131. A stronger Form of the Steiner-Lehmus Theorem (own).

by Virgil Nicula, Sep 25, 2010, 2:40 PM

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=156786&hilit=bisector

Let $ABC$ be a triangle and let $E\in (AC)$ , $F\in (AB)$ so that $\widehat{EBA}\equiv\widehat{EBC}$ , $\widehat{FCA}\equiv\widehat {ECB}$ . Prove that $BE=CF\ \iff\ AB=AC$ .

Proof 1 (metric). $BE=CF$ $\iff$ $\frac {2}{a+c}\cdot\sqrt {acs(s-b)}= \frac {2}{a+b}\cdot\sqrt {abs(s-c)}$ $\iff$ $b(s-c)(a+c)^2=c(s-b)(a+b)^2$ $\iff$

$s\left[b(a+c)^2-c(a+b)^2\right]=bc\left[(a+c)^2-(a+b)^2\right]$ $\iff$ $s\left[b(a^2+c^2)-c(a^2+b^2)\right]=bc(2s+a)(c-b)$ $\iff$

$s(bc-a^2)(c-b)=bc(2s+a)(c-b)$ $\iff$ $(b-c)\left[bc(2s+a)-s(bc-a^2)\right]=0$ $\iff$ $(b-c)(sbc+abc+sa^2)=0$ $\iff$ $b=c$ .

Proof 2 (metric and reductio ad absurdum). $B>C\ \iff\ \left\|\begin{array}{ccc}
b>c & \iff & \frac {2ac}{a+c}<\frac {2ab}{a+b}\\\\
\frac B2>\frac C2 & \iff & \cos\frac B2<\cos\frac C2\end{array}\right\|$ $\implies$ $\frac {2ac}{a+c}\cdot\cos\frac B2<\frac {2ab}{a+b}\cdot\cos\frac C2$ $\iff$

$BE<CF$ , absurd. Prove analogously that $B<C\ \implies\ BE>CF$, absurd. Thus, $BE=CF\implies B=C$ . Prove easily $B=C\implies BE=CF$ .

Proof 3 (synthetical and reductio ad absurdum). Construct the parallelogram $BEGF$ ($EG\parallel BF$ and $FG\parallel BE$) . Since $FG=BE=CF$ obtain $FG=FC$ , i.e. the triangle $CFG$ is $F$-isosceles and $\widehat{FGC}\equiv\widehat{FCG}$ . Denote $x=m(\widehat {ABE})=m(\widehat{CBE})$ , $y=m(\widehat{BCF})=m(\widehat{ACF})$ and $x'=m(\widehat{EGC})$ , $y'=m(\widehat{ACG})$ . Since $\widehat{FGC}\equiv\widehat{FCG}$ obtain $x+x'=y+y'$ . Suppose contrary that $B>C$ , i.e. $2x>2y$ $\iff$ $x>y$ $\iff$ $x'<y'$ $\iff$ $EC<EG$ $\iff$ $\underline{EC<FB}$ . The triangles $BCF$ , $CBE$ have a common side $[BC]$ and $CF=BE$ . From the relation $m(\widehat{CBE})=x>y=m(\widehat{BCF})$ obtain $\underline{EC>FB}$ , what is absurd. Prove analogously $\underline{B<C\implies EC<FB}$ , what is absurd. In conclusion, $B=C$ , i.e. $AB=AC$ .

Proof 4 (synthetical). Let $H$ be the point so that $\triangle BAE\equiv\triangle FHC$ and $CF$ separates $B$ , $H$ . Denote $J\in (CF)$ for which $\widehat{JHC}\equiv\widehat{JHF}$ $\implies$ $\widehat{BAE}\equiv \widehat{FHC}$

i.e. $\widehat{FAC}\equiv\widehat{FHC}$ $\implies$ $AFCH$ is cyclically. Thus, $\widehat{ACF}\equiv\widehat{AHF}$ , $\widehat{BAI}\equiv\widehat{IAC}\equiv\widehat{FHJ}\equiv\widehat{CHJ}$ . Since $AIJH$ is cyclically and $AI=HJ$

obtain $IJ\parallel AH$ . In conclusion, $\widehat{ABI}\equiv\widehat{HFC}\equiv\widehat{FHA}\equiv\widehat{FCA}$ , i.e. $\widehat{IBC}\equiv\widehat{ICB}$ , what means $\triangle BIC$ is $I$-isosceles $\implies$ $\triangle ABC$ is $A$-isosceles.


Extension. Let $ABC$ be a triangle and let $D\in (BC)$ be the point for which $\widehat{DAB}\equiv\widehat{DAC}$ . For a point

$L\in (AD)$ denote $E\in BL\cap AC$ , $F\in CL\cap AB$ . Prove that $BE=CF\ \iff\ AB=AC$ .


Proof 1 (metric). Denote $\left\|\begin{array}{c}
\frac {EA}{x}=\frac {EC}{1}=\frac {b}{x+1}\\\\
\frac {FA}{y}=\frac {FB}{1}=\frac {c}{y+1}\end{array}\right\|$ . Apply the Ceva's teorem to $L$ in $\triangle\ ABC\ :\ \frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=1$ $\iff$ $\boxed{bx=cy}\ (1)$ .

Apply the Stewart's theorem for the cevians $BE$ , $CF\ :\ \left\|\begin{array}{c}
(x+1)^2\cdot BE^2=(a^2x+c^2)(x+1)-b^2x=a^2x(x+1)+c^2(x+1)-bcy\\\\
(y+1)^2\cdot CF^2=(a^2y+b^2)(y+1)-c^2y=a^2y(y+1)+b^2(y+1)-bcx\end{array}\right\|$ .

Thus, $BE=CF\iff$ $(y+1)^2\left[a^2x(x+1)+c^2(x+1)-bcy\right]\stackrel{(1)}{=}(x+1)^2\left[a^2y(y+1)+b^2(y+1)-bcx\right]$ $\iff$

$a^2(x+1)(y+1)\left[x(y+1)-y(x+1)\right]+$ $bc\left[x(x+1)^2-y(y+1)^2\right]+(x+1)(y+1)\left[c^2(y+1)-b^2(x+1)\right]=0$ . Observe that

$\left\|\begin{array}{c}
x(y+1)-y(x+1)=x-y\\\\
x(x+1)^2-y(x+1)^2=(x-y)\left(x^2+xy+y^2+2x+2y+1\right)\\\\
c^2(y+1)-b^2(x+1)\stackrel{(1)}{=}bc(x-y)\left(\frac {x+y}{xy}+1\right)\end{array}\right\|$ . Therefore, $BE=CF\iff$

$\boxed{(x-y)\left\{a^2(x+1)(y+1)+bc\left[\left(x^2+xy+y^2+2x+2y+1\right)+(x+1)(y+1)\left(\frac {x+y}{xy}+1\right)\right]\right\}=0}$ $\iff$

$x=y$ $\iff$ $\frac {EA}{EC}=\frac {FA}{FB}\iff$ $EF\parallel BC$ $\iff$ $AL$ is $A$-median ($AL$ is and $A$-bisector) in $\triangle\ ABC$ $\iff\triangle\ ABC$ is $A$-isoceles $\iff$ $AB=AC$ .

Proof 2 (metric). Denote $\left\|\begin{array}{c}
\frac {EA}{x}=\frac {EC}{1}=\frac {b}{x+1}\\\\
\frac {FA}{y}=\frac {FB}{1}=\frac {c}{y+1}\end{array}\right\|$ . Apply the Ceva's theorem to $L$ in $\triangle\ ABC\ :\ \frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=1$ $\iff$ $\boxed{\frac by=\frac cx=\lambda}\ (1)$ .

Pytagoras' theorem to $[BE]$ , $[CF]$ in $\triangle BCE$ , $\triangle BCF$ $\iff$ $\left\{\begin{array}{c}
(x+1)^2\cdot BE^2=(x+1)^2a^2+b^2-(x+1)(a^2+b^2-c^2)\ .\\\\
(y+1)^2\cdot CF^2=(y+1)^2a^2+c^2-(y+1)(a^2+c^2-b^2)\ .\end{array}\right\|$ .

Thus $CE=BF\iff$ $(y+1)^2\left[(x+1)^2a^2+b^2-(x+1)\left(a^2+b^2-c^2\right)\right]=$ $(x+1)^2\left[(y+1)^2a^2+c^2-(y+1)\left(a^2+c^2-b^2\right)\right]$ $\iff$

$(x-y)(x+1)(y+1)a^2+$ $(y+1)\left[(y+1)-(x+1)(y+1)-(x+1)^2\right]b^2+$ $(x+1)\left[(y+1)^2+(x+1)(y+1)-(x+1)\right]c^2=0$ $\stackrel{(1)}{\iff}$

$(x-y)(x+1)(y+1)a^2+$ $\lambda^2\left[x^2(x+1)(y^2+xy+3y+1)-y^2(y+1)(x^2+xy+3x+1)\right]=0$ $\iff$

$\boxed{(x-y)\left\{(x+1)(y+1)a^2+\lambda^2\left[2x^2y^2+xy(x^2+y^2)+4xy(x+y)+4xy+(x^2+y^2)+(x+y)\right]\right\}=0}$ $\iff$ $x=y$ a.s.o.

Proof 3 (synthetical). Let $H$ be the point so that $\triangle FHC\equiv\triangle BAE$ and the line $CF$ separates $B$ , $H$ . Denote the point $J\in (CF)$ for which $\widehat{JHC}\equiv\widehat{JHF}$ .

Therefore, $\widehat{FAC}\equiv \widehat{FHC}$ $\implies$ $AFCH$ is cyclically. Thus, $\widehat{CAH}\equiv\widehat{CFH}\equiv\widehat {EBA}$ . Observe that $m(\widehat {CJH})=$ $m(\widehat {ELA})=$

$m(\widehat{BAL})+m(\widehat{EBA})=$ $m(\widehat{LAC})+m(\widehat{CAH})=$ $m(\widehat{LAH})$ . Therefore $\widehat {CJH}\equiv\widehat{LAH}$ , i.e. $ALJH$ is cyclically. From $AL=HJ$ obtain that $ALJH$

is isosceles trapezoid and $IJ\parallel AH$ , i.e. $CF\parallel AH$ . Thus, $\widehat{CAH}\equiv\widehat{ACF}$ $\implies$ $\widehat{EBA}\equiv\widehat{ACF}$ . In conclusion, $\triangle ABE\equiv\triangle ACF$ , i.e. $AB=AC$ .



Generalization. Let $ABC$ be a triangle and let $D\in (BC)$ be the intersection of $A$-symmedian with the sideline $BC$ .

For a point $L\in (AD)$ denote $E\in BL\cap AC$ , $F\in CL\cap AB$ . Prove that $BE=CF\ \iff\ AB=AC$ .


Proof (metric). Denote $\left\|\begin{array}{c}
\frac {EA}{x}=\frac {EC}{1}=\frac {b}{x+1}\\\\
\frac {FA}{y}=\frac {FB}{1}=\frac {c}{y+1}\end{array}\right\|$ . Apply the Ceva's theorem to $L$ in $\triangle\ ABC\ :\ \frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=1$ $\iff$ $\boxed{\frac {b^2}{y}=\frac {c^2}{x}=\lambda}\ (1)$ .

Pytagoras' theorem to $[BE]$ , $[CF]$ in $\triangle BCE$ , $\triangle BCF$ $\iff$ $\left\{\begin{array}{c}
(x+1)^2\cdot BE^2=(x+1)^2a^2+b^2-(x+1)(a^2+b^2-c^2)\ .\\\\
(y+1)^2\cdot CF^2=(y+1)^2a^2+c^2-(y+1)(a^2+c^2-b^2)\ .\end{array}\right\|$ .

Thus $CE=BF\iff$ $(y+1)^2\left[(x+1)^2a^2+b^2-(x+1)\left(a^2+b^2-c^2\right)\right]=$ $(x+1)^2\left[(y+1)^2a^2+c^2-(y+1)\left(a^2+c^2-b^2\right)\right]$ $\iff$

$(x-y)(x+1)(y+1)a^2+$ $(y+1)\left[(y+1)-(x+1)(y+1)-(x+1)^2\right]b^2+$ $(x+1)\left[(y+1)^2+(x+1)(y+1)-(x+1)\right]c^2=0$ $\stackrel{(1)}{\iff}$

$(x-y)(x+1)(y+1)a^2+$ $\lambda\left[x(x+1)(y^2+xy+3y+1)-y(y+1)(x^2+xy+3x+1)\right]=0$ $\iff$

$(x-y)\left\{(x+1)(y+1)a^2+\lambda\left[2xy+(xy+1)(x+y+1)\right]\right\}=0$ $\iff$ $x=y$ a.s.o.
This post has been edited 83 times. Last edited by Virgil Nicula, Nov 23, 2015, 7:26 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a