103. Metrical usual relations in triangle. Applications.

by Virgil Nicula, Sep 7, 2010, 11:34 PM

PP1. Let $ABC$ be a triangle. Consider the points $X\in (BC)$ , $Y\in (CA)$ , $Z\in (AB)$ , $P\in AX\cap YZ$ . Prove easily that (for example, with areas)

$\boxed {\ \frac {XB}{XC}=\frac {AB}{AC}\cdot \frac {\sin \widehat{XAB}}{\sin\widehat{XAC}}\ (1)\ \wedge\ \ \frac {PZ}{PY}=\frac {XB}{XC}\cdot\frac {AZ}{AY}\cdot \frac {AC}{AB}\ (2)\ \wedge\ \ \frac {PX}{PA}\cdot BC=\frac {YC}{YA}\cdot BX+\frac {ZB}{ZA}\cdot XC\ (3)\ }$ .


Proof.

$1\blacktriangleright$ Apply the theorem of Sinus in the mentioned triangles: $\left\{\begin{array}{cccc}
\triangle XAB\ : & \frac {XB}{\sin\widehat{XAB}} & = & \frac {XA}{\sin B}\\\\
\triangle XAC\ : & \frac {XA}{\sin C} & = & \frac {XC}{\sin\widehat{XAC}}\end{array}\right|\ \bigodot \implies$ $\ \frac {XB}{XC}=\frac {\sin C}{\sin B}\cdot \frac {\sin \widehat{XAB}}{\sin\widehat{XAC}}\implies$

$\frac {XB}{XC}=\frac {AB}{AC}\cdot \frac {\sin \widehat{XAB}}{\sin\widehat{XAC}}\ (1)$ . Otherwise (with areas). $\frac {XB}{XC}=\frac {[XAB]}{[XAC]}=\frac {AX\cdot AB\cdot\sin \widehat{XAB}}{AX\cdot AC\cdot\sin\widehat{XAC}}\implies$ $\frac {XB}{XC}=\frac {AB}{AC}\cdot \frac {\sin \widehat{XAB}}{\sin\widehat{XAC}}\ (1)$ .

$2\blacktriangleright$ Apply the relation $(1)$ in the mentioned triangles: $\left\{\begin{array}{cc}
\triangle AZY\ : & \frac {PZ}{PY}=\frac {AZ}{AY}\cdot\frac {\sin\widehat{PAZ}}{\sin\widehat{PAY}}\\\\
\triangle ABC\ : & \frac {XB}{XC}=\frac {AB}{AC}\cdot\frac {\sin\widehat{XAB}}{\sin\widehat{XAC}}\end{array}\right|\implies$ $\frac {PZ}{PY}:\frac {XB}{XC}=\frac {AZ}{AY}:\frac {AB}{AC}\implies$ $\frac {PZ}{PY}=\frac {XB}{XC}\cdot\frac {AZ}{AY}\cdot \frac {AC}{AB}\ (2)$ .

$3\blacktriangleright$ First method. Denote $\left\{\begin{array}{c}
U\in BC\cap YZ\\\
V\in YZ\ ,\ VA\parallel BC\end{array}\right\|$ . Thus, $\frac {PX}{PA}\cdot BC=\frac {YC}{YA}\cdot BX+\frac {ZB}{ZA}\cdot XC\iff$ $\frac {UX}{VA}\cdot BC=\frac {UC}{VA}\cdot BX+\frac {UB}{VA}\cdot XC\iff$

$\boxed{UX\cdot BC=UC\cdot BX+UB\cdot XC} \ (*)\ ,$ what is true because $UC\cdot BX+UB\cdot CX=$ $XB\cdot (UX+XC)+XC\cdot (UX-XB)=$

$UX\cdot (BX+CX)=UX\cdot BC$ . In conclusion, $\frac {PX}{PA}\cdot BC=\frac {YC}{YA}\cdot BX+\frac {ZB}{ZA}\cdot XC\ (3)$ .

Second method. Denote $U\in YZ\cap BC$ . Apply the Menelaus' theorem to the transversals $:\ \left\{\begin{array}{cccc}
\overline{PZU}/\triangle ABX\ : & \frac {UB}{UX}\cdot\frac {PX}{PA}\cdot\frac {ZA}{ZB}=1 & \implies & \frac {ZB}{ZA}=\frac {UB}{UX}\cdot \frac {PX}{PA}\\\\
\overline{PYU}/\triangle ACX\ : & \frac {UX}{UC}\cdot\frac {YC}{YA}\cdot\frac {PA}{PX}=1 & \implies & \frac {YC}{YA}=\frac {UC}{UX}\cdot\frac {PX}{PA}\end{array}\right\|$ and

$\left|\begin{array}{c}
\odot\ XC\\\\
\odot\ XB\end{array}\right\|$ $\bigoplus$ $\implies$ $\frac {YC}{YA}\cdot BX+\frac {ZB}{ZA}\cdot XC=$ $\frac {PX}{PA}\cdot \frac {UB\cdot XC+UC\cdot XB}{UX}\ \stackrel{(*)}{=}\ \frac {PX}{PA}$ $\cdot \frac {BC\cdot UX}{UX}=$ $\frac {PX}{PA}\cdot BC$ $\implies$ $\frac {PX}{PA}\cdot BC=\frac {YC}{YA}\cdot BX+\frac {ZB}{ZA}\cdot XC\ (3)$ .

Remark. For third relation can use an equivalent form : $\boxed {\ \frac {AX}{AP}\cdot BC=\frac {AC}{AY}\cdot BX+\frac {AB}{AZ}\cdot XC\ }$ .



Application 1. Let $ABC$ be a triangle, let $D\in BC$ , $E\in CA$ , $F\in AB$ so that $AD\cap BE\cap CF\ne\emptyset$

and let $P\in EF$ , $Q\in FD$ , $R\in DE$ so that $DP\cap EQ\cap FR\ne\emptyset$ . Prove that $AP\cap BQ\cap CR\ne\emptyset$ .


Proof. Denote $\left\{\begin{array}{c}
X\in BC\cap AP\\\
Y\in CA\cap BQ\\\
Z\in AB\cap CR\end{array}\right\|$ . Apply the Ceva's theorem to the concurrent lines $\left\{\begin{array}{ccc}
AD\cap BE\cap CF\ne\emptyset & \implies & \frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=1\\\\
DP\cap EQ\cap FR\ne\emptyset & \implies & \frac {PE}{PF}\cdot\frac {QF}{QD}\cdot\frac {RD}{RE}=1\end{array}\right\|\ (*)$ .

Apply upper relation $(2)\ :\ \left\{\begin{array}{c}
\frac {XB}{XC}=\frac {PF}{PE}\cdot\frac {AF}{AE}\cdot\frac {AC}{AB}\\\\
\frac {YC}{YA}=\frac {QD}{QF}\cdot\frac {BD}{BF}\cdot\frac {BA}{BC}\\\\
\frac {ZA}{ZB}=\frac {RE}{RD}\cdot\frac {CE}{CD}\cdot\frac {CB}{CA}\end{array}\right\|\bigodot\ \stackrel{(*)}{\implies}\ \frac {XB}{XC}$ $\cdot\frac {YC}{YA}\cdot\frac {ZA}{ZB}=1\implies$ $AX\cap BY\cap CZ\ne\emptyset\implies$ $AP\cap BQ\cap CR\ne\emptyset$ .
This post has been edited 35 times. Last edited by Virgil Nicula, Nov 26, 2015, 9:40 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a