452. Working page II.

by Virgil Nicula, Dec 3, 2016, 9:13 PM

P1. Let $\triangle ABC,$ the midpoint $E$ of $[AB],$ the midpoint $F$ of $[CE]$ and the point $D\in (BC)$ so that $BD=2\cdot DC.$ Prove that $D\in AF$ and $4\cdot AF=3\cdot AD.$

Proof 1. Denote the midpoint $G$ of $[BD].$ Observe that $[EG]$ is the middle line in $\triangle ABD.$ Hence $EG\parallel AD$ and $\boxed{AD=2\cdot EG}\ (1)\ .$ Observe that

$D$ is the midpoint of $[CG],$ i.e. $[DF]$ is the middle line in $\triangle CEG.$ Hence $EG\parallel DF$ and $\boxed{EG=2\cdot DF}\ (2)\ .$ Since $AD\parallel EG\parallel DF$ obtain that

$AD\parallel DF,$ i.e. $D\in AF.$ From the product of the relations $(1)$ and $(2)$ obtain that $AD=4\cdot DF,$ i.e. $\frac {AD}4=\frac {DF}1=\frac {AF}3,$ i.e. $4\cdot AF=3\cdot AD.$

Proof 2. Apply the Menelaus' theorem to the $\triangle BEC$ and the points $A\in BE,$ $F\in EC,$ $D\in CB\ :\ \frac {AE}{AB}\cdot\frac{DB}{DC}\cdot\frac {FC}{FE}=\frac 12\cdot \frac 21\cdot \frac 11=1\implies D\in AF.$

Apply the Menelaus' theorem to the transversal $\overline{AEB}/\triangle CDF\ :\ D\in AF$ $\implies $ $\frac {AF}{AD}\cdot\frac {BD}{BC}\cdot\frac  {EC}{EF}=1\implies$ $\frac {AF}{AD}\cdot\frac 23\cdot\frac 21=1\implies$ $4\cdot AF=3\cdot AD.$

Proof 3 (slicing and without words). Let $S\in AC$ be the point so that $C$ is the midpoint of $[AS].$ Prove easily or is evidently that $D$ is the centroid of $\triangle ABS,$ $CE\parallel BS$ and $D\in AF.$


P2. Indraznesc sa va propun si eu o problema de informatica. Se da un vector-memorie de intrare/iesire de (n+1) elemente si doua locatii de manevra si/sau indice. Sa se determine coeficientii polinomului monic (coeficient dominant egal cu 1) de grad n ale carui radacini sunt date (de intrare) si introduse pe n pozitii in vectorul dat (una ramane disponibila) si in urma prelucrarii tot aici sa se obtina si iesirea, adica cei (n+1) coeficienti ai polinomului (evident ca datele de intrare nu ma intereseaza in iesire). Sa nu incepeţi cu relaţii Viete ca ma apucă ameteala, desi sunt doctor in matematici de multa vreme ... Succes !


P3. Let $\triangle ABC,$ $\{B,C\}\subset (AD)$ so that $AB=BC=CD$ and $PB\perp PC.$ Prove that $\tan\widehat{APB}\cdot\tan\widehat{DPC}=\frac 14.$

Proof 1. $\left\{\begin{array}{ccc}
X\in PB & ; & AX\perp PB\\\\
Y\in PC & ; & AY\perp PC\end{array}\right\|\implies\left\{\begin{array}{ccc}
AX\parallel PC & \implies & PC=AX\ ,\ PB=BX\\\\
DY\parallel PB & \implies & PB=DY\ ,\ PC=CY\end{array}\right\|\implies\left\{\begin{array}{ccccc}
\tan\widehat{APB} & = & \frac {XA}{XP} & = & \frac {PC}{2\cdot PB}\\\\
\tan\widehat{DPC} & = & \frac{YD}{YP} & = & \frac {PB}{2\cdot PC}\end{array}\right\|$ $\bigodot$ $\implies$ $\boxed{\ \tan\widehat{APB}\cdot\tan\widehat{DPC}=\frac 14\ }\ (*)\ .$

Proof 2. $\left\{\begin{array}{ccccc}
X\in PB & ; & CX\parallel PD & \implies & 2\cdot CX=PD\ ,\ 2\cdot PX=PB\\\\
Y\in PC & ; & BY\parallel PA & \implies & 2\cdot BY=PA\ ,\  2\cdot PY=PC\end{array}\right\|\implies\left\{\begin{array}{ccccc}
\widehat{APB} & \equiv & \widehat{PBY} & \implies & \tan\widehat{APB}=\tan\widehat{PBY}=\frac {PY}{PB}=\frac {PC}{2\cdot PB}\\\\
\widehat{DPC} & \equiv & \widehat{PCX} & \implies & \tan\widehat{DPC}=\widehat{PCX}=\frac{PX}{PC}=\frac {PB}{2\cdot PC}\end{array}\right\|$ $\bigodot$ $\implies$ $(*)\ .$



P4 (clasa a IX - a). Let two exterior circles $w_1=\mathbb C\left(O_1,r_1\right),$ $w_2=\mathbb C\left(O_2,r_2\right)$ where $r_1 < r_2$ and its common exterior tangents are $AF,$ $CD$ so that $\{A,C\}\in w_1,$

$\{D,F\}\in w_2.$ Let two points $B\in w_1$ and $E\in w_2$ so that the lines $AC$ and $DF$ separate the points $B,E.$ Prove that $ABEF$ is cyclic $\iff BCDE$ is cyclic.


https://cdn.artofproblemsolving.com/images/...5a6844c24eb.jpg


P5 (clasa a IX - a). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r).$ Denote: $E\in BI\cap AC,$ $F\in CI\cap AB;$ the intersections $\{U,V\}$ of $BC$

with the angled-bisectors from $A$ so that $U\in (BC);$ the midpoint $W$ of $[UV]$ and the intersection $T\in AW\cap EF.$ Prove that $IT\parallel BC.$


Proof 1. Suppose w.l.o.g. $c<b.$ Thus, $V\in EF$ (is well-known!) and $\left\{\begin{array}{c}
\frac {VB}c=\frac {VC}b=\frac a{b-c}\\\\
\frac {UB}c=\frac {UC}b=\frac a{b+c}\end{array}\right\|\implies$ $UV=BU+BV=\frac {ac}{b+c}+\frac {ac}{b-c}\implies$ $UV=\frac {2abc}{b^2-c^2}\implies$

$VW=\frac {abc}{b^2-c^2}\implies$ $\frac {VW}{VB}=\frac {abc}{b^2-c^2}\cdot \frac {b-c}{ac}\implies$ $\boxed{\frac {VW}{VB}=\frac b{b+c}}\ (1)\ .$ Apply the Menelaus' theorem to $\overline{VTF}/\triangle ABW\ :\ \frac {VW}{VB}\cdot\frac {FB}{FA}\cdot\frac {TA}{TW}=1\ \stackrel{(1)}{\implies}$

$\frac b{b+c}\cdot\frac ab\cdot\frac {TA}{TW}=1\implies$ $\boxed{\frac {TA}{TW}=\frac {b+c}a}\ (2)\ .$ The relation $\frac {IA}{IU}=\frac {b+c}a$ is well-known. Hence $\frac {TA}{TW}\ \stackrel{(2)}{=}\ \frac {IA}{IU},$ i.e. $IT\parallel BC.$

Proof 2. Suppose w.l.o.g. $c<b.$ Thus, $V\in EF$ (is well-known!) and $\left\{\begin{array}{ccc}
\frac {VB}c=\frac {VC}b=\frac a{b-c} & \implies & VB=\frac {ac}{b-c}\\\\
\frac {UB}c=\frac {UC}b=\frac a{b+c} & \implies & UB=\frac {ac}{b+c}\end{array}\right\|\bigoplus\implies$ $UV=BU+BV=\frac {ac}{b+c}+\frac {ac}{b-c}\implies$ $UV=\frac {2abc}{b^2-c^2}\implies$

$UW=VW=\frac {abc}{b^2-c^2}\implies\begin{array}{ccccc}
\nearrow & WB=UW-UB=\frac {abc}{b^2-c^2}-\frac {ac}{b+c}=\frac {ac^2}{b^2-c^2} & \implies & WB=\frac {ac^2}{b^2-c^2} & \searrow\\\\
\searrow & CW=UW+UC=\frac {abc}{b^2-c^2}+\frac {ab}{b+c}=\frac {ab^2}{b^2-c^2} & \implies & CW=\frac {ab^2}{b^2-c^2} & \nearrow\end{array}\frac {BW}{ac^2}=\frac {CW}{ab^2}=\frac 1{b^2-c^2}.$ Apply Cristea's identity: $\frac {TW}{TA}\cdot BC+\frac {EC}{EA}\cdot BW=$

$\frac {FB}{FA}\cdot CW\iff$ $\cancel a\cdot \frac {TW}{TA}+\frac{\cancel a}c\cdot\frac {ac^2}{b^2-c^2}=\frac {\cancel a}b\cdot\frac {ab^2}{b^2-c^2}\iff$ $\frac {TW}{TA}+\frac {ac}{b^2-c^2}=\frac {ab}{b^2-c^2}\iff$ $\frac {TW}{TA}=\frac {a(b-c)}{b^2-c^2}=\frac a{b+c}\iff$ $\frac {TA}{TW}=\frac {b+c}a,$ i.e. $\frac {TA}{TW}=\frac {IA}{IU}\iff TI\parallel BC\ .$



P6. Let the secant circles $w_1,\ w_2$ for which denote $\{M,N\}=w_1\cap w_2.$ A common tangent line touches $w_1$ at $P$ and $w_2$ at $Q$, the line

being closer to $N$ than to $M.$ The line $PN$ meets again $w_2$ at the point $R.$ Prove that the line $MQ$ is a bisector of the angle $\widehat{PMR}.$

Proof. $\widehat{PMQ}\equiv\widehat{PMN}+\widehat{QMN}=\widehat{NPQ}+\widehat{NQP}=\widehat{QNR}=\widehat{QMR}.$


P7. Let $\triangle ABC$ with the altitude $AD$ and the median $AE,$ where the points $B,$ $D,$ $E,$ $C$ lie in this order on the line $BC.$ Suppose

that the incenter $J$ of $\triangle ABE$ lie on the line $AD$ and the incenter $K$ of $\triangle ADC$ lies on the line $AE.$ Find angles of $\triangle ABC.$


Proof 1. Observe that $J\in AD  \iff $ $BC=4\cdot DB \iff $ $a=4c \cos B \iff $ $\sin A=4\sin C\cos B \iff $ $\sin (B+C)=4\sin C\cos B \iff $ $\tan B+\tan C=4\tan C\iff$

$\tan B=3\tan C\ (1)\ .$ Therefore, $K\in AE\iff$ $\frac {AD}{AC}=\frac {ED}{EC}$ $\iff$ $\sin C=\frac 12\iff$ $C=\frac {\pi}6\ \stackrel{(1)}{\iff}\ \tan B=\sqrt 3\iff B=\frac {\pi}3\ .$ In conclusion, $\boxed{2A=3B=6C=\pi}\ .$

Proof 2. $\left\{\begin{array}{cc} 
J\in AD\iff & DB=DE=\frac {BC}4\ \mathrm{and}\ m\left(\widehat {DAB}\right)=\left(\widehat{DAE}\right)=90^{\circ}-B\\\\
K\in AE\iff & m\left(\widehat {EAD}\right)=m\left(\widehat {EAC}\right)=\left(\widehat{AEB}\right)-C=B-C\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
90^{\circ}-B=B-C & \implies & 2B=90^{\circ}+C \\\\
\sin C=\frac {AD}{AC}=\frac {ED}{EC} & \implies & \sin C=\frac 12 \end{array}\right\|\implies$ $C=\frac {\pi}6\ \wedge\ B=\frac {\pi}3.$



P8 (Julio Orihuela). Let $ABC$ be a triangle and the interior point $P$ for which $PB=PC,$ $m\left(\widehat{PBC}\right)=20^{\circ},$ $m\left(\widehat{PAC}\right)=10^{\circ}$ and $m\left(\widehat{PCA}\right)=30^{\circ}.$ Prove that $AP=AB.$

Proof 1. Observe that $PB=PC\iff m\left(\widehat{PCB}\right)=m\left(\widehat{PBC}\right)=20^{\circ},$ i.e. $m\left(\widehat{PCB}\right)=20^{\circ}$ and prove easily that $\left\{\begin{array}{ccc}
m\left(\widehat{PAB}\right) & = & A-10^{\circ}\\\
m\left(\widehat{PBA}\right) & = & 110^{\circ}-A\end{array}\right\|\ .$ Apply the trigonometric form

of the Ceva's theorem $:\ \sin\widehat{PBA}\cdot\sin\widehat{PAC}\cdot \sin\widehat{PCB}=$ $\sin\widehat{PBC}\cdot \sin\widehat{PCA}\cdot\sin\widehat{PAB}$ $\iff$ $\sin\left(110^{\circ}-A\right)\cdot\sin 10^{\circ}\cdot \cancel{\sin 20^{\circ}}=$ $\cancel{\sin 20^{\circ}}\cdot \sin 30^{\circ}\cdot\sin \left(A-10^{\circ}\right)$ $\iff$

$2\sin\left(A+70^{\circ}\right)\sin 10^{\circ}=\sin\left(A-10^{\circ}\right)\iff$ $2\cos\left(20^{\circ}-A\right)\sin 10^{\circ}=\sin\left(A-10^{\circ}\right)\iff$ $\sin \left(30^{\circ}-A\right)+\cancel{\sin\left(A-10^{\circ}\right)}=\cancel{\sin\left(A-10^{\circ}\right)}\iff$ $\sin \left(30^{\circ}-A\right)=0\iff A=30^{\circ}\ .$

Proof 2. Let $S\in CP\cap AB.$ Thus, $\left\{\begin{array}{c}
m\left(\widehat{SPA}\right)=m\left(\widehat{PAC}\right)+m\left(\widehat{PCA}\right)=10^{\circ}+30^{\circ}=40^{\circ}\\\
m\left(\widehat{SPB}\right)=m\left(\widehat{PBC}\right)+m\left(\widehat{PCB}\right)=20^{\circ}+20^{\circ}=40^{\circ}\end{array}\right\|\implies$ $m\left(\widehat{SPA}\right)=m\left(\widehat{SPB}\right)=40^{\circ}\implies$ the ray $[PS$ is the bisector of $\widehat{APB}.$ Thus,

$\left\{\begin{array}{c}
\frac {SA}{SB}=\frac {PA}{PB}=\frac {PA}{PC}=\frac {\sin\widehat{PCA}}{\sin\widehat{PAC}}=\frac {\sin 30^{\circ}}{\sin 10^{\circ}}=\frac 1{2\sin 10^{\circ}}\\\\
\frac {SA}{SB}=\frac {CA}{CB}\cdot\frac {\sin\widehat{SCA}}{\sin\widehat{SCB}}=\frac{\sin B}{\sin A}\cdot\frac {\sin 30^{\circ}}{\sin 20^{\circ}}=\frac {\sin \left(A+50^{\circ}\right)}{2\sin 
 A\sin20^{\circ}}\end{array}\right\|\implies$ $\frac 1{\sin 10^{\circ}}=\frac {\sin \left(A+50^{\circ}\right)}{\sin 
 A\sin20^{\circ}}\iff$ $2\cos 10^{\circ}\sin A=\sin \left(A+50^{\circ}\right)\iff$ $\sin \left(A+10^{\circ}\right)+\sin\left(A-10^{\circ}\right)=\sin \left(A+50^{\circ}\right)$ $\iff$

$\sin \left(A+50^{\circ}\right)-\sin\left(A-10^{\circ}\right)=\sin \left(A+10^{\circ}\right)\iff$ $\cancel{2\sin 30^{\circ}}\cos \left(A+20^{\circ}\right)=\sin \left(A+10^{\circ}\right)\iff$ $2A+30^{\circ}=90^{\circ}\iff$ $A=30^{\circ}\iff$ $\widehat{ABP}\equiv\widehat{APB}\equiv 80^{\circ}\iff AB=AP.$

Proof 3 (synthetic). Let $M$ be the symmetrical point of $P$ w.r.t. the line $AC.$ Prove easily that $\triangle CPM$ is equilateral, i.e. $PB=PC\implies$ $PB=PM$ and

$m\left(\widehat{APB}\right)=m\left(\widehat{APM}\right)=80^{\circ}.$ Thus, $\triangle APB\ \stackrel{s.a.s}{\equiv}\ \triangle APM\implies$ $m\left(\widehat{ABP}\right)=m\left(\widehat{AMP}\right)=80^{\circ}\implies$ $AB=AM=AP\implies$ $A=30^{\circ}.$


P9 . Let $ABCD$ be a rhombus with $A<90^{\circ}$ and its incircle $w=\mathbb C(I,r)$ what touches $ABCD$ at $M\in (AB),$ $N\in (BC),$

$K\in (CD)$ and $L\in (DA).$ Let $P\in (CN)$ and $Q\in (CK)$ so that $PQ$ is tangent to $w$ at $S.$ Prove that $AP\parallel LQ.$


Proof 1. Denote $\left\{\begin{array}{ccc}
BM=BN=DL=DK & = & x\\\
AM=AL=CK=CN & = & y\end{array}\right\|$ and $\left\{\begin{array}{ccc}
PN=PS & = & u\\\
QK=QS & = & v\end{array}\right\|\ .$ Hence $\left\{\begin{array}{ccc}
CP=CN-PN & = & y-u\\\
CQ=CK-QK & = & y-v\end{array}\right\|\ .$ Let $E\in (AL)$ so that $BE\perp AL\ .$ Thus, $EL=NB,$

$\left\{\begin{array}{ccc}
AE=AL-EL & = & y-x\\\
AB=AM+MB & = & y+x\end{array}\right\|$ $\implies$ $\cos A=\frac {AE}{AB}\implies$ $\boxed{\cos A=\frac {y-x}{y+x}}\ (*)\ .$ Apply the theorem of Cosinus to $\triangle PCQ:\ CP^2+CQ^2-PQ^2=2\cdot CP\cdot CQ\cdot\cos A\stackrel{(*)}{\iff}$

$(y-u)^2+(y-v)^2-(u+v)^2=2(y-u)(y-v)\cdot\frac {y-x}{y+x}\iff$ $(y+x)\left[y^2-y(u+v)-uv\right]=(y-x)\left[y^2-y(u+v)+uv\right]\iff$ $\boxed{xy=uv+x(u+v)}\ (1)\ .$ Let $F\in PQ\cap AD.$

$PC\parallel DF\implies$ $\frac {QF}{QP}=\frac {DF}{PC}=\frac {QD}{QC}\implies$ $\frac {QF}{u+v}=\frac {DF}{y-u}=\frac {x+v}{y-v}\implies$ $\boxed{QF=\frac {(v+u)(v+x)}{y-v}\ \mathrm{and}\ DF=\frac {(x+v)(y-u)}{y-v}}\ (2)\ .$ Hence $AP\parallel LQ\iff$ $\frac {LF}{LA}=\frac {QF}{QP}\iff$

$(LD+DF)\cdot QP=LA\cdot QF\ \stackrel{(2)}{\iff}\ \left[x+\frac {(x+v)(y-u)}{y-v}\right]\cdot \cancel{(u+v)}=y\cdot \frac {\cancel{(v+u)}(v+x)}{y-v}\iff$ $\left[x(y-v)+(x+v)(y-u)\right]=y(v+x)\iff$ $x(y-v)=u(x+v)\iff$

$xy=uv+x(u+v)\ ,$ i.e. the relation $(1)$ what is true. In conclusion, $AP\parallel LQ\ .$

Remark. Denote $\left\{\begin{array}{cccc}
I\in BD\cap AQ : & AB\parallel CD & \implies & \frac {IB}{ID}=\frac {IA}{IQ}=\frac {AB}{QD}=\frac {x+y}{x+v}\\\\
J\in BD\cap PL\ : & AD\parallel BC & \implies & \frac {JB}{JD}=\frac {JP}{JL}=\frac {BP}{LD}=\frac {x+u}x\end{array}\right\|\ .$ Therefore, $I\equiv J\iff$

$AQ\cap BD\cap PL\ne\emptyset\iff$ $\frac {IB}{ID}=\frac {JB}{JD}\iff$ $\frac {x+y}{x+v}=\frac {x+u}x\iff$ $uv+x(u+v)=xy\ ,$ i.e. the relation $(*)\ .$

Proof 2 (Kostas Theodoros Rekoumis). I"ll use same notations from upper proof. Apply the Brianchon's theorem to the particular case of the degenerated

hexagon $ABPQDL\ :$ there is $I\in AQ\cap BD\cap PL\ .$ Therefore, $\left\{\begin{array}{ccc}
BC\parallel AD & \implies & \frac {IP}{IL}=\frac {IB}{ID}\\\\
AB\parallel CD & \implies & \frac {IA}{IQ} =\frac {IB}{ID}\end{array}\right\|$ $\implies$ $\frac {IP}{IL}=\frac {IA}{IQ} \implies AP\parallel LQ\ .$
Very nice idea!


P10 (Miguel Ochoa Sanchez). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r).$ and $\left\{\begin{array}{ccccc}
M\in (AB) & \mathrm{so\ that} & MA=MB\ ; & Q\in MI\cap AC\\\
N\in (AC)  & \mathrm{so\ that} & NA=NC\ ; & P\in NI\cap AB\end{array}\right\|\ .$ Prove that the area $[PAQ]=\frac 14\cdot [BAC]\cdot\csc^2\frac A2.$

Proof. Denote the area $S$ of $\triangle ABC\ ,$ $D\in AI\cap BC$ and $\left\{\begin{array}{ccc}
PB=u & \mathrm{i.e.} & PA=c-u\\\
QC=v & \mathrm{i.e.} & QA=b-v\end{array}\right\|\ .$ Apply the particular case of the Cristea's theorem for the incircle $I\ :$

$\left\{\begin{array}{cccccc}
I\in MQ\ :\ \frac 1{MA}+\frac 1{QA}=\frac {2s}{bc}\implies\frac 2c+\frac 1{b-v}=\frac {2s}{bc}\implies b-v=\frac {bc}{2(s-b)}\\\\
I\in NP\ :\ \frac 1{NA}+\frac 1{PA}=\frac {2s}{bc}\implies\frac 2b+\frac 1{c-u}=\frac {2s}{bc}\implies c-u=\frac {bc}{2(s-c)}\end{array}\right\|$ $\implies$ $\frac {[PAQ]}S=\frac {AP}{AB}\cdot \frac {AQ}{AC}=$ $\frac {c-u}c\cdot\frac {b-v}b=$ $\frac b{2(s-c)}\cdot\frac c{2(s-b)}=\frac 14\cdot \csc^2\frac A2\implies$ $\frac {[PAQ]}S=\frac 14\cdot\csc^2\frac A2\ .$

Remark. $[PAQ]=[BPQC]\iff$ $2\cdot [PAQ]=S\iff$ $\frac {[PAQ]}S=\frac 12\iff$ $\frac 1{4\sin^2\frac A2}=\frac 12\iff$ $2\sin^2\frac A2=1\iff$ $1-\cos A=1\iff$ $\cos A=0\iff$ $A=90^{\circ}\ .$



P11 (Kadir Altintas). Let $\triangle ABC$ with $a\ne b\ ,$ the centroid $G$ and the Lemoine's point $L\ .$ Prove that $GA\perp GB\iff a^2+b^2=5c^2\iff GL\perp AB\ .$

Proof 1. Denote $GA\perp GB\iff$ $GA^2+GB^2=AB^2\iff$ $\left(\frac {2m_a}3\right)^2+\left(\frac {2m_b}3\right)^2=c^2\iff$ $4m_a^2+4m_b^2=9c^2\iff$ $\left[2\left(b^2+c^2\right)-a^2\right]+\left[2\left(a^2+c^2\right)-b^2\right]=9c^2\iff$ $4c^2+a^2+b^2=9c^2\iff$ $\boxed{a^2+b^2=5c^2}\ (1)\ .$ Prove easily that the length $s_a\equiv AS$ of the $A$-symmedian, where $S\in (BC)$ is given by the relation $\boxed{s_a=\frac {2bcm_a}{b^2+c^2}}\ (2)\ ,$ where $m_a\equiv AM$

is the length of the $A$-median and $M\in (BC)\ .$ With the van Aubel's relation obtain $\frac {LA}{b^2+c^2}=$ $\frac {LS}{a^2}=\frac {s_a}{a^2+b^2+c^2}\ \stackrel{(2)}{=}\ \frac {2bcm_a}{\left(b^2+c^2\right)\left(a^2+b^2+c^2\right)}$ $\implies$ $\boxed{LA=\frac {2bcm_a}{a^2+b^2+c^2}}\ (3)\ .$

Therefore, $GA^2-GB^2=$ $\frac 49\cdot\left(m_a^2-m_b^2\right)=$ $\frac 19\cdot \left[2\left(b^2+c^2\right)-a^2-2\left(a^2+c^2\right)+b^2\right]=$ $\frac 13\cdot \left(b^2-a^2\right)$ $\implies$ $\boxed{GA^2-GB^2=\frac 13\cdot\left(b^2-a^2\right)}\ (4)\ .$ Observe that $LA^2-LB^2\ \stackrel{(3)}{=}$

$\frac {c^2}{\left(a^2+b^2+c^2\right)^2}\cdot \left(b^2\cdot 4m_a^2-a^2\cdot 4m_b^2\right)=$ $\frac {c^2}{\left(a^2+b^2+c^2\right)^2}\cdot \left\{b^2\left[2\left(b^2+c^2\right)-a^2\right]-a^2\left[2\left(a^2+c^2\right)-b^2\right]\right\}=$ $\frac {c^2}{\left(a^2+b^2+c^2\right)^2}\cdot \left[2\left(b^4-a^4\right)+2c^2\left(b^2-a^2\right)\right]=$

$\frac {2c^2\left(b^2-a^2\right)\left(a^2+b^2+c^2\right)}{\left(a^2+b^2+c^2\right)^2}\implies$ $\boxed{LA^2-LB^2=\frac {2c^2\left(b^2-a^2\right)}{a^2+b^2+c^2}}\ (5)\ .$ Hence $GL\perp AB\iff$ $LA^2-LB^2=GA^2-GB^2\iff$ $\frac {2c^2\left(b^2-a^2\right)}{a^2+b^2+c^2}=\frac 13\cdot\left(b^2-a^2\right)\iff$ $a^2+b^2=5c^2\ .$

Remark. Let $I$ be the incenter of $\triangle ABC\ .$ Is well-known $IA^2=\frac {bc(s-a)}s=bc-4Rr$ a.s.o. Hence $IA^2-IB^2=(bc-4Rr)-(ac-4Rr)=c(b-a)\implies$ $\boxed{IA^2-IB^2=c(b-a)}\ (6)\ .$

Therefore, $LI\perp AB\iff$ $LA^2-LB^2=IA^2-IB^2\ \stackrel{(5\wedge 6)}{\iff}\ \frac {2c^2\left(b^2-a^2\right)}{a^2+b^2+c^2}=c(b-a)\iff$ $2c(a+b)=a^2+b^2+c^2\iff$ $c^2-2c(a+b)+(a+b)^2-2ab=0\iff$

$(a+b-c)^2=2ab\ \stackrel{a+b>c}{\iff}\ a+b-c=\sqrt{2ab}\iff$ $c=a+b-\sqrt {2ab}\ (*)\ .$ In conclusion, $\boxed{LI\perp AB\ \iff\ c=a+b-\sqrt {2ab}}\ .$

Proof 2.



P12 (Kadir Altintas). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and the centriod $G\ .$ Prove that $G\in w\iff 5\left(a^2+b^2+c^2\right)=6(ab+bc+ca)\ .$

Proof. Observe that $:\ IM^2=r^2+\frac {(b-c)^2}4\ ,$ where $M$ is the midpoint of $[BC]\ ;$ is wellknown (or prove easily) that $IA^2=\frac {bc(s-a)}s=bc-4Rr\ .$ Apply the Stewart's relation

to the ray $(IG,$ where $G\in w,$ i.e. $IG=r\ :\ IA^2\cdot GM+IM^2\cdot GA=IG^2\cdot AM+AM\cdot GA\cdot GM\iff$ $\left|\frac 13\cdot(bc-4Rr)+\frac 16\cdot \left[4r^2+(b-c)^2\right]=r^2+\frac 29\cdot m_a^2\right|\ \odot (18)\ \iff$

$6\left(bc-4Rr\right)+3\left[4r^2+(b-c)^2\right]=18r^2+2\left(b^2+c^2\right)-a^2\iff$ $6bc-24Rr+12r^2+3\left(b^2+c^2\right)-6bc=18r^2+2\left(b^2+c^2\right)-a^2\iff$ $\boxed{a^2+b^2+c^2=6\left(r^2+4Rr\right)}\ (1)\ .$

Is well-known that $\boxed{ab+bc+ca=s^2+r^2+4Rr}\ (*)\ .$ The relation $(1)$ becomes $a^2+b^2+c^2=6\left(ab+bc+ca-s^2\right)\iff$ $2\left(a^2+b^2+c^2\right)=12(ab+bc+ca)-3(a+b+c)^2\iff$

$2\left(a^2+b^2+c^2\right)=12(ab+bc+ca)-3\left(a^2+b^2+c^2\right)-6(ab+bc+ca)\iff$ $5\left(a^2+b^2+c^2\right)=6(ab+bc+ca)\ .$

Particular case. If $\triangle ABC$ is $A$-isosceles, i.e. $b=c,$ then the relation $(1)$ becomes $5\left(a^2+2b^2\right)=6\left(2ab+b^2\right)\iff$ $5a^2-12ab+4b^2=0\ .$ For the substitution $\frac ab=t,$ i.e.

$a:=t\ \wedge\ b:=1\ \implies\ 5t^2-12t+4=0\begin{array}{ccccc}
\nearrow & t=\frac 25 & \implies & 5a=2b & \searrow\\\\
\searrow & t=2 & \implies & a=2b & \nearrow\end{array}\odot\ .$ Since $a<2b$ obtain only the solution $\frac ab=\frac 25\ .$


P13 (Kadir Altintas). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and the centroid $G\ .$ Prove that $IG=2r\iff 8\left(a^3+b^3+c^3\right)+9abc=7[ab(a+b)+bc(b+c)+ca(c+a)]\ .$


Proof. Observe that $:\ IM^2=r^2+\frac {(b-c)^2}4\ ,$ where $M$ is the midpoint of $[BC]\ ;$ is wellknown (or prove easily) that $IA^2=\frac {bc(s-a)}s=bc-4Rr\ .$ Apply the Stewart's relation to $GI$ where $G\in w\ :$

$\blacktriangleright\ IG=2r\iff IA^2\cdot GM+IM^2\cdot GA=IG^2\cdot AM+AM\cdot GA\cdot GM\iff$ $\left|\frac 13\cdot(bc-4Rr)+\frac 16\cdot \left[4r^2+(b-c)^2\right]=4r^2+\frac 29\cdot m_a^2\right|\ \odot (18)\ \iff$

$6\left(bc-4Rr\right)+3\left[4r^2+(b-c)^2\right]=72r^2+2\left(b^2+c^2\right)-a^2\iff$ $6bc-24Rr+12r^2+3\left(b^2+c^2\right)-6bc=72r^2+2\left(b^2+c^2\right)-a^2\iff$ $a^2+b^2+c^2=60r^2+24Rr\iff$

$2\left(s^2-r^2-4Rr\right)=60r^2+24Rr\implies$ $s^2-r^2-4Rr=30r^2+12Rr\ .$ In conclusion, $\boxed{IG=2r\ \iff\ s^2=31r^2+16Rr}\ (1)\ .$

$\blacktriangleright$ Denote $\left\{\begin{array}{ccccc}
s_1 & \equiv & a+b+c & = & 2s\\\\
s_2 & \equiv & ab+bc+ca & = & s^2+r^2+4Rr\\\\
s_3 & \equiv & abc & = & 4Rrs\end{array}\right\|\ .$ Is well-known that $:\ \sum a^3=s_1^3-3s_1s_2+3s_3=$ $8s^3-6s\left(s^2+r^2+4Rr\right)+12Rrs=$ $2s^3-6sr^2-12Rrs\implies$

$\boxed{a^3+b^3+c^3=2s\left(s^2-3r^2-6Rr\right)}\ ;$ $\sum bc(b+c)=\sum bc\left[(a+b+c)-a\right]=(a+b+c)(ab+bc+ca)-3abc=$ $2s\left(s^2+r^2+4Rr\right)-12Rrs=$ $2s\left(s^2+r^2-2Rr\right)\implies$

$\boxed{ab(a+b)+bc(b+c)+ca(a+b)=2s\left(s^2+r^2-2Rr\right)}\ .$ Therefore, $8\left(a^3+b^3+c^3\right)+9abc=7ab(a+b)+bc(b+c)+ca(c+a)\iff$ $16s\left(s^2-3r^2-6Rr\right)+36Rrs=$

$14s\left(s^2+r^2-2Rr\right)\iff$ $8\left(s^2-3r^2-6Rr\right)+18Rr=7\left(s^2+r^2-2Rr\right)\iff$ $s^2=31r^2+16Rr\implies$ $\boxed{8\sum a^3+9abc=7\sum ab(a+b)\ \iff\ s^2=31r^2+16Rr}\ (2)\ .$

From the upper equivalencies $(1)$ and $(2)$ obtain the conclusion of our problem, more exactly $\boxed{IG=2r\ \iff\ s^2=31r^2+16Rr\ \iff\ 8\sum a^3+9abc=7\sum ab(a+b)}\ .$


P14 (Kadir Altintas). Let an $A$-isoscelrs $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and the circumcircle $\Omega=\mathbb C(O,R).$ Prove that $OI=2r\iff \frac ba=\frac {3+\sqrt 5}2\ .$

Proof. From Euler's relation $OI^2=R^2-2Rr$ get $R^2-2Rr-4r^2=0\ \stackrel{(R=tr)}{\iff}\ t^2-2t-4=0\iff$ $t=1+\sqrt 5\iff$ $\boxed{\frac Rr=1+\sqrt 5}\ (*)\ .$ Let the midpoint $M$ of $[BC]$ and $T\in AC\cap w.$

Thus, $\triangle AIT\sim\triangle ACM\iff$ $\frac {AI}{AC}=\frac {IT}{CM}\iff$ $\frac {R+2r}b=\frac {2r}a\iff$ $\frac {2b}a=\frac{R+2r}r=2+\frac Rr\ \stackrel{(*)}{=}\ 3+\sqrt 5\iff$ $\frac ba=\frac {3+\sqrt 5}2\ =\ \phi ^2\ ,$ where $\phi =\frac {1+\sqrt 5}2$ - the golden ratio.



P15 (Thanos Kalogerakis). Let $A$-isosceles $\triangle ABC$ with incircle $w=\mathbb (I,r)$ and Nagel's point $N\ .$ Prove that $N\in w\iff\frac {AB}{BC}=\frac 32\ .$

Proof. Let: $D\in BC,\ AD\perp BC\ ;$ $T\in AB\cap w\ ;\ K\in AB\cap CN\ ;$ $DB=DC=TB=KA=a\ ;\ BK=AT=b-a\ ;\ ID=IT=IN=r\ ;\ AN=x\ ;$ $KT=b-2a.$ Apply

Menelaus' theorem to transversal $\overline{CNK}/\triangle ABD\ :\ \frac {CD}{CB}\cdot\frac {KB}{KA}\cdot\frac {NA}{ND}=1\implies$ $\frac 12\cdot\frac {b-a}a\cdot\frac x{2r} =1\implies$ $\frac xr=\frac {4a}{b-a} (*)\ .$ From $\triangle ATI\sim \triangle ADB$ get $\frac {TI}{DB}=\frac {AI}{AB}\iff\frac ra=\frac {x+r}b\implies$

$\frac ba=\frac {r+x}r\stackrel{(*)}{=}1+\frac {4a}{b-a}=\frac {b+3a}{b-a}\implies$ $\frac ba=\frac {b+3a}{b-a}\implies$ $b^2-2ab-3a^2=0\implies$ $(b+a)(b-3a)=0\implies $ $b=3a\implies \frac ba=3\implies $ $\frac b{2a}=\frac 32\implies \frac {AB}{BC}=\frac 32\ (1)\ .$


An easy extension. Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and the Nagel's point $N\ .$ Prove that $\boxed{N\in w\ \iff\ s^2=4r(4R-r)\ \iff \ f(a,b,c)=0}\ .$


P16 (Adil Abdullayev - Azerbaiyan). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ where $\left\{\begin{array}{cc}
D\in AI\cap w\ ; & AD=w_a\\\\
E\in BI\cap w\ ; & BE=w_b\\\\
F\in CI\cap w\ ; & CF=w_c\end{array}\right\|\ .$ Prove that $\frac {w_a\left(r+r_a\right)}{h_a\sin\frac A2}+\frac {w_b\left(r+r_b\right)}{h_b\sin\frac B2}+\frac {w_c\left(r+r_c\right)}{h_c\sin\frac C2}=12R\ .$

Proof. The following identities are well-known $:\ bc=2Rh_a\ (1)\ ;\ \left\{\begin{array}{cccc}
w_a & = & \frac {2bc\cdot\cos\frac A2}{b+c} & (2)\\\\
r+r_a & = & \frac {S(b+c)}{s(s-a)} & (3)\\\\
S & = & s(s-a)\tan\frac A2 & (4)\end{array}\right\|$ a.s.o. $\implies\frac {w_a\left(r+r_a\right)}{h_a\sin\frac A2}\ \stackrel{2\wedge 3}{=}$

$\frac {2bc\cdot\cos\frac A2}{\cancel{b+c}}\cdot \frac {S\cancel{(b+c)}}{s(s-a)}\cdot \frac 1{h_a\sin\frac A2}\ \stackrel{1}{=}\ \frac {4RS}{s(s-a)\tan\frac A2}\ \stackrel{4}{=}\ 4R\ .$ In conclusion, $\sum\frac {w_a\left(r+r_a\right)}{h_a\sin\frac A2}=12R\ .$ I used the standard notations.



P17 (Kadir Altintas). The interior $P$ of $\triangle ABC$ has barycentric coordinates $\left\{\begin{array}{c}
(x,y,z)\ \mathrm{w.r.t.}\ ABC\\\\
x\ +\ y\ +\ z\ =\ 1\end{array}\right\|$ and $\left\{\begin{array}{ccc}
X\in BC\ ,\ PX\perp BC & ; & PX=p_a\\\\
Y\in CA\ ,\ PY\perp CA & ; & PY=p_b\\\\
Z\in AB\ ,\ PZ\perp AB & ; & PZ=p_c\end{array}\right\|$ $\implies\sum\frac {s-a}{p_a^2}\ge \frac s{\sum x^2(s-b)(s-c)}\ .$

Proof. Let $\left\{\begin{array}{ccc}
D & \in & AP\cap BC\\\\
E & \in & BP\cap CA\\\\
F & \in & CP\cap AB\end{array}\right\|$ and from the Aubel's relations $\frac {PA}{PD}=\frac  {EA}{EC}+\frac {FA}{FB}=\frac {y+z}x$ obtain $\frac {PA}{y+z}=\frac {PD}x=\frac {AD}1\ .$ Let the projections $K\ ,$ $L$ and $M$ of $A\ ,$ $B$ and $C$ on the opposite

sides respectively. Thus, $PX\parallel AK\iff$ $\frac{PX}{AK}=\frac {DP}{DA}=x\iff$ $\frac {p_a}{h_a}=x\iff$ $p_a=xh_a=x\cdot \frac {2S}a\iff$ $\boxed{p_a=\frac {2xS}a}$ a.s.o. Hence $\frac {s-a}{p_a^2}=$ $\frac {a^2(s-a)}{4x^2S^2}=\frac {a^2\cancel{(s-a)}}{4x^2s\cancel{(s-a)}(s-b)(s-c)}\implies$

$\boxed{\frac {s-a}{p_a^2}=\frac {a^2}{4x^2s(s-b)(s-c)}}\implies$ $\sum\frac {s-a}{p_a^2}=$ $\sum\frac {a^2}{4x^2s(s-b)(s-c)}\  \stackrel{\mathrm{C.B.S}}{\ge}\ \frac {\left(\sum a\right)^2}{4s\cdot\sum x^2(s-b)(s-c)}=$ $\frac s{\sum x^2(s-b)(s-c)}\implies$ $\boxed{\sum\frac {s-a}{p_a^2}\ge \frac s{\sum x^2(s-b)(s-c)}}\ .$

Particular cases.

$\blacktriangleright\ P:=N\left(\frac {s-a}s,\frac {s-b}s,\frac {s-c}s\right)$ (Nagel's point). $\sum \frac {s-a}{n_a^2}\ge $ $\frac s{\sum\left[\frac {s-a}s\cdot (s-b)(s-c)\right]}=\frac {s^2}{sr^2}=\frac s{r^2}\implies$ $\boxed{\sum\frac {s-a}{n_a^2}\ge \frac s{r^2}}\ (1)\ .$ I used well-known identity $\boxed{(s-a)(s-b)(s-c)=sr^2}\ .$

$\blacktriangleright\ P:=G\left(\frac 13,\frac 13,\frac 13\right)$ (the centroid). $\sum\frac {s-a}{g_a^2}\ge$ $ \frac {9s}{\sum (s-b)(s-c)}=\frac {9s}{r(4R+r)}\ge\frac {27}s\implies$ $\boxed{\sum\frac {s-a}{g_a^2}\ge \frac {27}s}\ (2)\ .$ I used the well-known inequality $\boxed{s^2\ge 3r(4R+r)}\ .$

$\blacktriangleright\ P:=S\left(\frac {a^2}{a^2+b^2+c^2},\frac {b^2}{a^2+b^2+c^2},\frac {c^2}{a^2+b^2+c^2}\right)$ (the Lemoine's point). $\sum\frac {s-a}{l_a^2}\ge$ $\frac {s\left(a^2+b^2+c^2\right)^2}{\sum a^4(s-b)(s-c)}\ge$ $\frac {4s\left(a^2+b^2+c^2\right)^2}{\sum a^6}\implies$ $\boxed{\sum\frac {s-a}{l_a^2}\ge\frac {s\left(a^2+b^2+c^2\right)^2}{\sum a^6}}\ (3)\ .$

I used the simple inequality $4(s-b)(s-c)\le [(s-b)+(s-c)]^2=a^2\implies$ $\boxed{4(s-b)(s-c)\le a^2}\ .$



P18 (Martin Lukarevski - Skopje). Prove that $(\forall )\ \triangle\ ABC$ there is the trigonometrical inequality $\frac {1+\cos A\cos B\cos C}{\sin A\sin B\sin C}\ge \frac s{3r}\ .$

$\left\{\begin{array}{cccc}
\prod (1+\cos A)=\prod \left(2\cos^2\frac A2\right)=\frac {8s^4r^2}{16R^2s^2r^2}=\frac {s^2}{2R^2} & \implies & \boxed{\ \prod (1+\cos A)=\frac {s^2}{2R^2}\ } & (1)\\\\
\sum\sin B\sin C=\sum\frac {bc}{4R^2}=\frac 1{4R^2}\cdot \sum bc=\frac {s^2+r^2+4Rr}{4R^2} & \implies & \boxed{\ \sum\sin B\sin C=\frac {s^2+r^2+4Rr}{4R^2}\ } & (2)\\\\
\prod\sin A=\prod\frac a{2R}=\frac {abc}{8R^3}=\frac {4Rsr}{8R^3}=\frac {sr}{2R^2} & \implies & \boxed{\ \prod\sin A=\frac {sr}{2R^2}\ } & (3)\end{array}\right\|$ $\implies$ $\prod\cos A=\prod (1+\cos A)-\sum (\cos A+\cos B\cos C)\ \stackrel{(1)}{=}$

$\frac {s^2}{2R^2}-\sum\sin B\sin C\ \stackrel{(2)}{=}\ \frac {s^2}{2R^2}-\frac {s^2+r^2+4Rr}{4R^2}=\frac {s^2-r^2-4Rr}{4R^2}\implies$ $\boxed{\ 1+\prod\cos A=\frac {s^2-r^2-4Rr}{4R^2}\ }\ (4)\ .$ Thus, $\frac {1+\prod\cos A}{\prod\sin A}\ge \frac s{3r}\ \stackrel{3\wedge 4}{\iff}\ \frac {s^2-r^2-4Rr}{4R^2}\cdot\frac {2R^2}{s\cancel r}\ge\frac s{3\cancel r}\ ,$ i.e.

$3\left(s^2-r^2-4Rr\right)\ge 2s^2\iff$ $s^2\ge 3r(4R+r)\ ,$ what is true. Otherwise. $s^2\ge 16Rr-5r^2\ge 3r(4R+r)\iff R\ge 2r\ .$



P19 (Daniel SITARU). Prove that $(\forall )\ \triangle\ ABC$ there is the inequality $a^2(\underline{\underline{\underline{b\cdot\cos B}}}+\underline{\underline{c\cdot\cos C}})+b^2(\underline{c\cdot\cos C}+\underline{\underline{\underline{a\cdot\cos A}}})+c^2(\underline{\underline{a\cdot\cos A}}+\underline{b\cdot\cos B})\le \frac {8s^3}9\ .$

Proof. We shall apply the wellknown identity $\boxed{b\cdot \cos C+c\cdot\cos B=a}\ (*)\ .$ Indeed, $\sum_{cyc} a^2(b\cdot\cos B+c\cdot\cos C)=\sum_{cyc} bc(b\cdot \cos C+c\cdot\cos B)=\sum_{cyc} bc\cdot a=3abc\ ,$ i.e.

$\boxed{\sum_{cyc} a^2(b\cdot\cos B+c\cdot\cos C)=3abc}\ .$ Hence the our inequality becomes $3abc\le\frac {8s^3}9\iff$ $27\cdot 4Rsr\le 8s^3\iff$ $\boxed{27Rr\le 2s^2}\ .$ Since $2s^2\ge 2\left(16Rr-5r^2\right)$ and

$2\left(16Rr-5r^2\right)\ge 27Rr\iff$ $5Rr-10r^2\ge 0\iff R\ge 2r$ what is true. Therefore, $2s^2\ge 2\left(16Rr-5r^2\right)\ge 27Rr\implies 2s^2\ge 27Rr\ ,$ i.e. the required inequality is true.



P20 (Daniel SITARU). Prove that $(\forall )\ \triangle\ ABC$ there is the inequality $\boxed{a^2r_a+b^2r_b+c^2r_c\ge 108r^3}\ .$

Proof 1. $\sum a^2r_a=\sum\frac {a^2}{\frac 1{r_a}}\ \stackrel{C.B.S}{\ge}\ \frac {\left(\sum a\right)^2}{\sum \frac 1{r_a}}=$ $\frac {4s^2}{\frac 1r}=4s^2r\ge 4\cdot 27r^2\cdot r=108r^3\implies$ $\sum a^2r_a\ge 108r^3\ ,$ i.e. the required inequality is true.

Proof 2. I"will use the well-known identity $\boxed{ar_a=s\left(r_a-r\right)}$ a.s.o. Thus, $\sum a^2r_a=\sum a\cdot ar_a=\sum a\cdot s\left(r_a-r\right)=$ $s\cdot \sum\left(ar_a-ar\right)=$ $s\cdot\left(\sum ar_a-r\cdot\sum a\right)=$

$s\cdot\left[\sum s\left(r_a-r\right)-2sr\right]=$ $s^2\cdot\left[\sum\left(r_a-r\right)-2r\right]=$ $s^2\cdot(4R+r-3r-2r)=s^2\cdot(4R-4r)=2s^2(R-r)\ ,$ i.e. $\boxed{\sum a^2r_a=4s^2(R-r)}\ .$ We shall apply

now the remarkably inequalities $\boxed{3r\sqrt 3\le s}$ and $\boxed{R\ge 2r}\ :\ \sum a^2r_a=\sum 4\cdot s^2\cdot (R-r)\ge 4\cdot 27r^2\cdot r=108r^3\ ,$ i.e. $\sum a^2r_a\ge 108r^3\ .$

Remark. You can try $\sum a^2r_a=\sum\frac {\left(ar_a\right)^2}{r_a}\ \stackrel{C.B.S}{\ge}\ \frac {\left(\sum ar_a\right)^2}{\sum r_a}$ where $ar_a=s\left(r_a-r\right)\ ...$ a.s.o.


Lemma.Prove that $(\forall )\ \triangle \ ABC$ there is the inequality $\boxed{IA+IB+IC\le 2(R+r)}\ (1)\ .$

Proof. $\left(\sum \sqrt{\frac {s-a}a}\right)^2=$ $\left(\sum \sqrt{s-a}\cdot\frac 1{\sqrt a}\right)^2\ \stackrel{C.B.S.}{\le}\ \sum (s-a)$ $\cdot\sum \frac 1a=\frac {s(ab+bc+ca)}{abc}=$ $\frac {\cancel s\left(s^2+r^2+4Rr\right)}{4Rr\cancel s}\le$ $\frac {\left(4R^2+4Rr+3r^2\right)+r^2+4Rr}{4Rr}=$ $\frac {\cancel 4\left(R^2+2Rr+r^2\right)}{\cancel 4Rr}=$

$\frac {(R+r)^2}{Rr}\implies$ $\boxed{\sum\sqrt{\frac {s-a}a}\le \frac {R+r}{\sqrt {Rr}}}\ (*)\ .$ Is well-known that $IA^2=\frac {bc(s-a)}s=\frac {abc(s-a)}{as}=\frac {4R\cancel sr(s-a)}{a\cancel s}=$ $\frac {4Rr(s-a)}a\implies $ $\boxed{IA=2\sqrt{Rr}\cdot\sqrt{\frac {s-a}a}}$ $\implies$

$\sum IA=2\sqrt{Rr}\cdot \sum\sqrt{\frac {s-a}a}\ \stackrel{(*)}{\le}\ 2\sqrt{Rr}\cdot\frac {R+r}{\sqrt{Rr}}=2(R+r)\ .$ In conclusion, $\sum IA\le 2(R+r)\ .$


P21 (George APOSTOLOPOULOS). Prove that $(\forall )\ \triangle\ ABC$ there is the inequality $\boxed{\sum \frac {\sin A}x\le \frac {4+3\sqrt 3}{2r}+\frac 2R}\ ,$ where $(x, y, z)$ is the inradii of the triangles $BIC,$ $CIA,$ $AIB$.

Proof. I"ll use the upper lemma. The area $[BIC]=\frac {ar}2=\frac {x(a+BI+CI)}2\ ,$ i.e. $\boxed{x=\frac {ar}{a+BI+CI}}$ a.s.o. Hence $\sum \frac {\sin A}x=\sum\frac {\cancel a}{2R}\cdot\frac {a+BI+CI}{\cancel ar}=$ $\frac 1{2Rr}\cdot\sum (a+BI+CI)=$

$\frac 1{2Rr}\cdot \left[\sum a+\sum (BI+CI)\right]=$ $\frac 1{\cancel 2Rr}\left(\cancel 2s+\cancel 2\cdot\sum IA\right)\implies$ $\boxed{\sum\frac {\sin A}x=\frac 1{Rr}\cdot \left(s+\sum IA\right)}\stackrel{(1)}{\le}\ \frac 1{Rr}\cdot \left[\frac {3R\sqrt 3}2+2(R+r)\right]=\frac {3\sqrt 3}{2r}+\frac 2r+\frac 2R\implies$ $\sum \frac {\sin A}x\le \frac {4+3\sqrt 3}{2r}+\frac 2R\ .$



P22 (Seyran IBRAHIMOV). Prove that $(\forall )\ \triangle\ ABC$ there is the inequality $\boxed{a^3+b^3+c^3\ge 36Rr^2\sqrt 3}\ .$

Proof. Apply the inequalities Chebyshev (1) , Gerretsen (2) and Euler (3) $:\ 3\cdot\sum a^3\ \stackrel{1}{\ge}\ \sum 
 a\cdot\sum a^2=$ $4\cdot s\cdot\left(s^2-r^2-4R^2\right)\ \stackrel{2}{\ge}$ $4\cdot 3r\sqrt 3\cdot \left[\left(16Rr-5r^2\right)-r^2-4Rr\right]=$

$12r^2\sqrt 3\cdot (12R-6r)=72r^2\sqrt 3\cdot (2R-r)\ \stackrel{3}{\ge}\ 72r^2\sqrt 3\left(2R-\frac R2\right)\implies$ $\cancel 3\sum a^3\ge 36r^2\sqrt 3\cdot \cancel 3R\implies$ $\sum a^3\ge 36Rr^2\sqrt 3\ .$



P23 (Daniel SITARU). Prove that $(\forall )\ \triangle\ ABC$ there is the inequality $\boxed{\ 4\cdot \left(\frac {m_a^4}{h_bh_c}+\frac {m_b^4}{h_ch_a}+\frac {m_c^4}{h_ah_b}\right)\ge 3\cdot \left(s^2+r^2+4Rr\right)}$ (standard notations).

Proof. Apply the simple inequality $\boxed{m_a^2\ge s(s-a)}\ (*)\ .$ Therefore, $4\cdot\sum\frac {\left(m_a^2\right)^2}{h_bh_c}\ge 4\cdot \sum\frac {[s(s-a)]^2\cdot 4R^2}{ac\cdot ab}=$ $\frac {16R^2s^2}{abc}\cdot \sum\frac {(s-a)^2}a=$ $\frac {16R^2s^2}{4Rsr}\cdot \sum\frac {(s-a)^2}a\ge$ $ \frac {4Rs}r\cdot \frac {[\sum (s-a)]^2}{\sum a}=$

$ \frac {4Rs}r\cdot \frac {s^2}{2s}=\frac {2Rs^2}r\implies$ $\boxed{4\cdot\sum\frac {m_a^4}{h_bh_c}\ge \frac {2Rs^2}r}\ (1)\ .$ Remain to prove $2Rs^2\ge 3r\left(s^2+r^2+4Rr\right)\ ,$ i.e. $s^2(2R-3r)\ge 3r^2 \left(4R+r\right)\iff$ $\boxed{s^2\ge \frac {3r^2(4R+r)}{2R-3r}}\ .$ Since $s^2\ge 16Rr-5r^2\ ,$

is sufficiently to prove $16R\cancel r-5r\cancel{^2}\ge  \frac {3r\cancel{^2}(4R+r)}{2R-3r}\ ,$ i.e. $(2R-3r)\left(16R-5r\right)\ge 3r(4R+r)\iff$ $32R^2-70Rr+12r^2\ge 0\iff$ $(R-2r)(16R-3r)\ge 0\ ,$ what is true.



$\boxed{\begin{array}{c}
\underline{\mathrm{The\ proof\ of\ the\ Walker's\ inequality\ over\ an\ acute\ or\ rightangled}\ \triangle\ ABC.}\\\\
\sum a^2=\sum \left(b^2+c^2-a^2\right)=\sum 2bc\cdot\cos A=2abc\cdot\sum \frac {\cos A}a=2abc\cdot \sum\frac {\cos^2A}{a\cdot\cos A}\ge 2abc\cdot \frac {\left(\sum\cos A\right)^2}{\sum a\cdot\cos A}=2abc\cdot\frac {(R+r)^2}{R^2\cdot \sum 2R\sin A\cos A}=\\\\
2abc\cdot\frac {(R+r)^2}{R^3\sum\sin 2A}=2abc\cdot\frac {(R+r)^2}{4R^3\cdot \prod\sin A}= 
2abc\cdot\frac {(R+r)^2}{4R^3\cdot \prod\frac a{2R}} =2\cancel{abc}\cdot\frac {8\cancel{R^3}(R+r)^2}{4\cancel{R^3}\cdot \cancel{abc}}=4(R+r)^2\implies \boxed{\sum a^2\ge 4(R+r)^2}\end{array}}$


P24 (IMO 2009). Let an $A$ isosceles $\triangle ABC$ and bisectors of $\widehat{CAB}\ ,$ $\widehat{ABC}$ meet $ BC\ ,$ $CA$ at $ D\ ,$ $E$ respectively. Let incenter $K$ of $\triangle ADC$ and $m\left(\widehat{BEK}\right)=45^{\circ}$ . Find all possible values of $A$ .

Proof. Denote $ \boxed {\ A = 4x\ }$ . Thus, $ \left\|\begin{array}{cc} \triangle IDC\ : & \frac {KI}{KC} = \frac {DI}{DC} = \tan \widehat {DCI} = \tan \left(45^{\circ} - x\right) \\
 \\
\triangle IEC\ : & \frac {KI}{KC} = \frac {\sin\widehat {ECI}}{\sin\widehat {EIC}}\cdot \frac {\sin\widehat {KEI}}{\sin\widehat {KEC}} = \frac {\sin\left(45^{\circ} - x\right)}{\sin \left(90^{\circ} - 2x\right)}\cdot\frac {\sin 45^{\circ}}{\sin 3x}\end{array}\right\|\ \implies$ $ \cos\left(45^{\circ} - x\right)\sin 45^{\circ} =$ $ \sin 3x\cos 2x\ \Longleftrightarrow\ \cos x + \sin x =$

$ 2\sin 3x\cos 2x = \sin 5x + \sin x\ \Longleftrightarrow$ $ \cos x = \cos\left(90^{\circ} - 5x\right)\ \Longleftrightarrow\ \left(\ x = 90^{\circ} - 5x\ \right)\ \ \vee\ \ \left(\ x + 90^{\circ} - 5x = 0\ \right)$ $ \stackrel{(A=4x)}{\ \Longleftrightarrow\ }\boxed {\ A\ \in\ \{\ 60^{\circ}\ ,\ 90^{\circ}\ \}\ }$ .


An easy extension. Let $ \triangle ABC$ with the incentre $ I$ . Denote $ D\in AI\cap BC$ , $ E\in BI\cap AC$ and the incentre $ K$ of $ \triangle ADC$ . Prove that $ \widehat {B E K}\equiv\widehat {ADK}\ \implies\ A\ \in\ \{B\ ,\ 2C\ \}$ .

Proof. $ \left\|\begin{array}{cc} \triangle IDC\ : & \frac {KI}{KC} = \frac {DI}{DC} = \frac {\sin \widehat {DCI}}{\sin\widehat {DIC}}=\frac {\sin \frac C2}{\sin\left(90^{\circ}-\frac B2\right)}\\
 \\
\triangle IEC\ : &{ \frac {KI}{KC} = \frac {\sin\widehat {ECI}}{\sin\widehat {EIC}}\cdot \frac {\sin\widehat {KEI}}{\sin\widehat {KEC}} = \frac {\sin\frac C2}{\sin\frac {B+C}{2}}\cdot\frac {\sin \frac {A+2B}{4}}{\sin \frac {3A}{4}}}\end{array}\right\|\ \implies$ $ \cos\frac B2\sin\left(\frac A4+\frac B2\right)=\cos \frac A2\sin\frac {3A}{4}\ \Longleftrightarrow\ \cos\left(\frac A4+B\right)+\sin\frac A4=$

$ \sin\frac {5A}{4}+\sin\frac A4 \Longleftrightarrow$ $ \cos\left(\frac A4+B\right)=$ $ \sin\frac {5A}{4}$ $ \Longleftrightarrow$ $ \left(\frac A4+B=\frac {5A}{4}\right)\ \ \vee\ \ \left(\frac A4+B+\frac {5A}{4}=180^{\circ}\right)$ $ \Longleftrightarrow$ $ \boxed {\ A\ \in\ \left\{\ B\ ,\ 2C\ \right\}\ }$
.
This post has been edited 477 times. Last edited by Virgil Nicula, Feb 24, 2019, 2:45 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a