196. Similar rectangles outside of a triangle.

by Virgil Nicula, Dec 23, 2010, 10:18 AM

Proposed problem. Let $ABC$ be a triangle with orthocenter $H$ . Construct similar rectangles $AKLB$ and $AFEC$ outwardly. Prove that $AH\cap BE\cap CL\ne\emptyset$ .

Proof 1. Denote $\left\|\begin{array}{cccccc}
X\in AH & ; & XB\perp CL\\\
Y\in AH & ; & YC\perp BE\end{array}\right\|$ . Since $ABLK\sim ACEF$ obtain that $\frac {AB}{BL}=\frac {AC}{CE}\ (1)$ . Observe that

$\left\|\begin{array}{cccccc}
\left\{\begin{array}{c}
\widehat{AXB}\equiv\widehat {BCL}\\\
\widehat{ABX}\equiv\widehat {BCL}\end{array}\right\| & \implies & \triangle ABX\sim BLC & \implies & \frac {AX}{BC}=\frac {AB}{BL} & (2)\\\\
\left\{\begin{array}{c}
\widehat{AYC}\equiv\widehat {CBE}\\\
\widehat{ACY}\equiv\widehat {BCL}\end{array}\right\| & \implies & \triangle ACY\sim CEB & \implies & \frac {AY}{CB}=\frac {AC}{CE} & (3)\end{array}\right\|$ . Thus, $(1)\ \wedge\ (2)\ \wedge\ (3)\ \implies$

$\frac {AX}{BC}=\frac {AY}{CB}\implies$ $AY=AX$ $\implies$ $X\equiv Y$ . Since $AH$ , $BE$ , $CL$ are altitudes in $\triangle BXC\ \implies\ AH\cap BE\cap CL\ne\emptyset$ .

Quote:
An equivalent enunciation. Let $ABC$ be a triangle with the orthocenter $H$ . Construct the triangles $ABE$ and $ACF$ outside

of $\triangle ABC$ so that $\triangle ABE\sim\triangle ACF$ and $m(\angle ABE)=m(\angle ACF)=90^{\circ}$ . Prove that $AH\cap BF\cap CE\ne\emptyset$ .

Proof 2 (synthetic). Exists $k>0$ so that $BE=kc$ and $CF=kb$ . Denote $D\in BC$ so that $AD\perp BC$ . Construct $K\in AD$ so that $A\in (KD)$ and $AK=\frac ak$ .

$\blacktriangleright\ \frac {BE}{BC}=\frac {AB}{AK}=\frac {kc}{a}$ and $m\left(\widehat{EBC}\right)=m\left(\widehat{BAK}\right)=90^{\circ}+B$ $\implies$ $\triangle EBC\sim \triangle BAK$ $\implies$ $\widehat{BEC}\equiv\widehat {ABK}\implies$ $\boxed{\ CE\perp BK\ }$ .

$\blacktriangleright\ \frac {CF}{CB}=\frac {AB}{AK}=\frac {kb}{a}$ and $m\left(\widehat{FCB}\right)=m\left(\widehat{CAK}\right)=90^{\circ}+C$ $\implies$ $\triangle FCB\sim \triangle CAK$ $\implies$ $\widehat{CFB}\equiv\widehat {ACK}\implies$ $\boxed{\ BF\perp CK\ }$ .

In conclusion, the lines $AH\ ,\ BF\ ,\ CE$ are the altitudes in the triangle $BKC$ $\implies$ $AH\cap BF\cap CE\ne\emptyset$ .

Proof 3 (metric & trigonometric). Denote $m\left(\widehat{BAE}\right)=m\left(\widehat{CAF}\right)=\phi$ and $M\in CE\cap AB\ ,\ N\in BF\cap AC$ . Denote $D\in AH\cap BC$ .

Observe that $\frac {DB}{DC}=\frac {c\cdot\cos B}{b\cdot\cos C}$ and $\left\{\begin{array}{cccc}
\blacktriangleright & \frac {MA}{MB}=\frac {[EAC]}{[EBC]}=\frac {AE}{BE}\cdot\frac {AC}{BC}\cdot\frac {\sin\widehat{EAC}}{\sin \widehat{EBC}} & \implies & \frac {MA}{MB}=\frac {1}{\sin\phi }\cdot\frac ba\cdot\frac {\sin (A+\phi ) }{\cos B}\\\\
\blacktriangleright & \frac {NA}{NC}=\frac {[FAB]}{[FCB]}=\frac {AF}{CF}\cdot\frac {AB}{CB}\cdot\frac {\sin\widehat{FAB}}{\sin \widehat{FCB}} & \implies & \frac {NA}{NC}=\frac {1}{\sin \phi }\cdot\frac ca\cdot\frac {\sin (A+\phi ) }{\cos C}\end{array}\right\|$ $\implies$

$\frac {DB}{DC}\cdot \frac {NC}{NA}\cdot\frac {MA}{MB}=$ $\left(\frac cb\cdot\frac {\cos B}{\cos C}\right)\cdot \left[\sin\phi\cdot \frac ac\cdot\frac {\cos C}{\sin (A+\phi )}\right]\cdot$ $\left[\frac {1}{\sin \phi}\cdot\frac ba\cdot\frac {\sin (A+\phi )}{\cos B}\right]=1$ $\implies$ $AH\cap BF\cap CE\ne\emptyset$ .

See the following message,
here or here
This post has been edited 34 times. Last edited by Virgil Nicula, Nov 22, 2015, 5:29 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a