264. Identities with complex numbers.

by Virgil Nicula, Apr 8, 2011, 2:51 AM

Quote:
$ 1\blacktriangleright$ Prove that for any $ \{x,y,z\}\subset\mathbb C$, $ |x-y| = |y-z| = |z-x|$ $ \Longleftrightarrow$ $ (x-y)^{2}+(y-z)^{2}+(z-x)^{2}= 0$ .
For any $x\in\mathbb C$ I"ll denote the point $X$ which has the affix $ x$ and I"ll write $ X(x)$. It is well-known, but I use same letter, lower case and capital, for

a affix and a point respectively. For example, $ XY = |x-y|$ and the triangle $ XYZ$ is equilateral if and only if $ |x-y| = |y-z| = |z-x|$ .


Lemma I (it is obviously). For any $ \{x,y,z\}\subset\mathbb C$, the relations $ \left\|\begin{array}{cc}\sum\ (x-y)(x-z) = 0\\ \\ \boxed{x^{2}+y^{2}+z^{2}= xy+yz+zx}\\ \\ (x-y)^{2}+(y-z)^{2}+(z-x)^{2}= 0\\ \\ (x-y)^{2}+(x-z)^{2}= (x-y)(x-z)\\ \\ (y-z)^{2}+(x-y)(x-z) = 0\end{array}\right\|$ are equivalently.
Quote:
Lemma II. Let $ ABC$ be a triangle for which denote $ \rho =\frac{AB}{AC}$ . Then for $\omega =\cos\phi+i\cdot\sin\phi$ ,

$ \boxed{m(\widehat{BAC}) =\phi\Longleftrightarrow (a-b)^{2}+\rho^{2}\cdot (a-c)^{2}= (a-b)(a-c)\cdot\rho\left(\omega+\overline{\omega}\right)}$ .
Proof. $ m(\widehat{BAC}) =\phi$ $ \Longleftrightarrow$ $ (a-b) = (a-c)\rho\omega\ \ \vee\ \ (a-b) = (a-c)\rho\overline{\omega}$ $ \Longleftrightarrow$

$ \left[\rho\omega (a-c)-(a-b)\right]\cdot\left[\rho\overline{\omega}(a-c)-(a-b)\right] = 0$ $ \Longleftrightarrow$ $ (a-b)^{2}+\rho^{2}\cdot (a-c)^{2}= (a-b)(a-c)\cdot\rho\left(\omega+\overline{\omega}\right)$ .


Particular cases.

$ 1\blacktriangleright\triangle ABC$ is $ A$- isosceles, i.e. $ \rho = 1$ $ \Longleftrightarrow$ $ (a-b)^{2}+(a-c)^{2}= (a-b)(a-c)\cdot (\omega+\overline{\omega})$ .

$ 2\blacktriangleright\triangle ABC$ is $ A$- right and $ A$- isosceles, i.e. $ \left\|\begin{array}{c}\rho = 1\\ \\ \phi =\frac{\pi}{2}\\ \\ \omega = i\end{array}\right\|$ $ \Longleftrightarrow$ $ (a-b)^{2}+(a-c)^{2}= 0$ $ \Longleftrightarrow$ $ 2(a-b)(a-c)+(b-c)^{2}= 0$ .

$ 3\blacktriangleright\triangle ABC$ is equilateral, i.e. $ \left\|\begin{array}{c}\rho = 1\\ \\ \phi =\frac{\pi}{3}\\ \\ \left|\begin{array}{c}\omega =\frac{1}{2}\cdot\left(1+i\cdot\sqrt 3\right)\\ \\ \omega^{3}=-1\ ;\ \omega^{2}-\omega+1 = 0\\ \\ \overline{\omega}=\frac{1}{\omega }= 1-\omega =-\omega^{2}\end{array}\right|\end{array}\right\|$ $ \Longleftrightarrow$ $ (a-b)^{2}+(a-c)^{2}= (a-b)(a-c)$ .

From the lemma I results $ |a-b| = |b-c| = |c-a|$ $ \Longleftrightarrow$ $ \triangle ABC$ is equilateral $ \Longleftrightarrow$ $ (a-b)^{2}+(b-c)^{2}+(c-a)^{2}= 0$ q.e.d.


$ 2\blacktriangleright$ Prove that for any $ \{a,b\}\subset\mathbb C$, $ |a| = |b| = |a+b|$ $ \Longleftrightarrow$ $ a^{2}+b^{2}+(a+b)^{2}= 0\ .$[/quote]

Proof. I"ll use the well-known identity $ |x+1|^{2}+|x-1|^{2}= 2\left(|x|^{2}+1\right)$ (the rule of the parallelogram)

which is equivalently with $ (x+1)(\overline x+1)+(x-1)(\overline x-1) = 2(x\overline x+1)$, what is evidently.

This identity is equivalently with the identity (seemingly more generally) $ \boxed{|a+b|^{2}+|a-b|^{2}= 2\left(|a|^{2}+|b|^{2}\right)}$.

Return to the second Oni's equivalence. Suppose w.l.o.g. $ b\ne 0$ and denote $ x =\frac{a}{b}$. Then this equivalence becomes

$ |x+1| = |x| = 1\ \left(\ \overline x =\frac{1}{x}\ \right)\Longleftrightarrow$ $ x^{2}+1+(x+1)^{2}= 0$ $ \Longleftrightarrow$ $ x^{2}+x+1 = 0$. Using the upper rule obtain $ |x+1| = |x| = 1$ $ \Longleftrightarrow$

$ |x-1|^{2}= 3$ $ \Longleftrightarrow$ $ (x-1)(\overline x-1) = 3$ $ \Longleftrightarrow$ $ (x-1)\left(\frac{1}{x}-1\right) = 3$ $ \Longleftrightarrow$ $ (x-1)^{2}+3x = 0$ $ \Longleftrightarrow$ $ x^{2}+x+1 = 0$ q.e.d.

Remark. Let $ ABC$ be a triangle with the circumcircle $ w = C(O,r)$ and the centroid $ G$. Choose the origin in the circumcenter $ O$ ,

i.e. $ o = 0$, $ |a| = |b| = |c| = r$ and $ 3g = a+b+c$. Therefore, $ \triangle ABC$ is equilateral $ \Longleftrightarrow$ $ G\equiv O$ $ \Longleftrightarrow$ $ a+b+c = 0$ .

$ 1\blacktriangleright$ I"ll prove prove that for any complex numbers $ a$, $ b$, $ c$, $ |a| = |b| = |c| = r\ne 0$, i.e. $ a\overline a = b\overline b = c\overline c = r^{2}$ exists the equivalence

$ a+b+c = 0\Longleftrightarrow ab+bc+ca = 0$. Indeed, $ a+b+c = 0\Longleftrightarrow$ $ \overline{\sum a}= 0$ $ \Longleftrightarrow$ $ \sum\overline a = 0$ $ \Longleftrightarrow$ $ r^{2}\cdot\sum\frac{1}{a}= 0$ $ \Longleftrightarrow$ $ ab+bc+ca = 0$ .

$ 2\blacktriangleright$ I"ll prove that for any complex numbers $ a$, $ b$, $ c$ exists the implication $ \left\{\begin{array}{c}a+b+c = 0\\ \ ab+bc+ca = 0\end{array}\right\|$ $ \implies$ $ |a| = |b| = |c| $.

Indeed, we can consider $ a,b,c$ as the roots of the equation $ x^{3}= k\in\mathcal C$ $ \implies$ $ |x|^{3}= |k|$ $ \implies$ $ |a| = |b| = |c| =\sqrt [3]{|k|}$ .

More precisely :
if two from the relations $ \left\{\begin{array}{c}a+b+c = 0\\ \\ |a| = |b| = |c|\\ \\ ab+bc+ca = 0\end{array}
\right\|$ are truly, then and the another relation is truly.

Particularly, for $ \left\{\begin{array}{c}a: = y-z\\ \ b: = z-x\\ \ c: = x-y\end{array}\right\|$ results $ |y-z| = |z-x| = |x-y|\Longleftrightarrow$ $ (y-z)(z-x)+(z-x)(x-y)+(x-y)(y-z) = 0$ $ \Longleftrightarrow$

$ \sum (x-y)(x-z) = 0$ $ \Longleftrightarrow$ $ (x-y)^{2}+(y-z)^{2}+(z-x)^{2}= 0$ using the upper lemma I.



Proposed problem. If $w\ne 1$ is cube root of unity satisfying $\left\{\begin{array}{c}
\frac{1}{a+w} + \frac{1}{b+w} +\frac{1}{c+w}=2w^2\\\\
\frac{1}{a+w^2} + \frac{1}{b+w^2} +\frac{1}{c+w^2}=2w\end{array}\right\|$ , then find the value of $E\equiv \frac{1}{a+1} + \frac{1}{b+1} +\frac{1}{c+1}$ .

Proof. $\frac{1}{a+x}+\frac{1}{b+x}+\frac{1}{c+x}=\frac{2}{x}\iff$ $\frac{3x^2+2(a+b+c)x+(ab+bc+ca)}{(a+x)(b+x)(c+x)}=\frac{2}{x}\iff$ $f(x)\equiv 3x^3-(ab+bc+ca)\cdot x-2abc=0$ .

Since $f(w)=f(w^2)=0$ and $1+w+w^2=0$ obtain that the number $1$ is third root of the equation $f(x)=0$ , i.e. $\frac{1}{a+1} + \frac{1}{b+1} +\frac{1}{c+1}=2$ .


PP-1. The distinct complex numbers $z_{1}$ , $z_{2}$ , $z_{3}$ are the affix of the vertices for the equilateral triangle $A_1A_2A_3$

respectively if and only if they verify the relation $z_{1} + z_{2}\epsilon +z_{3}\epsilon^2 =0$ , where $\epsilon\ne 1$ and $\epsilon^3=1$ .


Proof. Denote $w=\cos\frac {\pi}{3}+i\sin\frac {\pi}{3}$ . Observe that $w^3=-1$ , $w^2-w+1=0$ , $\overline w=-w^2$ and $\epsilon^3=1\ ,\ \epsilon\ne 1\implies$

$\underline{\overline{\left\|\ \epsilon=w^2\ \ \wedge\ \ \epsilon^2=-w\ \right\|}}$ . Thus, $\triangle A_1A_2A_3$ is equilateral $\Longleftrightarrow$ $z_1-z_2=w(z_3-z_2)\ \ \vee\ \ z_1-z_3=w(z_2-z_3)\ \Longleftrightarrow$

$z_1+(w-1)z_2-wz_3=$ $0\ \ \vee\ \ z_1-wz_2+$ $(w-1)z_3=0\ \Longleftrightarrow$ $z_1+w^2z_2-wz_3=0\ \ \vee\ \ z_1-wz_2+w^2z_3=0\ \Longleftrightarrow$

$z_1+\epsilon z_2+\epsilon^2z_3=$ $0\ \ \vee\ \ z_1+\epsilon^2z_2+$ $\epsilon z_3=0$ , where $z^3=1\implies$ $z\in\{1,\epsilon ,\epsilon^2\}$ and $\epsilon^3=1$ , $\epsilon^2+\epsilon +1=0$ .

Remark. $\triangle A_1A_2A_3$ is equilateral $\Longleftrightarrow$ $z_1+w^2z_2-wz_3=$ $0\ \ \vee\ \ z_1-wz_2+w^2z_3=$ $0\ \Longleftrightarrow$

$\left(z_1+w^2z_2-wz_3\right)\left(z_1-wz_2+w^2z_3\right)=$ $0\ \Longleftrightarrow\  z_1^2+z_2^2+$ $z_3^2+\left(w^2-w\right)\left(z_1z_2+z_2z_3+z_3z_1\right)=0$ . Insa $w^2-w+1=0$ .

In conclusion, $\boxed{\ \triangle\ A_1A_2A_3\ \mathrm{este\ echilateral}\ \Longleftrightarrow\ z_1^2+z_2^2+z_3^2=z_1z_2+z_2z_3+z_3z_1\ }$ .
This post has been edited 15 times. Last edited by Virgil Nicula, Nov 22, 2015, 8:45 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a