131. A stronger Form of the Steiner-Lehmus Theorem (own).
by Virgil Nicula, Sep 25, 2010, 2:40 PM
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=156786&hilit=bisector
Let
be a triangle and let
,
so that
,
. Prove that
.
Proof 1 (metric).


.
Proof 2 (metric and reductio ad absurdum).

, absurd. Prove analogously that
, absurd. Thus,
. Prove easily
.
Proof 3 (synthetical and reductio ad absurdum). Construct the parallelogram
(
and
) . Since
obtain
, i.e. the triangle
is
-isosceles and
. Denote
,
and
,
. Since
obtain
. Suppose contrary that
, i.e.
. The triangles
,
have a common side
and
. From the relation
obtain
, what is absurd. Prove analogously
, what is absurd. In conclusion,
, i.e.
.
Proof 4 (synthetical). Let
be the point so that
and
separates
,
. Denote
for which

i.e.
is cyclically. Thus,
,
. Since
is cyclically and 
obtain
. In conclusion,
, i.e.
, what means
is
-isosceles
is
-isosceles.
Extension. Let
be a triangle and let
be the point for which
. For a point
denote
,
. Prove that
.
Proof 1 (metric). Denote
. Apply the Ceva's teorem to
in
.
Apply the Stewart's theorem for the cevians
,
.
Thus,

. Observe that
. Therefore, 

is
-median (
is and
-bisector) in
is
-isoceles
.
Proof 2 (metric). Denote
. Apply the Ceva's theorem to
in
.
Pytagoras' theorem to
,
in
,
.
Thus



a.s.o.
Proof 3 (synthetical). Let
be the point so that
and the line
separates
,
. Denote the point
for which
.
Therefore,
is cyclically. Thus,
. Observe that

. Therefore
, i.e.
is cyclically. From
obtain that 
is isosceles trapezoid and
, i.e.
. Thus,
. In conclusion,
, i.e.
.
Generalization. Let
be a triangle and let
be the intersection of
-symmedian with the sideline
.
For a point
denote
,
. Prove that
.
Proof (metric). Denote
. Apply the Ceva's theorem to
in
.
Pytagoras' theorem to
,
in
,
.
Thus



a.s.o.
Let






Proof 1 (metric).






![$s\left[b(a+c)^2-c(a+b)^2\right]=bc\left[(a+c)^2-(a+b)^2\right]$](http://latex.artofproblemsolving.com/d/7/d/d7de81ef5a796612783b404c6ccf77e7896114a7.png)

![$s\left[b(a^2+c^2)-c(a^2+b^2)\right]=bc(2s+a)(c-b)$](http://latex.artofproblemsolving.com/1/d/8/1d89d41234064b0bfb7fe2b20f54a8c662434f30.png)



![$(b-c)\left[bc(2s+a)-s(bc-a^2)\right]=0$](http://latex.artofproblemsolving.com/1/b/1/1b1af12614168be7d683d2493cdf88e4827ae004.png)




Proof 2 (metric and reductio ad absurdum).








Proof 3 (synthetical and reductio ad absurdum). Construct the parallelogram


























![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)






Proof 4 (synthetical). Let









i.e.







obtain








Extension. Let







Proof 1 (metric). Denote





Apply the Stewart's theorem for the cevians


Thus,

![$(y+1)^2\left[a^2x(x+1)+c^2(x+1)-bcy\right]\stackrel{(1)}{=}(x+1)^2\left[a^2y(y+1)+b^2(y+1)-bcx\right]$](http://latex.artofproblemsolving.com/c/9/a/c9aedea913d5d4786632eb2be88b16d055691287.png)

![$a^2(x+1)(y+1)\left[x(y+1)-y(x+1)\right]+$](http://latex.artofproblemsolving.com/a/7/b/a7bf937a6b2c6ea25a9915b0c0f3af36dcd5af79.png)
![$bc\left[x(x+1)^2-y(y+1)^2\right]+(x+1)(y+1)\left[c^2(y+1)-b^2(x+1)\right]=0$](http://latex.artofproblemsolving.com/3/5/7/3572bf62ccf1a4f72546dc31f4b76ba35ba397fa.png)


![$\boxed{(x-y)\left\{a^2(x+1)(y+1)+bc\left[\left(x^2+xy+y^2+2x+2y+1\right)+(x+1)(y+1)\left(\frac {x+y}{xy}+1\right)\right]\right\}=0}$](http://latex.artofproblemsolving.com/9/9/f/99f54cefee4b61334614b976af3700a5b96914d7.png)















Proof 2 (metric). Denote





Pytagoras' theorem to
![$[BE]$](http://latex.artofproblemsolving.com/f/b/0/fb061a8a7c5f9403b5f9261840de9dfea7cb68cf.png)
![$[CF]$](http://latex.artofproblemsolving.com/2/1/b/21bdd766ec1757878aeae83d55b7ab5917af4537.png)




Thus

![$(y+1)^2\left[(x+1)^2a^2+b^2-(x+1)\left(a^2+b^2-c^2\right)\right]=$](http://latex.artofproblemsolving.com/d/f/f/dff4b7008333b73cd29b993cdc1fbb7371eaedb8.png)
![$(x+1)^2\left[(y+1)^2a^2+c^2-(y+1)\left(a^2+c^2-b^2\right)\right]$](http://latex.artofproblemsolving.com/e/2/b/e2ba1a63ef18092c9e86d6143f1bd59423638ade.png)


![$(y+1)\left[(y+1)-(x+1)(y+1)-(x+1)^2\right]b^2+$](http://latex.artofproblemsolving.com/7/1/7/717302c4898b535db3b937d75154244b3553f121.png)
![$(x+1)\left[(y+1)^2+(x+1)(y+1)-(x+1)\right]c^2=0$](http://latex.artofproblemsolving.com/2/b/b/2bba9d034ad71bc3c16171583ffd58dd8137f61b.png)


![$\lambda^2\left[x^2(x+1)(y^2+xy+3y+1)-y^2(y+1)(x^2+xy+3x+1)\right]=0$](http://latex.artofproblemsolving.com/3/c/3/3c30a0fced25aa8567a03caf6cc163e5f83fe192.png)

![$\boxed{(x-y)\left\{(x+1)(y+1)a^2+\lambda^2\left[2x^2y^2+xy(x^2+y^2)+4xy(x+y)+4xy+(x^2+y^2)+(x+y)\right]\right\}=0}$](http://latex.artofproblemsolving.com/4/f/6/4f62005c7a2ce94c8e676e2447834b63c5a5c223.png)


Proof 3 (synthetical). Let







Therefore,













is isosceles trapezoid and







Generalization. Let




For a point




Proof (metric). Denote





Pytagoras' theorem to
![$[BE]$](http://latex.artofproblemsolving.com/f/b/0/fb061a8a7c5f9403b5f9261840de9dfea7cb68cf.png)
![$[CF]$](http://latex.artofproblemsolving.com/2/1/b/21bdd766ec1757878aeae83d55b7ab5917af4537.png)




Thus

![$(y+1)^2\left[(x+1)^2a^2+b^2-(x+1)\left(a^2+b^2-c^2\right)\right]=$](http://latex.artofproblemsolving.com/d/f/f/dff4b7008333b73cd29b993cdc1fbb7371eaedb8.png)
![$(x+1)^2\left[(y+1)^2a^2+c^2-(y+1)\left(a^2+c^2-b^2\right)\right]$](http://latex.artofproblemsolving.com/e/2/b/e2ba1a63ef18092c9e86d6143f1bd59423638ade.png)


![$(y+1)\left[(y+1)-(x+1)(y+1)-(x+1)^2\right]b^2+$](http://latex.artofproblemsolving.com/7/1/7/717302c4898b535db3b937d75154244b3553f121.png)
![$(x+1)\left[(y+1)^2+(x+1)(y+1)-(x+1)\right]c^2=0$](http://latex.artofproblemsolving.com/2/b/b/2bba9d034ad71bc3c16171583ffd58dd8137f61b.png)


![$\lambda\left[x(x+1)(y^2+xy+3y+1)-y(y+1)(x^2+xy+3x+1)\right]=0$](http://latex.artofproblemsolving.com/6/c/e/6ced69f2d811f90660f43e60d0fad5ac39f621b3.png)

![$(x-y)\left\{(x+1)(y+1)a^2+\lambda\left[2xy+(xy+1)(x+y+1)\right]\right\}=0$](http://latex.artofproblemsolving.com/e/d/3/ed30faeeca6ed23565942d91a84f66ba3da3347b.png)


This post has been edited 83 times. Last edited by Virgil Nicula, Nov 23, 2015, 7:26 AM