286. ABC is right triangle iff s=2R+r and other similar pp.

by Virgil Nicula, Jun 14, 2011, 2:38 AM

Proposed problem. Prove that in any $\triangle ABC$ there is the equivalence $90^{\circ}\in\{A,B,C\} \iff\ a^2+b^2$ $+c^2=8R^2\ \iff\ s=2R+r$ .

Proof 1. Denote $P\equiv\prod\cos A$ . Thus, $4P=2\cos A\left[\cos (B+C)+\cos (B-C)\right]=$ $\cos (A+B+C)+\sum \cos (B+C-A)=$

$-1-\sum\cos 2A=$ $-1-\sum\left(1-2\sin^2A\right)=$ $-4+2\sum\sin^2A=$ $-4+\sum\frac {a^2}{2R^2}=$ $\frac {a^2+b^2+c^2-8R^2}{2R^2}\implies$ $\boxed{P=\frac {a^2+b^2+c^2-8R^2}{8R^2}}$ .

Since $\left(a^2+b^2+c^2\right)-8R^2=$ $2\left(s^2-r^2-4Rr\right)-8R^2=$ $2\left[s^2-(2R+r)^2\right]$ obtain that the required identity $\boxed{\cos A\cos B\cos C=\frac {s^2-(2R+r)^2}{4R^2}}$

from where obtain $s=2R+r\iff \cos A\cos B\cos C=0\iff 90^{\circ}\in\left\{A,B,C\right\}\iff\triangle ABC$ is right-angled.

Proof 2. Denote $P=\prod\cos A$ . Thus, $P=\frac {\prod\left(b^2+c^2-a^2\right)}{8(abc)^2}=$ $\frac {\prod\left[\left(a^2+b^2+c^2\right)-2a^2\right]}{8(abc)^2}=$ $\frac {\left(a^2+b^2+c^2\right)\left[2\sum b^2c^2-\sum a^4\right]-8(abc)^2}{8(abc)^2}=$

$\frac {\left(a^2+b^2+c^2\right)\cdot 16S^2-8\cdot (4RS)^2}{8\cdot (4RS)^2}\implies$ $P=\frac {a^2+b^2+c^2-8R^2}{8R^2}$ , i.e. $\cos A\cos B\cos C=\frac {s^2-(2R+r)^2}{4R^2}$ a.s.o.

Proof 3. $s=2R+r\iff$ $s=\frac {a}{\sin A}+(s-a)\cdot\tan\frac A2\iff$ $s\cdot\left(1-\tan\frac A2\right)=a\cdot \left(\frac {1}{\sin A}-\tan\frac A2\right)\iff$

$s\cdot\left(1-\tan\frac A2\right)=a\cdot \left(\frac {1+\tan^2\frac A2}{2\tan\frac A2}-\tan\frac A2\right)\iff$ $s\cdot\left(1-\tan\frac A2\right)=a\cdot \frac {1-\tan^2\frac A2}{2\tan\frac A2}\iff$ $\boxed{\ \tan\frac A2=1\ }\ (1)$ or $\tan\frac A2=\frac {a}{b+c}$ .

Observe that $\tan\frac A2=\frac {a}{b+c}\iff$ $\tan\frac A2=\frac {\sin A}{\sin B+\sin C}\iff$ $\frac {\sin\frac A2}{\cos\frac A2}=\frac {\sin\frac A2\cos\frac A2}{\cos\frac A2\cos\frac {B-C}{2}}\iff$ $\cos\frac {A}{2}=\cos\frac {B-C}{2}\iff$

$\sin\frac {B+C}{2}=\cos \frac {B-C}{2}\iff$ $\tan\frac B2+\tan\frac C2=1+\tan\frac B2\tan\frac C2$ , i.e. $\boxed{\left(1-\tan\frac B2\right)\left(1-\tan\frac C2\right)=0}\ (2)$ .

In conclusion, from upper relations $(1)$ and $(2)$ obtain that $90^{\circ}\in\left\{A,B,C\right\}\iff\triangle ABC$ is right-angled.

Proof 4. I"ll show $\boxed{\prod \left(1-\tan\frac A2\right)=2\left(1-\frac {2R+r}{s}\right)}$ . Prove easily that $\left\|\begin{array}{c}
\tan\frac A2+\tan\frac B2+\tan\frac C2=\frac {4R+r}{s}\\\\
\tan\frac A2\tan\frac B2+\tan\frac B2\tan\frac C2+\tan\frac C2\tan\frac A2=1\\\\
\tan\frac A2\tan\frac B2\tan\frac C2=\frac rs\end{array}\right\|$ .

Therefore, $\prod\left(1-\tan\frac A2\right)=1-\sum\tan\frac A2+\sum\tan\frac B2\tan\frac C2-\prod\tan\frac A2=$ $1-\frac {4R+r}{s}+1-\frac rs=$ $2\left(1-\frac {2R+r}{s}\right)$ .

Proof 5. $s=2R+r\iff$ $\frac sR=1+\left(1+\frac rR\right)\iff$ $\sum\sin A=1+\sum\cos A\iff$ $(1+\cos A)-\sin A-(\sin B+\sin C)+$

$(\cos B+\cos C)=0\iff$ $2\left(\cos\frac A2-\cos\frac {B-C}{2}\right)\left(\cos\frac A2-\sin \frac A2\right)=0\iff$ $90^{\circ}\in\{A,B,C\}$ .

Remark. Observe that $\boxed{f(t)\equiv st^3-(4R+r)t^2+st-r=0}\begin{array}{cc}
\nearrow & t_1=\tan\frac A2\\\\
\rightarrow & t_2=\tan\frac B2\\\\
\searrow & t_3=\tan\frac C2\end{array}$ . Thus, $90^{\circ}\in \{A,B,C\}\iff f(1)=0\iff s=2R+r$ .



PP1. Prove that in any triangle $ABC$ there is the inequality $\boxed{\ \frac 1{\sin\frac A2}+\frac 1{\sin\frac B2}+\frac 1{\sin\frac C2}\, \ge\, 2\cdot\left(\frac 1{\cos\frac {A-B}2}+\frac 1{\cos\frac {B-C}2}+\frac 1{\cos\frac {C-A}2}\right)\ }$ .


Proof. Using Mollweide's formula i.e. $\boxed{\frac a{b+c}=\frac {\sin\frac A2}{\cos\frac {B-C}2}}$ , the proposed inequality can be written as : $\sum\, \frac 1{\sin\frac A2}\, \ge\, 2\cdot\sum\, \frac a{(b+c)\cdot\sin\frac A2}$

$\iff\sum\, \frac {b+c-2a}{(b+c)\cdot\sin\frac A2}\, \ge\, 0$ . Observe that for $a\le b\le c$ we have the chains $\left\{\begin{array}{ccccc}
b+c-2a & \ge & c+a-2b & \ge & a+b-2c \\\\ 
\frac 1{(b+c)\cdot\sin\frac A2} & \ge & \frac 1{(c+a)\cdot\sin\frac B2} & \ge & \frac 1{(a+b)\cdot\sin\frac C2}\end{array}\right\|$.

Therefore, by Chebyshev's inequality it follows that : $\sum\, \frac {b+c-2a}{(b+c)\cdot\sin\frac A2}\, \ge\, \frac 13\cdot\sum\, (b+c-2a)\cdot\sum\, \frac 1{(b+c)\cdot\sin\frac A2}=0$ , as desired.



PP2. Prove that in any triangle $ABC$ there is the inequality $\boxed{\ \prod\cos\frac {B-C}2\ \ge\ 8\cdot\prod \sin\frac A2\ }$ .

Proof. Using the well known relations in a triangle : $\left\|\ \begin{array}{llll} 
\cos\frac {B-C}2=\frac {h_a}{l_a}\ ;\ h_a=\frac {bc}{2R}\ ;\ l_a=\frac {2bc}{b+c}\cdot\cos\frac A2 \\ \\ 
\sin\frac A2=\sqrt{\frac {(s-b)(s-c)}{bc}}\ \implies\ \prod\sin\frac A2=\frac r{4R} \\ \\ 
\cos\frac A2=\sqrt{\frac {s(s-a)}{bc}}\ \ \ \ \ \implies\ \prod\cos\frac A2=\frac s{4R}\ \end{array}\right\|$ the given inequality

is equivalent to : $\frac {h_a}{l_a}\cdot\frac {h_b}{l_b}\cdot\frac {h_c}{l_c}\ge\frac {2r}R\iff\frac {\frac {(abc)^2}{8R^3}}{\frac {8(abc)^2}{(a+b)(b+c)(c+a)}\cdot\frac s{4R}}\ge\frac {2r}R\iff (a+b)$ $(b+c)(c+a)\ge 8abc$ , which is well-known.



PP3. Prove that in $\triangle  ABC$ with the circumcenter $ O$ and orthocenter $ H$ exists the relation $ OH\ge \frac 12\cdot \max \lbrace|a - b|,|b - c|,|c - a| \rbrace$ .

Proof (Mateescu Constantin). The following sharper inequality is also true : $OH\, \ge\, \boxed{\ OI\, \ge\, \frac 12\cdot \max\, \{\, |a-b|,|b-c|,|c-a|\, \}\ }$ .

Taking into account the well-known distances in a triangle : $\left\{\begin{array}{lllll}
OH^2=9R^2-(a^2+b^2+c^2) \\\\ 
OI^2=R^2-2Rr\end{array}\right\|$ , the inequality $OH\, \ge\, OI$

is equivalent to: $a^2+b^2+c^2\, \le\, 8R^2+2Rr$ , which is weaker than the well-known Gerretsen i.e. $\sum\, a^2\, \le\, 8R^2+4r^2$ .

Now let's draw our attention to $\triangle\, AON$ , where $N$ represents Nagel's point. Since : $\left\|\begin{array}{ccccc}
AO+ON\, \ge\, AN \\\\ 
AN=\sqrt {(b-c)^2+4r^2} \\\\ 
ON=R-2r\ ;\ AO=R\end{array}\right\|$

we obtain that : $2(R-r)\ge\sqrt {(b-c)^2+4r^2}\iff 4R^2-8Rr\ge  (b-c)^2\iff$ $\boxed{\ 2\cdot OI\, \ge\, |b-c|\ }$ .

Similarly we can obtain the analogous inequalities and thus the boxed inequality is proved.



PP4. Prove that $\triangle\, ABC\ \implies\ \boxed{\ \frac SR\, \le\, a\cos^2A+b\cos^2B+c\cos^2C\, \le\, 2s\cdot\left(1-\frac rR\right)^2\ }$

Proof. $\sum a\cos^2A=\sum a\left(1-\sin^2A\right)=$ $\sum a\left(1-\frac {a^2}{4R^2}\right)=$ $2s-\frac {2s(s^2-6Rr-3r^2)}{4R^2}=$ $s\cdot\frac {4R^2+6Rr+3r^2-s^2}{2R^2}$

$\implies$ $\left\{\begin{array}{lllll}
\sum\, a\cos^2A=s\cdot\frac {4R^2+6Rr+3r^2-s^2}{2R^2}\, \stackrel{\text{(Gerretsen)}}{\ge}\, s\cdot\frac {4R^2+6Rr+3r^2-(4R^2+4Rr+3r^2)}{2R^2}=s\cdot\frac rR=\frac SR \\\\ 
\sum\, a\cos^2A=s\cdot\frac {4R^2+6Rr+3r^2-s^2}{2R^2}\, \stackrel{\text{(Gerretsen)}}{\le}\, s\cdot\frac {4R^2+6Rr+3r^2-(16Rr-5r^2)}{2R^2}=s\cdot\frac {2R^2-5Rr+4r^2}{R^2}\, \stackrel{\text{(Euler)}}{\le}\, 2s\cdot\left(1-\frac rR\right)^2\end{array}\right\|$

Remark. $\sum a\cdot\cos^2A=\sum\frac {\cos^2A}{\frac 1a}\stackrel{(\mathrm{C.B.S.})}{\ge}$ $\frac {\left(\sum\cos A\right)^2}{\sum\frac 1a}=$ $\frac {4sr(R+r)^2}{R\left(s^2+r^2+4Rr\right)}\stackrel{\mathrm{(Gerretsen)}}{\ge}$ $\frac {4sr(R+r)^2}{R\left(4R^2+8Rr+4r^2\right)}=$ $\frac {sr}{R}=\frac SR$ .



PP5. Prove that in any $\triangle ABC$ exists the inequality $\triangle\ ABC\ \implies\ \boxed{\ \sqrt{\frac {s-a}{s-b}}+\sqrt{\frac {s-b}{s-c}}+\sqrt{\frac {s-c}{s-a}}\ \le\ \sqrt{\frac {4R+r}r}\ }$ .

Proof. $\left(\sqrt{\frac {s-a}{s-b}}+\sqrt{\frac {s-b}{s-c}}+\sqrt{\frac {s-c}{s-a}}\right)^2\ \stackrel{\text{(C.B.S.)}}{\le}\ \left[(s-a)+(s-b)+(s-c)\right]$ $\cdot\left[\frac 1{s-b}+\frac 1{s-c}+\frac 1{s-a}\right]=$

$=s\cdot\frac {\sum\, (s-b)(s-c)}{(s-a)(s-b)(s-c)}=s\cdot\frac {r(4R+r)}{sr^2}$ $=\frac {4R+r}r$ . I used the well-known identity $\sum (s-b)(s-c)=r(4R+r)$ .



PP6. Let $ ABC$ be a triangle. Prove that $60^{\circ}\in\{A,B,C\}\iff s=(R+r)\sqrt 3$ .

Proof 1. Prove easily that $\left\{\begin{array}{c}
\tan\frac A2+\tan\frac B2+\tan\frac C2=\frac {4R+r}{s}\\\\
\tan\frac A2\tan\frac B2+\tan\frac A2\tan\frac B2+\tan\frac A2\tan\frac B2=1\\\\
\tan\frac A2\tan\frac B2\tan\frac C2=\frac rs\end{array}\right\|\implies$ $s\cdot \prod\left(1-\sqrt 3\cdot\tan\frac A2\right)=4\left[s-(R+r)\sqrt 3\right]$ .

Proof 2. Prove easily that $\boxed{x+y+z=0\implies \sum\sin x=-4\prod\sin\frac x2}\ (*)$ . Therefore, $s=(R+r)\sqrt 3\iff$

$\frac sR=\sqrt 3\cdot\left(1+\frac rR\right)\iff$ $\sum\sin A=\sqrt 3\cdot\sum\cos A\iff$ $\sum\sin\left(A-60^{\circ}\right)=0$ . For $\left\{\begin{array}{c}
x:=A-60^{\circ}\\\
y:=B-60^{\circ}\\\
z:=C-60^{\circ}\end{array}\right\|$ , where

$x+y+z=0$ apply the identity $(*)$ . In conclusion, $s=(R+r)\sqrt 3\iff$ $\prod\sin\left(\frac A2-30^{\circ}\right)=0\iff$ $60^{\circ}\in\{A,B,C\}$ .

Remarks.

$\blacktriangleright$ The equivalence $\boxed{A=60^{\circ}\iff s=(R+r)\sqrt 3}$ is false because the implication

$\boxed{A=60^{\circ}\implies s=(R+r)\sqrt 3}$ is true and $\boxed {s=(R+r)\sqrt 3\implies A=60^{\circ}}$ is false.

$\blacktriangleright$ This equivalence $\boxed{60^{\circ}\in\{A,B,C\}\iff s=(R+r)\sqrt 3}$ is true.



PP7. Prove that $\triangle\, ABC\ \implies\ \boxed{\ \sum_{\text{cyc}}\, \cos\frac {B-C}2\ \ge\ \frac 2{\sqrt 3}\cdot\sum_{\text{cyc}}\, \sin A\ }$

Proof (Mateescu Constantin). We assume that $A$ , $B$ , $C$ are the angles of a triangle labelled in such a way that $B$ and $C$ are "on the same side" of $60^{\circ}$ , i.e.

$A\le 60^{\circ}\le B,C$ or $A\ge 60^{\circ}\ge B,C$ . In either case, we have :

$\left\|\ \begin{array}{cccc} 
\left(\cos\frac A2-\frac {\sqrt 3}2\right)\left(\cos\frac B2-\frac {\sqrt 3}2\right)\le 0 & \implies & 4\prod\, \cos\frac A2\le 2\sqrt 3\cdot\left(\cos\frac A2+\cos\frac B2\right)\cos\frac C2-3\cos\frac C2 \\ \\   
\left(\cos\frac A2-\frac {\sqrt 3}2\right)\left(\cos\frac C2-\frac {\sqrt 3}2\right)\le 0 & \implies & 4\prod\, \cos\frac A2\le 2\sqrt 3\cdot\left(\cos\frac A2+\cos\frac C2\right)\cos\frac B2-3\cos\frac B2\ \end{array}\right\|\bigoplus\implies$

$\implies\color{white}{'}$ $8\prod\, \cos\frac A2\le 2\sqrt 3\cdot\left(\sum\, \cos\frac B2\cos\frac C2\right)+2\sqrt 3\cos\frac B2\cos\frac C2-3\left(\cos\frac B2+\cos\frac C2\right)\color{white}{.}$ $(1)$ . On the other hand,

since $\left\|\ \begin{array}{ccccc} 
4\cos\frac A2\cos\frac B2\cos\frac C2=\sin A+\sin B+\sin C \\ \\ 
2\cos\frac B2\cos\frac C2=\cos\frac {B-C}2+\cos\frac {B+C}2\le 1+\sin\frac A2\ \end{array}\right\|$ we can weaken the above inequality $(1)$ in order to obtain :

$\boxed{\ 2\sum\, \sin A\ \le\ 2\sqrt 3\cdot\left(\sum\, \cos\frac B2\cos\frac C2\right)+\sqrt 3\cdot\left(1+\sin\frac A2\right)-3\left(\cos\frac B2+\cos\frac C2\right)\ }$ . Thus, it's enough to show

that : $\boxed{\boxed{\ 2\sqrt 3\cdot\left(\sum\, \cos\frac B2\cos\frac C2\right)+\sqrt 3\cdot\left(1+\sin\frac A2\right)-3\left(\cos\frac B2+\cos\frac C2\right)\ \le\ \sqrt 3\cdot\sum\, \cos\frac {B-C}2\ }}\ \ \ (2)$ .

Taking into account the identity : $\sum\, \cos\frac {B-C}2=2\sum\, \cos\frac B2\cos\frac C2-\sum\, \sin\frac A2$ , the inequality $(2)$ is equivalent to :

$\begin{array}{ccccc} 
\ & 1+2\sin\frac A2\ \le\ \sqrt 3\cdot\left(\cos\frac B2+\cos\frac C2\right)-\left(\sin\frac B2+\sin\frac C2\right) & \iff \\ \\ 
\iff & \cos 60^{\circ}+\cos\frac {B+C}2\ \le\ \left(\cos 30^{\circ}\cos\frac B2-\sin 30^{\circ}\sin\frac B2\right)+\left(\cos 30^{\circ}\cos\frac C2-\sin 30^{\circ}\sin\frac C2\right) & \iff \\ \\ 
\iff & 2\cos\left(30^{\circ}+\frac {B+C}4\right)\cos\left(30^{\circ}-\frac {B+C}4\right)\ \le\ \cos\left(30^{\circ}+\frac B2\right)+\cos\left(30^{\circ}+\frac C2\right) & \iff \\ \\  
\iff & \cos\left(30^{\circ}-\frac {B+C}4\right)\ \le\ \cos\frac {B-C}4 & (3) \end{array}$

Now, $\left\|\ \begin{array}{llllll} 
60^{\circ}\ge B\implies 120^{\circ}\ge 2B & \implies & 120^{\circ}-(B+C)\ge B-C & \implies & 30^{\circ}-\frac {B+C}4\ge\frac {B-C}4 \\ \\ 
60^{\circ}\le B\implies 2B-120^{\circ}\ge 0^{\circ} & \implies & B+C-120^{\circ}\ge C-B & \implies & \frac {B+C}4-30^{\circ}\ge\frac {C-B}4\ \end{array}\right\|$ ,

so in either case the inequality $(3)$ holds, and the proof is complete.

Remark. The proposed inequality is equivalent to the following nice form : $\boxed{\boxed{\ \frac {h_a}{l_a}+\frac {h_b}{l_b}+\frac {h_c}{l_c}\ \ge\ \frac {2s\sqrt 3}{3R}\ }}$ .



PP8. Prove that $\triangle\, ABC\ \ \implies\ \ \boxed{\ \frac {h_a}{l_a}+\frac {h_b}{l_b}+\frac {h_c}{l_c}\ \ge\ 1+\sqrt {\frac {s^2+r^2+2Rr}{2R^2}}\ }$ .

Preliminary.

$1\blacktriangleright\ \prod\cos\frac {B-C}2=\frac {s^2+r^2+2Rr}{8R^2}$ .

Proof. $\prod\cos\frac {B-C}2=\prod\frac {(b+c)}a\sin\frac A2=$ $\frac {(a+b+c)(ab+bc+ca)-abc}{abc}\prod\sin\frac A2 \implies$

$\prod\cos\frac {B-C}2=$ $\frac {2s\cdot (s^2+r^2+4Rr)-4Rrs}{4Rrs}\cdot\frac r{4R}=$ $\frac {s^2+r^2+2Rr}{8R^2}$ .

$2\blacktriangleright\ \sum\frac 1{\cos\frac {B-C}2}=\frac {4R^2}{s^2+r^2+2Rr}\cdot\left[\left(\sum\, \cos\frac {B-C}2\right)^2-1\right]-1$ .

Proof. $\sum\frac 1{\cos^2\frac A2}=$ $\frac {s^2+(4R+r)^2}{s^2}\ ;\ \sum\tan\frac A2=$ $\frac {4R+r}s\ ;\ \sum\sin^2\frac A2=$ $\frac {2R-r}{2R}\ (\ast)$ $\implies\left(\sum\cos\frac {B-C}2\right)^2=$

$\sum\cos^2\frac {B-C}2+2\sum\cos\frac {A-B}2\cos\frac {A-C}2=$ $\sum\left(\frac s{2R}\cdot\frac 1{\cos\frac A2}-\sin\frac A2\right)^2+$ $2\prod\cos\frac {B-C}2\cdot\sum\frac 1{\cos\frac {B-C}2}\stackrel{(\ast)\wedge (1)}{=}$

$\frac {s^2}{4R^2}\cdot\frac {s^2+(4R+r)^2}{s^2}-$ $\frac sR\cdot\frac {4R+r}s+$ $\frac {2R-r}{2R}+$ $\frac {s^2+r^2+2Rr}{4R^2}\cdot\sum\frac 1{\cos\frac {B-C}2}=$ $1+\frac {s^2+r^2+2Rr}{4R^2}+$

$\frac {s^2+r^2+2Rr}{4R^2}\cdot\sum\frac 1{\cos\frac {B-C}2}\ \ldots\ \implies (2)$ .

Proof of the proposed problem (Mateescu Constantin).

$\begin{array}{cccc}
\\\ 
\ & \left(\cos\frac {B-C}2-1\right)\left(\cos\frac {C-A}2-1\right)\left(\cos\frac {A-B}2-1\right)\, \le\, 0 \\ \\ 
\iff & 1+\sum\, \cos\frac {A-B}2\cos\frac {A-C}2\, \ge\, \sum\, \cos\frac {B-C}2+\prod\, \cos\frac {B-C}2 \\ \\ 
\iff & 1+\prod\, \cos\frac {B-C}2\cdot\sum\, \frac 1{\cos\frac {B-C}2}\, \ge\, \sum\, \cos\frac {B-C}2+\prod\, \cos\frac {B-C}2 \\ \\ 
\stackrel{(1)}{\iff} & 1+\frac {s^2+r^2+2Rr}{8R^2}\cdot\left(\sum\, \frac 1{\cos\frac {B-C}2}-1\right)\, \ge\, \sum\, \cos\frac {B-C}2 \\ \\ 
\stackrel{(2)}{\iff} & 1+\frac {s^2+r^2+2Rr}{8R^2}\cdot\left\{\frac {4R^2}{s^2+r^2+2Rr}\cdot\left[\left(\sum\, \cos\frac {B-C}2\right)^2-1\right]-2\right\}\, \ge\, \sum\, \cos\frac {B-C}2 \\ \\ 
\iff & 1+\frac 12\cdot\left[\left(\sum\, \cos\frac {B-C}2\right)^2-1\right]-\sum\, \cos\frac {B-C}2\, \ge\, \frac {s^2+r^2+2Rr}{4R^2} \\ \\ 
\iff & 2+\left(\sum\, \cos\frac {B-C}2\right)^2-1-2\sum\, \cos\frac {B-C}2\, \ge\, \frac {s^2+r^2+2Rr}{2R^2} \\ \\ 
\iff & \left(\sum\, \cos\frac {B-C}2-1\right)^2\, \ge\, \frac {s^2+r^2+2Rr}{2R^2} \\ \\ 
\iff & \sum\, \cos\frac {B-C}2\, \ge\, 1+\sqrt {\frac {s^2+r^2+2Rr}{2R^2}} \\ \\ 
\iff & \boxed{\ \frac {h_a}{l_a}+\frac {h_b}{l_b}+\frac {h_c}{l_c}\ \ge\ 1+\sqrt {\frac {s^2+r^2+2Rr}{2R^2}}\ } \\\  
\end{array}$



PP9$\triangle\, ABC\ \implies\ \boxed{\ \sum\, \cos\frac A2\cot\frac A2\, \ge\, \frac {\sqrt 3}2\cdot\sum\, \cot\frac A2\ }$

Proof (Mateescu Constantin). We will transform the given inequality (in any triangle) into one restricted to an acute angled triangle by using the following substitutions :

$\left\|\begin{array}{ccc} 
A & = & \pi-2X \\ 
B & = & \pi-2Y \\   
C & = & \pi-2Z\end{array}\right\|$ , $X,Y,Z\in\left(0,\frac {\pi}2\right)$ and thus we are left to prove that: $\sum\, \sin X\tan X\, \ge\, \frac {\sqrt 3}2\cdot\sum\, \tan X$. For convenience,

we will return to the notation of a triangle $ABC$ in the last inequality and denote by $R$, $r$ and $s$ its usual elements (circumradius, inradius and

semiperimeter respectively). Hence, the inequality $\sum\, \sin A\tan A\, \ge\, \frac {\sqrt 3}2\cdot\sum\, \tan A$ becomes: $\sum\, \frac {1-\cos ^2A}{\cos A}\, \ge\, \frac {\sqrt 3}2\cdot\prod\tan A$

$\stackrel{\prod\cos A>0}{\iff}\ \sum\, \left(1-\cos^2A\right)\cos B\cos C\, \ge\, \frac {\sqrt 3}2$ $\cdot\prod\sin A\iff\sum\, \cos B\cos C-\prod\cos A\cdot\sum\cos A\, \ge\, \frac {\sqrt 3}2\cdot\prod\sin A$

Using the well-known identities: $\left\|\begin{array}{cccc}
\sum\, \cos B\cos C=\frac {s^2+r^2-4R^2}{4R^2} & ; & \sum\, \cos A=1+\frac rR \\ \\ 
\prod\, \cos A=\frac {s^2-(2R+r)^2}{4R^2} & ; & \prod\, \sin A=\frac {rs}{2R^2}\end{array}\right\|$ the last inequality is now equivalent to:

$\frac {s^2+r^2-4R^2}{4R^2}-\frac {s^2-(2R+r)^2}{4R^2}$ $\cdot\left(1+\frac rR\right)\, \ge\, \frac {rs\sqrt 3}{4R^2}\iff s^2+Rs\sqrt 3\, \le\, 8R^2+6Rr+r^2$ , which is actually true in any

triangle since : $\underline{s^2}+R\underline{\underline{s\sqrt 3}}\, \le\, \underline{4R^2+4Rr+3r^2}+R$ $\cdot(\underline{\underline{4R+r}})=8R^2+6Rr+r^2-r(R-2r)\, \le\, 8R^2+6Rr+r^2$, where

I made use of the known inequalities: $\boxed{s^2\le 4R^2+4Rr+3r^2}$ (Gerretsen) , $\boxed{s\sqrt 3\le 4R+r}$ and $\boxed{R\ge 2r}$ (Euler).
This post has been edited 76 times. Last edited by Virgil Nicula, Nov 21, 2015, 3:56 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a