {[PAQ]}S=\frac 14\cdot\csc^2\frac A2\ .$](//latex.artofproblemsolving.com/3/4/a/34ad5dedcdbc726fff262b7f06f8890e915e8d0c.png)
Remark.

P11 (Kadir Altintas). Let
with
the centroid
and the Lemoine's point
Prove that 
Proof 1. Denote
Prove easily that the length
of the
-symmedian, where
is given by the relation
where 
is the length of the
-median and
With the van Aubel's relation obtain

Therefore,
Observe that 
![$\frac {c^2}{\left(a^2+b^2+c^2\right)^2}\cdot \left[2\left(b^4-a^4\right)+2c^2\left(b^2-a^2\right)\right]=$](//latex.artofproblemsolving.com/2/b/2/2b21b188e7caa6cbf3502cf58f1093a4986dfcf0.png)
Hence

Remark. Let
be the incenter of
Is well-known
a.s.o. Hence

Therefore,

In conclusion, 
Proof 2.
P12 (Kadir Altintas). Let
with the incircle
and the centriod
Prove that 
Proof. Observe that
where
is the midpoint of
is wellknown (or prove easily) that
Apply the Stewart's relation
to the ray
where
i.e.
![$\left|\frac 13\cdot(bc-4Rr)+\frac 16\cdot \left[4r^2+(b-c)^2\right]=r^2+\frac 29\cdot m_a^2\right|\ \odot (18)\ \iff$](//latex.artofproblemsolving.com/4/e/d/4ed5297bc38c04a50ec107747bf1fb70c44d964c.png)

Is well-known that
The relation
becomes


Particular case. If
is
-isosceles, i.e.
then the relation
becomes
For the substitution
i.e.
Since
obtain only the solution 
P13 (Kadir Altintas). Let
with the incircle
and the centroid
Prove that ![$IG=2r\iff 8\left(a^3+b^3+c^3\right)+9abc=7[ab(a+b)+bc(b+c)+ca(c+a)]\ .$](//latex.artofproblemsolving.com/b/5/9/b5982365bfc3637f0ee21d44e21062a7af2996c8.png)
Proof. Observe that
where
is the midpoint of
is wellknown (or prove easily) that
Apply the Stewart's relation to
where 
![$\left|\frac 13\cdot(bc-4Rr)+\frac 16\cdot \left[4r^2+(b-c)^2\right]=4r^2+\frac 29\cdot m_a^2\right|\ \odot (18)\ \iff$](//latex.artofproblemsolving.com/e/7/e/e7ec6d714f882148fd67029890edcc5949d0751f.png)

In conclusion, 
Denote
Is well-known that


Therefore,


From the upper equivalencies
and
obtain the conclusion of our problem, more exactly 
P14 (Kadir Altintas). Let an
-isoscelrs
with the incircle
and the circumcircle
Prove that 
Proof. From Euler's relation
get
Let the midpoint
of
and 
Thus,
where
- the golden ratio.
P15 (Thanos Kalogerakis). Let
-isosceles
with incircle
and Nagel's point
Prove that 
Proof. Let:
Apply
Menelaus' theorem to transversal
From
get 

An easy extension. Let
with the incircle
and the Nagel's point
Prove that 
P16 (Adil Abdullayev - Azerbaiyan). Let
with the incircle
where
Prove that 
Proof. The following identities are well-known
a.s.o. 
In conclusion,
I used the standard notations.
P17 (Kadir Altintas). The interior
of
has barycentric coordinates
and

Proof. Let
and from the Aubel's relations
obtain
Let the projections
and
of
and
on the opposite
sides respectively. Thus,
a.s.o. Hence


Particular cases.
(Nagel's point).
I used well-known identity 
(the centroid).
I used the well-known inequality 
(the Lemoine's point).

I used the simple inequality

P18 (Martin Lukarevski - Skopje). Prove that
there is the trigonometrical inequality 

Thus,
i.e.
what is true. Otherwise.
P19 (Daniel SITARU). Prove that
there is the inequality 
Proof. We shall apply the wellknown identity
Indeed,
i.e.
Hence the our inequality becomes
Since
and
what is true. Therefore,
i.e. the required inequality is true.
P20 (Daniel SITARU). Prove that
there is the inequality 
Proof 1.
i.e. the required inequality is true.
Proof 2. I"will use the well-known identity
a.s.o. Thus,

i.e.
We shall apply
now the remarkably inequalities
and
i.e. 
Remark. You can try
where
a.s.o.
Lemma.Prove that
there is the inequality 
Proof.

Is well-known that

In conclusion, 
P21 (George APOSTOLOPOULOS). Prove that
there is the inequality
where
is the inradii of the triangles
.
Proof. I"ll use the upper lemma. The area
i.e.
a.s.o. Hence


P22 (Seyran IBRAHIMOV). Prove that
there is the inequality 
Proof. Apply the inequalities Chebyshev (1) , Gerretsen (2) and Euler (3)
![$4\cdot 3r\sqrt 3\cdot \left[\left(16Rr-5r^2\right)-r^2-4Rr\right]=$](//latex.artofproblemsolving.com/2/f/6/2f657e79d1518eb4879fe5c05a582a9127e80562.png)

P23 (Daniel SITARU). Prove that
there is the inequality
(standard notations).
Proof. Apply the simple inequality
Therefore,
![$ \frac {4Rs}r\cdot \frac {[\sum (s-a)]^2}{\sum a}=$](//latex.artofproblemsolving.com/8/1/6/81625bc53a58759c9db5c371dce65f89c44a81a2.png)
Remain to prove
i.e.
Since 
is sufficiently to prove
i.e.
what is true.

P24 (IMO 2009). Let an
isosceles
and bisectors of
meet
at
respectively. Let incenter
of
and
. Find all possible values of
.
Proof. Denote
. Thus,

.
An easy extension. Let
with the incentre
. Denote
,
and the incentre
of
. Prove that
.
Proof.

.


![$[AB],$](http://latex.artofproblemsolving.com/5/8/e/58e377d741d6612acac694994b20fa626c18e0ce.png)

![$[CE]$](http://latex.artofproblemsolving.com/e/a/8/ea8eadb930f32cceb220dee99277c24b202fb80c.png)




Proof 1. Denote the midpoint

![$[BD].$](http://latex.artofproblemsolving.com/1/4/8/1487d6a49a34ef99e799a1a57b155de4717b3cb7.png)
![$[EG]$](http://latex.artofproblemsolving.com/6/b/9/6b9d8fd2dcaf49dc947a96aa6fa8bda74ac807d5.png)




![$[CG],$](http://latex.artofproblemsolving.com/f/3/e/f3eba4ff6ccddeaa0f2255421645303fd3ac9707.png)
![$[DF]$](http://latex.artofproblemsolving.com/4/8/7/487608ba746e637d846b20401f23cc2b80336338.png)











Proof 2. Apply the Menelaus' theorem to the




Apply the Menelaus' theorem to the transversal





Proof 3 (slicing and without words). Let


![$[AS].$](http://latex.artofproblemsolving.com/7/3/e/73e820c3376a0ff5426931e6ff3bd1b036e6af21.png)




P2. Indraznesc sa va propun si eu o problema de informatica. Se da un vector-memorie de intrare/iesire de (n+1) elemente si doua locatii de manevra si/sau indice. Sa se determine coeficientii polinomului monic (coeficient dominant egal cu 1) de grad n ale carui radacini sunt date (de intrare) si introduse pe n pozitii in vectorul dat (una ramane disponibila) si in urma prelucrarii tot aici sa se obtina si iesirea, adica cei (n+1) coeficienti ai polinomului (evident ca datele de intrare nu ma intereseaza in iesire). Sa nu incepeţi cu relaţii Viete ca ma apucă ameteala, desi sunt doctor in matematici de multa vreme ... Succes !
P3. Let





Proof 1.




Proof 2.




P4 (clasa a IX - a). Let two exterior circles














https://cdn.artofproblemsolving.com/images/...5a6844c24eb.jpg
P5 (clasa a IX - a). Let






with the angled-bisectors from



![$[UV]$](http://latex.artofproblemsolving.com/a/1/3/a136f90fcd9d8d96d81566cab1c035ac43940789.png)


Proof 1. Suppose w.l.o.g.














Proof 2. Suppose w.l.o.g.













P6. Let the secant circles






being closer to







Proof.

P7. Let








that the incenter







Proof 1. Observe that













Proof 2.




P8 (Julio Orihuela). Let







Proof 1. Observe that



of the Ceva's theorem










Proof 2. Let















Proof 3 (synthetic). Let











P9 . Let














Proof 1. Denote












![$(y+x)\left[y^2-y(u+v)-uv\right]=(y-x)\left[y^2-y(u+v)+uv\right]\iff$](http://latex.artofproblemsolving.com/3/7/5/3754cdbb0981c0447aad189bf136a830f2b41e34.png)








![$(LD+DF)\cdot QP=LA\cdot QF\ \stackrel{(2)}{\iff}\ \left[x+\frac {(x+v)(y-u)}{y-v}\right]\cdot \cancel{(u+v)}=y\cdot \frac {\cancel{(v+u)}(v+x)}{y-v}\iff$](http://latex.artofproblemsolving.com/e/2/1/e210d025bbaa00b69076fbc6b6ee7dac69d9c6df.png)
![$\left[x(y-v)+(x+v)(y-u)\right]=y(v+x)\iff$](http://latex.artofproblemsolving.com/2/2/6/2269408c67a4a952dac130d73df098f86dbd1fc5.png)




Remark. Denote







Proof 2 (Kostas Theodoros Rekoumis). I"ll use same notations from upper proof. Apply the Brianchon's theorem to the particular case of the degenerated
hexagon





P10 (Miguel Ochoa Sanchez). Let



![$[PAQ]=\frac 14\cdot [BAC]\cdot\csc^2\frac A2.$](http://latex.artofproblemsolving.com/d/1/7/d17791ce9c12dda8397fddfcaae3d8ece62cf8ef.png)
Proof. Denote the area







![$\frac {[PAQ]}S=\frac {AP}{AB}\cdot \frac {AQ}{AC}=$](http://latex.artofproblemsolving.com/d/9/c/d9c0555ff0911cbbd338751646f1ed78ea041893.png)


![$\frac {[PAQ]}S=\frac 14\cdot\csc^2\frac A2\ .$](http://latex.artofproblemsolving.com/3/4/a/34ad5dedcdbc726fff262b7f06f8890e915e8d0c.png)
Remark.
![$[PAQ]=[BPQC]\iff$](http://latex.artofproblemsolving.com/7/2/3/723c74e838007bf79e794fd97e32bf05bae2bf93.png)
![$2\cdot [PAQ]=S\iff$](http://latex.artofproblemsolving.com/2/3/f/23fb69ea1134e87aabc41034553680a0902e65ac.png)
![$\frac {[PAQ]}S=\frac 12\iff$](http://latex.artofproblemsolving.com/9/1/3/9136307ebda292e9d6242d4bef754e06c861d6b2.png)





P11 (Kadir Altintas). Let





Proof 1. Denote




![$\left[2\left(b^2+c^2\right)-a^2\right]+\left[2\left(a^2+c^2\right)-b^2\right]=9c^2\iff$](http://latex.artofproblemsolving.com/9/b/0/9b06a68537cb5a6bebfe7bc28bfdd9eb495372ae.png)







is the length of the






Therefore,


![$\frac 19\cdot \left[2\left(b^2+c^2\right)-a^2-2\left(a^2+c^2\right)+b^2\right]=$](http://latex.artofproblemsolving.com/a/a/7/aa7f4da351f11b3bbc3305473cba1592ac23c1ec.png)





![$\frac {c^2}{\left(a^2+b^2+c^2\right)^2}\cdot \left\{b^2\left[2\left(b^2+c^2\right)-a^2\right]-a^2\left[2\left(a^2+c^2\right)-b^2\right]\right\}=$](http://latex.artofproblemsolving.com/a/3/d/a3d021eb3ccb4a60014bbd03d802c48e39deb6f7.png)
![$\frac {c^2}{\left(a^2+b^2+c^2\right)^2}\cdot \left[2\left(b^4-a^4\right)+2c^2\left(b^2-a^2\right)\right]=$](http://latex.artofproblemsolving.com/2/b/2/2b21b188e7caa6cbf3502cf58f1093a4986dfcf0.png)






Remark. Let





Therefore,







Proof 2.
P12 (Kadir Altintas). Let




Proof. Observe that


![$[BC]\ ;$](http://latex.artofproblemsolving.com/2/c/e/2cee46ce04305480ad31681565572a638aaf48b5.png)

to the ray



![$\left|\frac 13\cdot(bc-4Rr)+\frac 16\cdot \left[4r^2+(b-c)^2\right]=r^2+\frac 29\cdot m_a^2\right|\ \odot (18)\ \iff$](http://latex.artofproblemsolving.com/4/e/d/4ed5297bc38c04a50ec107747bf1fb70c44d964c.png)
![$6\left(bc-4Rr\right)+3\left[4r^2+(b-c)^2\right]=18r^2+2\left(b^2+c^2\right)-a^2\iff$](http://latex.artofproblemsolving.com/d/f/d/dfd58eaed965d280a364ca6d70bf62ae6f5c519d.png)


Is well-known that






Particular case. If










P13 (Kadir Altintas). Let



![$IG=2r\iff 8\left(a^3+b^3+c^3\right)+9abc=7[ab(a+b)+bc(b+c)+ca(c+a)]\ .$](http://latex.artofproblemsolving.com/b/5/9/b5982365bfc3637f0ee21d44e21062a7af2996c8.png)
Proof. Observe that


![$[BC]\ ;$](http://latex.artofproblemsolving.com/2/c/e/2cee46ce04305480ad31681565572a638aaf48b5.png)




![$\left|\frac 13\cdot(bc-4Rr)+\frac 16\cdot \left[4r^2+(b-c)^2\right]=4r^2+\frac 29\cdot m_a^2\right|\ \odot (18)\ \iff$](http://latex.artofproblemsolving.com/e/7/e/e7ec6d714f882148fd67029890edcc5949d0751f.png)
![$6\left(bc-4Rr\right)+3\left[4r^2+(b-c)^2\right]=72r^2+2\left(b^2+c^2\right)-a^2\iff$](http://latex.artofproblemsolving.com/6/0/c/60cfc883e8b2c980271f3b73ced5a78619889508.png)











![$\sum bc(b+c)=\sum bc\left[(a+b+c)-a\right]=(a+b+c)(ab+bc+ca)-3abc=$](http://latex.artofproblemsolving.com/f/4/9/f4948a26abea5f8d41d41b95d2efcbc157ae27b2.png)









From the upper equivalencies



P14 (Kadir Altintas). Let an





Proof. From Euler's relation





![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)

Thus,






P15 (Thanos Kalogerakis). Let





Proof. Let:




Menelaus' theorem to transversal











An easy extension. Let




P16 (Adil Abdullayev - Azerbaiyan). Let




Proof. The following identities are well-known




P17 (Kadir Altintas). The interior





Proof. Let









sides respectively. Thus,












Particular cases.


![$\frac s{\sum\left[\frac {s-a}s\cdot (s-b)(s-c)\right]}=\frac {s^2}{sr^2}=\frac s{r^2}\implies$](http://latex.artofproblemsolving.com/6/e/2/6e2ecc8ebcfd7471a2412258227cad383cc0b6a0.png)












I used the simple inequality
![$4(s-b)(s-c)\le [(s-b)+(s-c)]^2=a^2\implies$](http://latex.artofproblemsolving.com/0/5/3/053c6a3ddb283fc32feae1dadc296300661ec6de.png)

P18 (Martin Lukarevski - Skopje). Prove that











P19 (Daniel SITARU). Prove that


Proof. We shall apply the wellknown identity










P20 (Daniel SITARU). Prove that


Proof 1.



Proof 2. I"will use the well-known identity




![$s\cdot\left[\sum s\left(r_a-r\right)-2sr\right]=$](http://latex.artofproblemsolving.com/8/b/6/8b62720b3611b30f6e9d1b6c3bde1f7f702d1c3a.png)
![$s^2\cdot\left[\sum\left(r_a-r\right)-2r\right]=$](http://latex.artofproblemsolving.com/e/c/d/ecd0e93c8ba1547cf6a4b87717da1fb6d3782422.png)


now the remarkably inequalities



Remark. You can try


Lemma.Prove that


Proof.














P21 (George APOSTOLOPOULOS). Prove that






Proof. I"ll use the upper lemma. The area
![$[BIC]=\frac {ar}2=\frac {x(a+BI+CI)}2\ ,$](http://latex.artofproblemsolving.com/b/5/2/b52b258a369faba3c1629c3801ebab3dfd07ae97.png)



![$\frac 1{2Rr}\cdot \left[\sum a+\sum (BI+CI)\right]=$](http://latex.artofproblemsolving.com/8/c/4/8c4936578135ae6fc428ad56dd13f3ad609f9478.png)

![$\boxed{\sum\frac {\sin A}x=\frac 1{Rr}\cdot \left(s+\sum IA\right)}\stackrel{(1)}{\le}\ \frac 1{Rr}\cdot \left[\frac {3R\sqrt 3}2+2(R+r)\right]=\frac {3\sqrt 3}{2r}+\frac 2r+\frac 2R\implies$](http://latex.artofproblemsolving.com/f/7/5/f75c9926d091d1a21aa580455523b459227a9d22.png)

P22 (Seyran IBRAHIMOV). Prove that


Proof. Apply the inequalities Chebyshev (1) , Gerretsen (2) and Euler (3)


![$4\cdot 3r\sqrt 3\cdot \left[\left(16Rr-5r^2\right)-r^2-4Rr\right]=$](http://latex.artofproblemsolving.com/2/f/6/2f657e79d1518eb4879fe5c05a582a9127e80562.png)



P23 (Daniel SITARU). Prove that


Proof. Apply the simple inequality

![$4\cdot\sum\frac {\left(m_a^2\right)^2}{h_bh_c}\ge 4\cdot \sum\frac {[s(s-a)]^2\cdot 4R^2}{ac\cdot ab}=$](http://latex.artofproblemsolving.com/9/a/8/9a87fd89912167ca4b7a2992fe701d267f3808fa.png)


![$ \frac {4Rs}r\cdot \frac {[\sum (s-a)]^2}{\sum a}=$](http://latex.artofproblemsolving.com/8/1/6/81625bc53a58759c9db5c371dce65f89c44a81a2.png)






is sufficiently to prove





P24 (IMO 2009). Let an












Proof. Denote







An easy extension. Let







Proof.









This post has been edited 477 times. Last edited by Virgil Nicula, Feb 24, 2019, 2:45 PM