417. The incircle of ABC and other two incircles.

by Virgil Nicula, Mar 23, 2015, 8:15 PM

PP1 (Ruben Auqui). Let $ABC$ be an $A$-right triangle with the incircle $w=\mathbb C(I,r)$ . For $D\in (AC)$ denote the incircle $w_1=\mathbb C\left(I_1,r_1\right)$

of $\triangle BDC$ and the incircle $w_2=\mathbb C\left(I_2,r_2\right)$ of $\triangle BDA$ . Prove that $r_1=r_2=\rho\implies$ $I_1I_2=r-\rho +\frac {\rho^2}{r-\rho}$ .


Proof. Denote the tangent points $\left\{\begin{array}{ccccc}
P\in BC\cap w_1 & ; & U\in CD\cap w_1 & ; & M\in BD\cap w_1\\\\
R\in BA\cap w_2 & ; & V\in AD\cap w_2 & ; & N\in BD\cap w_2\end{array}\right\|$ and $\left\{\begin{array}{ccc}
CP=CU=l\\\\
I_1I_2=UV=d\end{array}\right\|$ , where $\boxed{l+d+\rho =b}\ (1)$ .

Observe that $MN=BM-BN=BP-BR=(a-l)-(c-\rho )\implies$ $\boxed{MN=a+\rho -l-c}\ (2)$ . Therefore, $MN^2=(2\rho )^2+I_1I_2^2\ \stackrel{(2)}{\iff}$

$(a+\rho -l-c)^2=$ $4\rho^2+d^2\ \stackrel{(1)}{\iff}$ $[2\rho +d-(b+c-a)]^2=4\rho^2+d^2\iff$ $\left[2\rho +d-2(s-a)\right]^2=$ $4\rho^2+d^2\stackrel{s-a=r}{\iff}\ [d-2(r-\rho )]^2=d^2+4\rho^2\iff$

$(r-\rho )^2-d(r-\rho )=\rho^2\iff$ $d=r-\rho +\frac {\rho^2}{r-\rho}$ . In the particular case $r=3$ and $\rho =2$ obtain that $I_1I_2=5$ .



PP2. Let a $B$-isosceles $\triangle ABC$ with $P\in (BC)$ so that $AP=8$ and $\frac {PB}{PC}=\frac 32$ . Prove that $\max [ABC]=50$ .

Proof 1. Denote $AC=2y$ , the midpoint $M$ of $[AC]$ and $R\in BM\cap AP$ . Apply the Menelaus's theorem to the transversal $\overline{ARP}/\triangle BCM\ :\ \frac {AM}{AC}\cdot\frac {PC}{PB}\cdot\frac {RB}{RM}=1\iff$

$\frac 12\cdot \frac 23\cdot \frac {RB}{RM}=1\iff$ $\frac {RB}3=\frac {RM}1=\frac {BM}4$ . Thus, $\frac {[ARM]}{[ABC]}=\frac {[ARM]}{[ABM]}\cdot\frac{[ABM]}{[ABC]}=$ $\frac {RM}{MB}\cdot\frac 12=\frac 18\iff$ $[ABC]=8\cdot [ARM]$ and $\widehat{RBA}\equiv\widehat{RBP}\iff$

$\frac {RA}{RP}=\frac {BA}{BP}=\frac 53\implies$ $\frac {RA}5=\frac {RP}3=\frac {AP}8=1\implies$ $RA=5$ and $RP=3$ . So, $[ABC]$ is $\max\iff$ $[ARM]$ is $\max\iff$ $MA\cdot MR$ is $\max\iff$ $x\cdot\sqrt {25-x^2}$ is

$\max\iff$ $x^2\left(25-x^2\right)$ is $\max\iff$ $x^2=25-x^2=\frac {25}2$ , i.e. $\boxed{2x^2=25}$ because the sum $x^2+\left(25-x^2\right)=25$ (constant). Thus, $[ABC]_{\mathrm{max}}=8\cdot \frac 12\cdot x^2=4x^2=50$ .

Proof 2. $[ABC]=\frac 53\cdot[ABP]$ is $\max\iff$ $[ABP]$ is $\max$ , where $AP=8$ and $BA=5k\ ,\ BP=3k$ . Heron's $:\ [ABP]=\sqrt{4(k+1)\cdot (4-k)\cdot (k+4)\cdot 4(k-1)}\implies$

$\boxed{[ABP]=4\sqrt{\left(k^2-1\right)\left(16-k^2\right)}}\ (*)$ . In conclusion, $[ABC]$ is $\max\iff$ $k^2-1=16-k^2\iff$ $k^2=\frac {17}2\implies$ $[ABC]_{\mathrm{max}}\stackrel{(*)}{=}\frac 53\cdot 4\cdot\left(16-\frac {17}2\right)\implies$ $[ABC]_{\mathrm{max}}=50$ .

Proof 3. $\frac {BC}{BP}=\frac 53\implies 3\cdot [ABC]=5\cdot [ABP]$ . Thus, $[ABC]$ is $\max\iff$ $[ABP]$ is $\max$ , where $AP=8$ and $\frac {BA}{BP}=\frac 53$ . Let the points $\{D,E\}\subset AP$ so that $BD\perp AC$

and $BE\parallel AC\implies$ $\frac {DA}{DP}=\frac {EA}{EP}=\frac {BA}{BP}=\frac 53$ , i.e. the division $(A,P;D,E)$ is harmonically. Observe that $DA=5\ ,\ DP=3$ and $\frac {EA}5=\frac {EP}3=\frac 82\implies EP=12\implies$

$DE=DP+PE=3+12\implies DE=15$. Let the Appolonius's circle $w=C(O,r)$ with the diameter $[DE]$ . Show easily that $DE=15$ and $[ABP]$ is $\max$ $\iff$

$B\in w$ and $BO\perp DE$ , i.e. $BO=\frac {DE}2=\frac {15}2$ . The maximum area of $[ABP]$ is $\frac 12\cdot AB\cdot BO=\frac 12\cdot 8\cdot \frac {15}2\iff$ $[ABP]_{\mathrm{max}}=30\iff$ $[ABC]_{\mathrm{max}}=\frac 53\cdot [ABP]_{\mathrm{max}}=50$ .

Proof 4. $\frac {AB}5=\frac {PB}3=\frac {PC}2=k$ , $AP=8$ and $AC=x$ . Apply the Stewart's teorem in $\triangle ABC\ :\ AB^2\cdot PC+AC^2\cdot PB=AP^2\cdot BC+BC\cdot PB\cdot PC\iff$

$25k^2\cdot 2k+x^2\cdot 3k=64\cdot 5k +5k\cdot 3k\cdot 2k\iff$ $\boxed{3x^2+20k^2=320}\ (*)$ . The area $\boxed{[ABC]=\frac 12\cdot x\cdot\sqrt{25k^2-\left(\frac x2\right)^2}}\ (1)$ is $\max\iff$ $x^2\left(100k^2-x^2\right)$ is $\max\ \stackrel{(*)}{\iff}$

$x^2\left[5\left(320-3x^2\right)-x^2\right]$ is $\max\iff$ $16x^2\left(1600-16x^2\right)$ is $\max\iff$ $16x^2=1600-16x^2=800\iff$ $x^2=50$ and $k^2=\frac {17}2$ . From $(1)$ obtain easily that $[ABC]_{\max}=50$



The Descartes circle theorem. Given three noncollinear points, construct three tangent circles such that one is centered at each point and the circles are


pairwise tangent to one another. Then there exist exactly two nonintersecting circles that are tangent to all three circles. These are called the inner and

outer Soddy circles
. Frederick Soddy (1936) gave the formula for finding the radii $r$ of the Soddy circles given the radii $r_k\ ,\ \overline{1,3}$ of the other three $:$

$r\in\left\{\frac {r_1r_2r_3}{r_1r_2+r_1r_3+r_2r_3\pm 2\sqrt{r_1r_2r_3\left(r_1+r_2+r_3\right)}}\right\}\ .$ With other words, $t^3-mt^2+nt-p=$ $0\ \odot\begin{array}{cccc}
\nearrow & r_1 & \searrow\\\
\rightarrow & r_2 & \rightarrow\\\
\searrow & r_2 & \nearrow\end{array}\odot\implies$ $r\in\left\{\frac {p}{n\pm 2\sqrt{mp}}\right\}$ .

Here, the negative solution corresponds to the outer Soddy circle and the positive one to the inner Soddy circle. Here, the negative solution corresponds to

the outer Soddy circle and the positive one to the inner Soddy circle. This formula is called the Descartes circle theorem since it was known to Descartes.


PP3. Let $w_k=\mathbb C\left(O_k,R_k\right)\ ,k\in\overline{1,2}$ be two circles what are exterior tangent at the point $T$ and for which denote a common exterior tangent $d=T_1T_2$ , where $T_k\in w_k\ ,$

$k\in\overline{1,2}$ . Let the circle $w=\mathbb C(O,R)$ which is tangent to the line $d$ and is exterior tangent to the circles $w_k\ ,k\in\overline{1,2}$ so that its center $O$ is an interior point of $\triangle T_1TT_2$ . Let

the circle $\beta=\mathbb C(I,r)$ what is exterior tangent to the circles $w$ and $w_k\ ,k\in\overline{1,2}$ . Prove that $\frac 1{\sqrt R}=\frac 1{\sqrt {R_1}}+\frac 1{\sqrt{R_2}}$ and $\frac 1{4r}=\frac 1R-\frac 1{\sqrt{R_1R_2}}=\frac 1{R_1}+\frac 1{R_2}+\frac 1{\sqrt{R_1R_2}}$ .


Proof. Apply the Descartes' theorem to the circles $w_1$ , $w_2$ and $d$ with the radius $t\to\infty$ (degenerate) $:\ R=\lim_{t\to\infty}\frac {R_1R_2t}{R_1R_2+t\left(R_1+R_2\right)+2\sqrt{R_1R_2t\left(R_1+R_2+t\right)}}=$

$\lim_{t\to\infty}\frac {R_1R_2}{\frac{R_1R_2}t+\left(R_1+R_2\right)+2\sqrt{R_1R_2\left(1+\frac{R_1+R_2}t\right)}}= $ $\frac {R_1R_2}{R_1+R_2+2\sqrt{R_1R_2}}\implies$ $R=\left(\frac {\sqrt{R_1R_2}}{\sqrt {R_1}+\sqrt {R_2}}\right)^2\implies$ $\sqrt R=\frac {\sqrt{R_1R_2}}{\sqrt {R_1}+\sqrt {R_2}}\implies$ $\boxed{\frac 1{\sqrt R}=\frac 1{\sqrt {R_1}}+\frac 1{\sqrt{R_2}}}\ (1)$ .

Denote $\left\{\begin{array}{ccccc}
\sqrt {R_1}=x & \implies & R_1=x^2\\\\
\sqrt{R_2}=y & \implies & R_2=y^2\\\\
\sqrt{R}=z & \implies & R=z^2\end{array}\right\|\implies$ $\left\{\begin{array}{cccc}
x^2y^2+z^2\left(x^2+y^2\right)=x^2y^2+z^2\left[(x+y)^2-2xy\right] & \stackrel{(1)}{=} & x^2y^2+x^2y^2-2xyz^2=2xy\left(xy-z^2\right) & (2)\\\\
z^2\left(x^2+y^2+z^2\right)=z^2\left[(x+y)^2-2xy+z^2\right] & \stackrel{(1)}{=} & x^2y^2-2xyz^2+z^4=\left(xy-z^2\right)^2 & (3)\end{array}\right\|$ .Apply the

Descartes' theorem to $w_1\ ,\ w_2$ and $w\ :\ (*)\ \boxed{r=\frac {R_1R_2R}{R_1R_2+R\left(R_1+R_2\right)+2\sqrt{R_1R_2R\left(R_1+R_2+R\right)}}}=$ $\frac {x^2y^2z^2}{x^2y^2+z^2\left(x^2+y^2\right)+2\sqrt{x^2y^2z^2\left[\left(x^2+y^2\right)+z^2\right]}}\ \stackrel{(1\wedge 2)}{\implies}$

$r=\frac {x^2y^2z^2}{2xy\left(xy-z^2\right)+2\sqrt{x^2y^2\left(xy-z^2\right)^2}}\ \stackrel{xy>z^2}{=}\  \frac {xyz^2}{4\left(xy-z^2\right)}$ $\implies$ $\frac 1{4r}=\frac 1{z^2}-\frac 1{xy}\implies$ $\frac 1{4r}=\frac 1R-\frac 1{\sqrt{R_1R_2}}=$ $\left(\frac 1{\sqrt{R_1}}+\frac 1{\sqrt{R_2}}\right)^2-\frac 1{\sqrt{R_1R_2}}=$ $\frac 1{R_1}+\frac 1{R_2}+\frac 1{\sqrt{R_1R_2}}$ .

Remark. Otherwise. The line $d$ is the outer tangent circle (degenerate) to $w_1$ , $w_2$ and $w$ . Therefore, $R_1R_2+R\left(R_1+R_2\right)=$ $2\sqrt{R_1R_2R\left(R_1+R_2+R\right)}$ and the

relation $(*)$ becomes $2r=\frac {R_1R_2R}{R_1R_2+R\left(R_1+R_2\right)}$ $\implies$ $\frac 1{2r}=\frac 1R+\frac 1{R_1}+\frac 1{R_2}\implies$ $\frac 1{2r}=\left(\frac 1{\sqrt{R_1}}+\frac 1{\sqrt{R_2}}\right)^2+\frac 1{R_1}+\frac 1{R_2}\implies$ $\frac 1{4r}=\frac 1{R_1}+\frac 1{R_2}+\frac 1{\sqrt{R_1R_2}}\ .$



PP4. Let $\triangle ABC$ and its interior $P$ for which there are $\{r,x,y,z\}\subset\mathbb R^*_+$ so that $\left\{\begin{array}{ccccc}
BC=y+z & ; & CA=z+x & ; & AB=x+y\\\\
PA=r+x & ; & PB=r+y & ; & PC=r+z\\\\
x+y+z=m & ; & xy+yz+zx=n & ; & xyz=p\end{array}\right\|$ . Prove that $r=\frac p{n+2\sqrt {mp}}$ .

Proof. Let $\left\{\begin{array}{ccc}
m\left(\widehat {BPC}\right) & = & \alpha\\\\
m\left(\widehat {CPA}\right) & = & \beta\\\\
m\left(\widehat {APB}\right) & = & \gamma\end{array}\right\|$ . Prove easily that $\cos\alpha =\frac {r^2+r(y+z)-yz}{(r+y)(r+z)}$ and $\cos\frac {\alpha}2=\sqrt{\frac {r[(r+(y+z)]}{(r+y)(r+z)}}$ a.s.o. I"ll apply an well-known conditioned identity

$\boxed{\alpha +\beta +\gamma =2\pi\implies\cos\alpha +\cos\beta +\cos\gamma =-1-4\cos\frac {\alpha}2\cos\frac {\beta}2\cos\frac {\gamma}2}$ .Thus, $\frac {-4r\sqrt{r(r+x+y)(r+y+z)(r+z+x)}}{(r+x)(r+y)(r+z)}=1+\sum\frac {r(y+z)+r^2-yz}{(r+y)(r+z)}\iff$

$-4r\sqrt{r\prod(r+y+z)}=(r+x)(r+y)(r+z)+\sum (r+x)[r(r+y+z)-yz]=$ $\left(r^3+mr^2+nr+p\right)+$ $r^2(3r+m)+2r(n+mr)-3p-nr=$

$4r^3+4mr^2+2nr-2p\implies$ $\left(2r^3+2mr^2+nr-p\right)^2=$ $4r^3\prod[r+(y+z)]\implies$ $\left(n^2-4mp\right)r^2-2npr+p^2=0\implies$ $r\in\left\{\frac p{n\pm\sqrt{mp}}\right\}\ \stackrel{(r>0)}{\implies}\ r=\frac p{n+\sqrt{mp}}$ .



PP5. Let $\triangle ABC$ and $P$ for which exist $\{r,x,y,z\}\subset\mathbb R^*_+\ ,\ r>\max\{x,y,z\}$ so $\left\{\begin{array}{ccccc}
BC=y+z & ; & CA=z+x & ; & AB=x+y\\\\
PA=r-x & ; & PB=r-y & ; & PC=r-z\\\\
x+y+z=m & ; & xy+yz+zx=n & ; & xyz=p\end{array}\right\|$ . Prove that $r=\frac p{n-2\sqrt {mp}}$ .


Lemma. Let $\triangle ABC$ for which $b\ne c$. Denote $:$ the midpoint $M$ of $[BC]\ ;$ the points $\{D,E,F\}\subset w$ where its incircle $w=C(I,r)$ touches

$BC\ ,\ CA\ ,\ AB$ respectively $;$ $\{K,L\}=AM\cap w\ ;$ $S\in EF\cap AM$. Then $I\in SD$ and the division $(A,K,S,L)$ is harmonically.


Proof. Apply an well known relation $\frac{FB}{FA}\cdot MC+\frac{EC}{EA}\cdot DB=\frac{SM}{SA}\cdot BC\Longrightarrow$ $\boxed{\frac{SM}{SA}=\frac{a}{b+c-a}}\ \ (1)$. Let $T\in BC,\ AT\perp BC\ .$

Thus, $MD=\frac 12\left| b-c\right|$ , $DT=\frac{(p-a)|b-c|}{a}$ and $\frac{DM}{DT}=\frac{a}{b+c-a}\ \ (2)\ .$ From $(1)$ and $(2)$ results that $\frac{SM}{SA}=\frac{DM}{DT}$, i.e. $SD\parallel AT$

what means $I\in SD\ .$ Have immediatelly and the second part of the conclusion, i.e. $EF$ is the polar of the point $A$ w.r.t. $w\ .$


PP6. Let $\triangle ABC$ with its incircle $w=C(I,r)$ , the midpoint $M$ of $BC$ and $\{K,L\}=AM\cap w$ . The lines passing through $K$ , $L$,

and are parallelly to $BC$ intersect again the incircle $w$ in $X$ and $Y$. The lines $AX$ and $AY$ cut $BC$ at $P$ and $Q$. Prove that $BP = CQ$ .


Proof Let $Z\in AM$ for which $ZI\perp BC$. From the product of the relations $\frac{AM}{AK}=\frac{MQ}{KX}$ , $\frac{AL}{AM}=\frac{YL}{MP}$ , $\frac{ZK}{ZL}=\frac{KX}{YL}$ , $\frac{AK}{AL}=\frac{ZK}{ZL}$ (from the above

lemma: the division $(A,K,Z,L)$ is harmonically, i.e. the point $Z$ coincides with the point $S\in EF\cap AM$ ) we obtain $MP=MQ$, i.e. $BP=CQ\ .$



PP7. Let an acute $\triangle ABC$ with incircle $ \omega = C(I,r)$ and circumcircle $ \rho = C(O,R)$. The circles $\left\{\begin{array}{ccc}
 c_{1} & = & C\left(P,r_{1}\right)\\\\
c_{2} & = & \mathbb C\left(Q,r_{2}\right)\end{array}\right\|$ are tangent internally to $ \rho$ in the same $ A$.

The circle $ w$ is tangent externally to $ c_{1}$ and is tangent internally to $ c_{2}$. Prove that $PQ =\frac{a^{2}(p-a)}{4S}$, where $p$ is the semiperimeter and $ S=[ABC]$ is the area for $ \triangle ABC$.


Remark. Prove easily $\left \{\begin{array}{ccccc}
IP = r+r_{1} & ; & IQ = r_{2}-r\\\\
PO = R-r_{1} & ; & PA = r_{1}\\\\
QO = R-r_{2} & ; & QA = r_{2}\\\\
OA = R & ; & PQ = r_{2}-r_{1}\end{array}\right\|\ .$ The relations $\left \{\begin{array}{ccc}
IO^{2}= R(R-2r) & ; & IA^{2}=\frac{bc(p-a)}{p}=\frac{4Rr(p-a)}{a}\\\\
IA^{2}-r^{2}= (p-a)^{2} & ; & IA^{2}+4Rr = bc\\\\
p(p-a)+(p-b)(p-c) = bc.& ; & p(p-a)(p-b)(p-c) = S^2\end{array}\right\|$ are well-known.

Proof I. Let $\left\{\begin{array}{ccc}
IO & = & m\\\
 IA & = & n\end{array}\right\|$ and Stewart's in $ \triangle OIA\ :\ \left\{\begin{array}{ccc}
m^{2}r_{1}^{2}+n^{2}(R-r_{1}) & = & R(r+r_{1})^{2}+Rr_{1}(R-r_{1})\\\\
m^{2}r_{2}+n^{2}(R-r_{2}) & = &  R(r_{2}-r)^{2}+Rr_{2}(R-r_{2})\end{array}\right\|$ $ \implies$ $ r_{1}(R^{2}+2Rr+n^{2}-m^{2}) = $ $R(n^{2}-r^{2}) =$

$ r_{2}(R^{2}-2Rr+n^{2}-m^{2})$ $ \implies$ $ r_{1}(R^{2}+2Rr+bc-4Rr-R^{2}+2Rr) =$ $ R(p-a)^{2}=$ $ r_{2}(R^{2}-2Rr+bc-4Rr-R^{2}+2Rr)$ $ \implies$ $ r_{1}bc = R(p-a)^{2}=$

$ r_{2}(bc-4Rr)$ $ \implies$ $ PQ = r_{2}-r_{1}=$ $ \frac{4R^{2}r(p-a)^{2}}{bc(bc-4Rr)}=$ $ \frac{4R^{2}pr(p-a)^{2}}{b^{2}c^{2}(p-a)}=$ $ \frac{4R^{2}pra^{2}(p-a)^{2}}{16R^{2}p^{2}r^{2}(p-a)}$ $ \implies$ $ \boxed{\ PQ =\frac{a^{2}(p-a)}{4S}\ }$.

Proof II. Apply the Pythagoras' theorem in the triangles :
$ \triangle\ IOP\blacktriangleright$ $ (r+r_{1})^{2}= (R-r_{1})^{2}+(R^{2}-2Rr)-2(R-r_{1})\cdot$ $ OI\cdot\frac{(R^{2}-2Rr)+R^{2}-\frac{4Rr(p-a)}{a}}{2R\cdot IO}\implies$ $ \boxed{r_{1}=\frac{R(p-a)^{2}}{bc}}\ .$

$ \triangle\ IOQ\blacktriangleright$ $ (r_{2}-r)^{2}= (R-r_{2})^{2}+(R^{2}-2Rr)-2(R-r_{2})\cdot$ $ IO\cdot\frac{(R^{2}-2Rr)+R^{2}-\frac{4Rr(p-a)}{a}}{2R\cdot IO}\implies$ $ \boxed{r_{2}=\frac{Rp(p-a)}{bc}}\ .$

Therefore, $ \frac{r_{1}}{p-a}=\frac{r_{2}}{p}=\frac{R(p-a)}{bc}=\frac{PQ}{a}$, i.e. $ \boxed{PQ =\frac{aR(p-a)}{bc}}=\frac{a^{2}(p-a)}{4S}$. Observe that $ \frac{r_{1}}{r}=\frac{r_{2}}{r_{a}}$, where $ r_{a}$ is the $ A$- exinradius of $ \triangle ABC$.

Remark. Prove easily that two more interesting relations : $ \boxed{\sum PQ = R+r\ }$ and $ r_{1}= R-\frac{a(4R+r)}{4p}\ ,\ r_{2}=\frac{ r_{b}+r_{c}}{4}$.
This post has been edited 190 times. Last edited by Virgil Nicula, Jan 7, 2016, 12:36 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a