426. Problems from and for baccalaureate.

by Virgil Nicula, Jun 25, 2015, 8:01 PM

PP0. Let $\triangle ABC$ with orthocenter $H\ ,$ $E\in BH\cap AC\ ,\ F\in CH\cap AB$ and midpoint $M$ of $[BC]\ .$ Prove that $m\left(\widehat{ EMF}\right)=\left|180^{\circ}-2A\right|$ (without proof).

PP1. Let $\triangle ABC$ with incircle $w=\mathbb C(I,r)$ and excircles $\left\{\begin{array}{ccc}
w_b & = & \mathbb C\left(I_b,r_b\right)\\\\
w_c & = & \mathbb C\left(I_c,r_c\right)\end{array}\right\|$ . If $BC=5$ , $r_b=3$ , $r_c=2\ ,$ then find $\{A,b,c,\underline r,S\}$ (standard notations).

Answer: $A=90^{\circ}\ ;\ b=4\ ;\ c=3\ ;\ ;\ r=1\ ;\ S=6$ . Generally $r=f\left(a,r_b,r_c\right)=\frac {-a^2+a\sqrt {a^2+4r_br_c}}{2\left(r_b+r_c\right)}$ . See PP16 from here.

PP2. Let $\triangle ABC$ with incircle $w=\mathbb C(I,r)$ and the $A$-excircle $w_a=\mathbb C\left(I_a,r_a\right)$ . If $AB=5$ , $AC=8$ and $r_a=\frac {10}{\sqrt 3}\ ,$ then find $\{A,a,\underline r,S\}$ (standard notations).

Answer: $A=60^{\circ}\ ;\ a=7\ ;\ r=\sqrt 3\ ;\ S=10\sqrt 3$ . Generally $(b+c)^2\cdot\left(r_a-r\right)^2=$ $\left(r_a+r\right)^2\left[(b-c)^2+4rr_a\right]\implies r$ (explicit). See PP17 from here.

PP3. Let $\overarc[]{BC}\subset w$ (circle) be an arc with the midpoint $A$ and a mobile point $M\in\overarc[]{BC}$ . Prove that there is the relation $MA^2+MB\cdot MC=AB^2$ (constant).

Proof 1. Suppose w.l.o.g. that $M\in\overarc[]{AC}$ and let $M^{\prime}\in \overarc[]{AB}$ so that $AM^{\prime}\parallel BM$ . Thus, $\left\{\begin{array}{ccc}
M^{\prime}B& = & MA\\\\
M^{\prime}A & = & MC\\\\
M^{\prime}M & = & AB\end{array}\right\|$ . Apply Ptolemy's

theorem
to the isosceles trapezoid $AMBM^{\prime}\ :\ M^{\prime}B\cdot MA+MB\cdot M^{\prime}A=M^{\prime}M\cdot AB\iff$ $MA^2+MB\cdot MC=AB^2$ .

Proof 2. Let the diameter $[AS]$ of the circle $w$ . Thus, $MA\perp MS$ and $\widehat{SMB}\equiv\widehat{SMC}$ . Therefore,

$\left\{\begin{array}{cccccc}
\underline{MD}^2 & = & MB\cdot MC & - & \underline{\underline{\underline{DB\cdot DC}}} & \mathrm{(theorem\ of\ bisector)}\\\\
AB^2 & = & \underline{\underline{AD}}^2 & + & \underline{\underline{\underline{DB\cdot DC}}} & \mathrm{(Stewart's\ theorem)}\\\\
\underline{\underline{AD}}^2 & = & \underline{MD}^2 & + & MA^2 & \mathrm{(Pythagoras'\ theorem)}\end{array}\right\|$ $\bigoplus$ $\implies $ $AB^2=MB\cdot MC+MA^2$ .


PP4. Let $ABC$ be an isosceles triangle with $AB=AC$ and $M\in (BC)$ . Then $AB^2=MA^2+MB\cdot MC$ (particular case of the Stewart's relation) .

Remark. If $M$ is the midpoint of $[BC]$ , then is evidently. Therefore, can suppose w.l.o.g. that $M$ isn't the midpoint of $[BC]$ .

Method 1. Denote the midpoint $D$ of $[BC]$ and suppose w.l.o.g. that $M\in (BD)$ . Apply the well-known property $\boxed{AD\perp BM\iff AB^2-AM^2=DB^2-DM^2}$

(can prove easily). Therefore, $AB^2-AM^2=(DB-DM)(DB+DM)=$ $MB(DA+DM)=MB\cdot MC\implies$ $AB^2=AM^2+MB\cdot MC$ .

Method 2. Apply the Stewart's relation to $AM$ in $\triangle ABC\ :\ AB^2\cdot MC$ $+AC^2\cdot MB=AM^2\cdot BC+MB\cdot MC\cdot BC$ $\iff$ $AB^2=AM^2+MB\cdot MC$ .

Method 3. Let the circumcircle $w$ of $\triangle ABC$ and $\{A,N\}=\{A,M\}\cap w$ . From the power $p_w(M)$ of $M$ w.r.t. $w$ obtain that

$\boxed{MB\cdot MC=MA\cdot MN}\ (*)$ . Thus, $\widehat{ACM}\equiv\widehat{ACB}\equiv$ $\widehat{ABC}\equiv\widehat{ANC}\implies$ $\widehat{ACM}\equiv\widehat{ANC}\implies$ $\triangle ACM\sim\triangle ANC\implies$

$\frac {AC}{AN}=\frac {AM}{AC}\implies$ $AC^2=AM\cdot AN\implies$ $AB^2=AM(AM+MN)=$ $AM^2+MA\cot MN\ \stackrel{(*)}{\implies}\ AB^2=AM^2+MB\cdot MC$ .

Method 4. Denote $\left\{\begin{array}{ccc}
AB=AC=l & ; & AM=x\\\\
MB=a & ; & MC=b\end{array}\right\|$ . I"ll apply the well-known $4S=\left(b^2+c^2-a^2\right)\tan A$ in any $\triangle ABC$ where $S$ is its area. Thus, $B=C\implies$

$\tan B=\tan C\implies$ $\frac {MB}{MC}=\frac {[ABM]}{[ACM]}\implies$ $\frac ab=\frac {l^2+a^2-x^2}{l^2+b^2-x^2}\implies$ $b\left(l^2+a^2-x^2\right)=a\left(l^2+b^2-x^2\right)\implies$ $l^2(a-b)+ab(b-a)=x^2(a-b)\iff$ $l^2=x^2+ab$ .

Particular case. For $\triangle ABE$ and $F\in (AE)$ with $BA=BE=1$ , $BF=x$ and $FA=a$ , $FE=b$ obtain that $\boxed{1=x^2+ab}\ (*)$ .


PP5. Let $ABCD$ be a square and $F\in (CD)\cap (BE)$ so that $CE=AB$ and $BF=a$ , $FE=b$ . Prove that $\tan\phi =\sqrt {\frac {a-b}{a+b}}$ , where $\phi =m\left(\widehat{CBF}\right)$ .

Proof 1. Denote w.l.o.g. $AB=1$ and $CF=x\in (0,1)$ . Thus, $\tan\phi =\frac {CF}{CB}=x$ and $\left\{\begin{array}{ccc}
1+x^2 & = & a^2\\\\
1-x^2 & \stackrel{(*)}{=} & ab\end{array}\right\|$ $\implies$ $\boxed{2x^2=a(a-b)}\ (1)$ . Thus, $\widehat{BDF}\equiv\widehat{BED}$

$($same value $45^{\circ})$ $\iff$ $\triangle BDF\sim\triangle BED\iff$ $\frac {BD}{BE}=\frac {BF}{BD}$ i.e. $BD^2=BF\cdot BE\iff$ $2=a(a+b)\ \stackrel{(1)}{\implies}\ \frac {2x^2}{2}=\frac {a(a-b)}{a(a+b)}\implies$ $x^2=\frac {a(a-b)}{a(a+b)}\iff$ $x=\sqrt{\frac {a-b}{a+b}}$ .

Proof 2. Denote w.l.o.g. $AB=1$ and $CF=x\in (0,1)$ . Thus, $\frac {CF}{CB}=\tan\phi =x$ . Apply an well-known relation $:$

$\frac {FB}{FE}=\frac {CB}{CE}\cdot\frac {\sin\widehat {FCB}}{\sin\widehat{FCE}}\implies$ $\frac ab=\frac 1{\cos 2\phi}\implies$ $\cos 2\phi =\frac ba\implies$ $\frac {1-x^2}{1+x^2}=\frac ba\implies$ $x^2=\frac {a-b}{a+b}\implies$ $x=\sqrt{\frac {a-b}{a+b}}$ .


PP6. Let $\triangle ABC$ with the circumcircle $w$ and the incentre $I$ . Denote $\{A,L\}=\{A,I\}\cap w$ . Prove that $LA^2=LI^2+AB\cdot AC$ .

Proof. Prove easily that $\boxed{LB=LC=LI}\ (*)$ . Thus, $\left\{\begin{array}{ccccccc}
\triangle LBD\sim\triangle LAB & \implies & \frac {LB}{LA}=\frac {LD}{LB} & \stackrel{(*)}{\implies} & LA\cdot LD & = & LI^2\\\\
\triangle LAB\sim\triangle CAD & \implies & \frac {LA}{CA}=\frac {AB}{AD} & \implies & LA\cdot AD & = & AB\cdot AC\end{array}\right\|\ \bigoplus\implies$ $LA^2=LI^2+AB\cdot AC$ .

PP7. Let $ABCD$ be a trapezoid so that $AD\parallel CD$ and $\widehat{CAD}\equiv\widehat{BDC}$ . Denote $\left\{\begin{array}{cccccc}
AB=a\ ; & CD=b\\\
AD=c\ ; & BC=d\\\
AC=e\ ; & BD=f\end{array}\right\|$ Prove that $\frac {d^2-b^2}a=\frac {c^2-b^2}b$ .

Proof. Let $E\in AB$ be the point so that $A\in (BE)$ and $AE=CD$ . Thus, $ACDE$ is a parallelogram, i.e. $AE=b\ ,\ DE=e$ and $\widehat{ADE}\equiv\widehat{CAD}\equiv\widehat{BDC}\equiv\widehat {DBE}\implies$

$\triangle ADE\sim \triangle DBE\iff$ $\frac {AD}{DB}=\frac {DE}{BE}=\frac {AE}{DE}\iff$ $\frac cf=\frac e{a+b}=\frac be\iff$ $\odot\begin{array}{ccccc}
\nearrow & e^2 & = & b(a+b) & \searrow\\\\
\searrow & ef & = & c(a+b) &\nearrow\end{array}\odot$ . Apply the well-known (or prove easily) Euler's relation $:$

$\boxed{e^2+f^2=2ab+c^2+d^2}\ (*)$ . Thus, $b(a+b)+\frac {c^2(a+b)}b=2ab+c^2+d^2\iff$ $b^2+\frac {ac^2}b=ab+d^2\iff$ $d^2-b^2=a\cdot\left(\frac {c^2}b-b\right)\iff$ $\frac {d^2-b^2}a=\frac {c^2-b^2}b$ .


PP8. Let a rectangle $ABCD$ with $O\in AC\cap BD$ and the midpoints $M$ , $N$ of $[AB]$ , $[OD]$ respectively. Prove that $ABCD$ is a square $\iff \triangle MNC$ is isosceles and $NM\perp NC$.

Proof 1. Denote $AB=a$ , $AD=b$ and $E\in CN\cap AD$ , $F\in MN\cap AD$ . Thus, $NM\perp NC\iff$ $CNDF$ is cyclically $\iff$ the power of $E$ w.r.t.

the circumcircle of $CNDF$ is $ED\cdot EF=EN\cdot EC\iff$ $\frac b3\cdot \frac {5b}6=\frac 14\cdot \left(\frac {b^2}9+a^2\right)\iff$ $10b^2=b^2+9a^2\iff a=b$ and in this case $NM=NC$ .

Proof 2. Denote $AB=a$ , $AD=b$ and $E\in CN\cap AD$ , $F\in MN\cap AD$ . Thus, $NM\perp NC\iff$ $AENM$ is cyclically $\iff$

$\widehat{FEN}\equiv\widehat{FMA}\iff$ $\tan\widehat{FEN}=\tan\widehat{FMA}\iff$ $\frac {DC}{DE}=\frac {AF}{AM}\iff$ $\frac {a}{\frac b3}=\frac {\frac {3b}2}{\frac a2}\iff$ $a^2=b^2\iff$ $a=b$ and in this case $NM=NC$ .

Proof 3. Denote $AB=a$ , $AD=b$ and $E\in CN\cap AD$ and $F\in MN\cap AD$ and $\left\{\begin{array}{ccc}
m\left(\widehat{DCE}\right) & = & x\\\\
 m\left(\widehat{AFM}\right) & = & y\end{array}\right\|$ . Therefore,

$NM\perp NC\iff$ $x=y\iff$ $\tan x=\tan y\iff$ $\frac {DE}{DC}=\frac {AM}{AF}\iff$ $\frac {\frac b3}a=\frac {\frac a2}{\frac {3b}2}\iff$ $\frac {b^2}2=\frac {a^2}2\iff$ $a=b$ a.s.o.

Proof 4. I"ll use the analytical geometry. Thus, for $\left\{\begin{array}{ccc}
A(0,0) & ; & B(a,0)\\\\
C(a,b) & ; & D(0,b)\end{array}\right\|$ obtain that $M\left(\frac a2,0\right)$ , $O\left(\frac a2,\frac b2\right)$ and $N\left(\frac a4,\frac {3b}4\right)$ . The slopes

of $NM$ , $NC$ are $:\ \left\{\begin{array}{ccccc}
s(NM) & = & \frac {\frac {3b}4-0}{\frac a4-\frac a2} & \implies & s(NM)=-\frac {3b}a\\\\
s(NC) & = & \frac {b-\frac {3b}4}{a-\frac a4} & \implies & s(NC)=\frac b{3a}\end{array}\right\|$ $\implies$ $s(NM)\cdot s(NC)=-1\implies NM\perp NC$ a.s.o.


PP9. Let an acute $\triangle ABC$ and denote $\left\{\begin{array}{cccccccc}
E\in AC & , & BE\perp AC & ; & R\in EF & , & CR\perp EF\\\\
F\in AB & , & CF\perp AB & ; & P\in EF & , & BP\perp EF\end{array}\right\|$ . Prove that $EP=FR$ .

Proof. $\left\{\begin{array}{ccc}
\triangle BCE\sim\triangle FCR & \implies & \frac {BC}{FC}=\frac {BE}{FR}\\\\
\triangle BEP\sim\triangle BCF & \implies & \frac {BE}{BC}=\frac {EP}{CF}\end{array}\right\|\bigodot\implies EP=FR$ .

PP10. Let $\triangle ABC$ with the orthocenter $H$ and the orthic $\triangle DEF$ , where $\left\{\begin{array}{c}
D\in BC\\\
E\in CA\\\
F\in AB\end{array}\right\|$ . Prove that $DH\cdot DA=DB\cdot DC=DE\cdot DF$ .

Proof. $\left\{\begin{array}{ccccc}
\triangle DBF\sim \triangle DEC & \iff & \frac {DB}{DE}=\frac {DF}{DC} & \iff & DE\cdot DF=DB\cdot DC\\\\
\triangle DEH\sim \triangle DAF & \iff & \frac {DE}{DA}=\frac {DH}{DF} & \iff & DE\cdot DF=DH\cdot DA\end{array}\right\|$ $\implies$ $DH\cdot DA=DB\cdot DC=DE\cdot DF$ . Remark $:\ \frac {DA}{DH}=\tan B\tan C$ .

PP11. Let $\triangle ABC$ with the circumcircle $w=\mathbb C\left(O,R\right)$ , the incircle $\mathbb C(I,r)$ and the $A$-excircle $\mathbb C\left(I_a,r_a\right)$ . Denote $:\ D\in BC\ ,\ AD\perp BC$

with $AD=h_a\ ;\ L\in AI\cap BC\ ;\ \{A,S\}=\{A,I\}\cap w\ ;\ \{A,A'\}=\{A,O\}\cap w$ . Prove that $AL\cdot AS=AI\cdot AI_a=AI_b\cdot AI_c=2Rh_a=bc$ .


Proof. $\left\{\begin{array}{ccccccc}
\triangle ABS\sim \triangle ALC & \iff & \frac {AB}{AL}=\frac {AS}{AC} & \iff & AL\cdot AS & = & bc\\\\
\triangle ABI_a\sim \triangle AIC & \iff & \frac {AB}{AI}=\frac {AI_a}{AC} & \iff & AI\cdot AI_a & = & bc\\\\
\triangle ABD\sim \triangle AA'C & \iff & \frac {AB}{AA'}=\frac {AD}{AC} & \iff & 2Rh_a & = & bc\\\\
\triangle I_bAC\sim \triangle BAI_c & \iff & \frac {I_bA}{BA}=\frac {AC}{AI_c} & \iff & AI_b\cdot AI_c & = & bc\end{array}\right\|$ $\implies$ $AL\cdot AS=AI\cdot AI_a=AI_b\cdot AI_c=2Rh_a=bc$ .

PP12. Solve the system $\left\{\begin{array}{ccc}
x^2-y^2 & = & 4x-5y\\\\
x^2+y^2 & = & 2x+y\end{array}\right\|$ over $\mathbb R^*$ .

Proof. Denote $\boxed{\ x\ =\ ty\ }\ (*)$ . Thus, $\left\{\begin{array}{ccc}
x^2-y^2 & = & 4x-5y\\\\
x^2+y^2 & = & 2x+y\end{array}\right\|\iff$ $\left\{\begin{array}{cccc}
x^2 & = & 3x-2y & (1)\\\\
y^2 & = & -x+3y & (2)\end{array}\right\|\implies$ $\left(\frac xy\right)^2=\frac {3x-2y}{-x+3y}\implies$ $t^2=\frac {3t-2}{-t+3}\implies$

$t^3-3t^2+3t-2=0\iff$ $(t-2)\left(t^2-t+1\right)=0\iff$ $t=2\ \stackrel{(*)}{\iff}\  x=$ $2y\ \stackrel{(1)}{\implies}\ 4y^2=$ $6y-2y\implies$ $y=1\implies$ $\left\{\begin{array}{ccc}
x & = & 2\\\
y & = & 1\end{array}\right\|$ .


PP13. Let $\{x,y,z\}\subset\mathbb R$ so that $\left\{\begin{array}{ccc}
x+y+z & = & 2\\\
xy+yz+zx & = & 1\end{array}\right\|$ . Prove that $\{\ x\ ,\ y\ ,\ z\ \}\subset\left[\ 0\ ,\ \frac 43\ \right]$ and $xyz\le\frac 4{27}$ .

Proof. Denote $\left\{\begin{array}{ccc}
y+z & = & S\\\
yz & = & P\end{array}\right\|$ . Thus, $\left\{\begin{array}{ccc}
x+y+z & = & 2\\\
xy+yz+zx & = & 1\end{array}\right\|\implies$ $\left\{\begin{array}{ccc}
S+x & = & 2\\\\
xS+P & = & 1\end{array}\right\|\implies$ $\left\{\begin{array}{ccc}
S & = & 2-x\\\\
P & = & (x-1)^2\end{array}\right\|$ . Therefore, $S^2\ge 4P\iff$

$(2-x)^2\ge 4(x-1)^2\iff$ $[2(x-1)+(x-2)][2(x-1)-(x-2)]\le 0\iff$ $x(3x-4)\le 0\iff x\in\left[0,\frac 43\right]$ . Hence $\{x,y,z\}\subset\left[0,\frac 43\right]\ .$ Therefore,

$xyz\le \frac 4{27}\iff$ $xP\le \frac 4{27}\iff$ $27x(x-1)^2-4\le 0\iff$ $27x^3-54x^2+27x-4\le 0\iff$ $(3x-1)^2(3x-4)\le 0$ , what is true because $x\in\left[0,\frac 43\right]$ .


PP14. Let $\{x,y,z\}\subset\mathbb R$ so that $\left\{\begin{array}{ccc}
x+y+z & = & 6\\\\
xy+yz+zx & = & 9\end{array}\right\|$ . Prove that $\{\ x\ ,\ y\ ,\ z\ ,\ xyz\ \}\subset\left[\ 0\ ,\ 4\ \right]$ .

Proof. Denote $\left\{\begin{array}{ccc}
y+z & = & S\\\
yz & = & P\end{array}\right\|$ . Thus, $\left\{\begin{array}{ccc}
S+x & = & 6\\\\
xS+P & = & 9\end{array}\right\|\implies$ $\left\{\begin{array}{ccc}
S & = & 6-x\\\\
P & = & (x-3)^2\end{array}\right\|$ . Therefore, $S^2\ge 4P\iff$ $(6-x)^2\ge 4(x-3)^2\iff$

$[2(x-3)]^2-(x-6)^2\le 0\iff$ $[2(x-3)+(x-6)][2(x-3)-(x-6)]\le 0\iff$ $x(3x-12)\le 0\iff x\in\left[0,4\right]$ . Hence, $\{x,y,z\}\subset[0,4]$ .

Observe that $xyz\le 4\iff$ $xP\le 4\iff$ $x(x-3)^2-4\le 0\iff$ $x^3-6x^2+9x-4\le 0\iff$ $(x-1)^2(x-4)\le 0$ , what is truly because $x\in\left[0,4\right]$ .


PP15. Ascertain $z\in\mathbb C$ so that $y\equiv z^2+2iz+3\in \mathbb R$ and $y<0$ .

Proof 1. $y\in\mathbb R\iff$ $y=\overline y\iff$ $z^2+2iz=\overline z^2-2i\overline z\iff$ $(z+\overline z)(z-\overline z+2i)=0\iff$ $z+\overline z=0\ \vee\ z-\overline z=-2i\iff$ exist $\{a,b\}\subset\mathbb R$ so that $z=bi\ \vee\ z=a-i$ .

If $z=bi$ , then $-b^2-2b+3<0\iff$ $b\not\in [-3,1]$ and if $z=a-i$ , then $a^2+4<0\iff a\in\emptyset$ . In conclusion, the all solutions are $z=bi$ , where $b\in (-\infty ,-3)\cup (1,\infty )$ .

Proof 2 (A.Mot). $\left(\exists\right)\ m<0$ so that $z^2+2iz+3-m=0$ . Observe that $\Delta'(m)=m-4<0$ and $z^2=\Delta'(m)\iff$

$z\in\left\{\pm i\sqrt{4-m}\right\}$ . Therefore, the solution of our problem is the reunion of $\mathbb S_m$ , where $m<0$ and $\mathbb S_m=\left\{i\left(-1\pm\sqrt{4-m}\right)\right\}$ .

Remark. If denote $b\in\left\{-1\pm\sqrt{4-m}\right\}$ for $m<0$ , then $(b+1)^2=4-m\iff$ $m=-\left(b^2+2b-3\right)$ . Thus, $m<0\iff$

$b^2+2b-3>0\iff$ $b\in (-\infty ,-3)\cup (1,\infty )$ and find again the solution from first proof, i.e. $z=bi$ , where $b\in (-\infty ,-3)\cup (1,\infty )$ .


PP16. Solve the inequation $1<\frac {5x-1}{x+3}<2$ , where $x\in\mathbb R$ and $x\not =-3$ .

Proof 1. I"ll use the equivalence $x\in (a,b) \iff (x-a)(x-b)<0$ . Indeed, $1<\frac {5x-1}{x+3}<2\iff$

$\left(\frac {5x-1}{x+3}-1\right)\left(\frac {5x-1}{x+3}-2\right)<0\iff$ $(x-1)(3x-7)<0\iff$ $x\in\left(1,\frac 73\right)$ .

Proof 2. I"ll use the equivalence $x\in (a,b) \iff \left|x-\frac {a+b}2\right|<\left|\frac {b-a}2\right|$ . Indeed, $1<\frac {5x-1}{x+3} <2\iff$ $\left|\frac {5x-1}{x+3}-\frac 32\right|<\frac 12\iff$ $\left|\frac {7x-11}{x+3}\right|<1\iff$

$|7x-11|<|x+3|\iff$ $(7x-11)^2-(x+3)^2<0\iff$ $[(7x-11)+(x+3)]\cdot [(7x-11)-(x+3)]<0\iff$

$8(x-1)\cdot 2(3x-7)<0\iff$ $(x-1)(3x-7)<0\iff$ $x\in\left(1,\frac 73\right)$ .

Proof 3 (A.Mot). The inequality becomes $\frac {5x-1}{x+3}=1+a=2-b$ , where $a+b=1$ and $0<a<1$ or $0<b<1$ . Also obtain that

$x=\frac {4+3a}{4-a}=\frac {7-3b}{3+b}$ from where results: if $a\searrow 0$ or $b\nearrow 1$ , then $x\searrow 1\ ;$ if $a\nearrow 1$ or $b\searrow 0$ , then atunci $x\nearrow \frac 73$ . Thus, $1<x<\frac 73$ . Nice!

Remark. $x\in[a,b]\cup[b,a]\iff$ $(x-a)(x-b)\le 0\iff$ $\left|x-\frac {a+b}2\right|\le\left|\frac{a-b}2\right|\iff$ $|x-a|+|x-b|=|a-b|$ .


Rezolvarea ecuatiei de gradul doi cu coeficienti complecsi.

Preliminary. Let $az^2+bz+c=0$ be a second degree polynomial equation with complex coefficients, i.e. $\{a,b,c\}\subset\mathbb C$ and $a\ne 0$ . Suppose w.l.o.g. that exists at least a nonreal number

in the set $\{a,b,c\}$ and $\Delta=b^2-4ac=u+iv$ , where $\{u,v\}\subset\mathbb R$ and $v\ne 0$ . Observe that $az^2+bz+c=0\iff (2az+b)^2=\Delta\ (*)$ . Therefore, at first solve the equation

$y^2=u+iv$ . Prove easily that $y_{1,2}=\pm w$ , where $\boxed{w=\sqrt{\frac {r+u}{2}}+i\cdot\mathrm{sgn}(v)\cdot\sqrt {\frac {r-u}{2}}}$ and $r=|\Delta|$ . Indeed, $w^2=\frac {r+u}2-\frac {r-u}2+2i\cdot\mathrm{sgn}(v)\cdot\sqrt {\frac {r^2-u^2}{4}}=$

$u+2i\cdot\mathrm{sgn}(v)\cdot\frac{|v|}2=u+iv\implies w^2=u+iv\ .$ At second from the relation $(*)$ obtain that $z_{1,2}=\frac {-b\pm w}{2a}$ .

Example. Solve the equation $x^4-8(1-i)x^2+(63-16i)=0$ . With the substitution $\boxed{x^2=z}$ our equation becomes $\boxed{z^2-8(1-i)z+(63-16i)=0}\ (*)\ .$

$\Delta^{\prime}=16(1- i)^2-(63-16i)\implies$ $\Delta^{\prime}=-63-16i=y^2\implies\ \left\{\begin{array}{c}
r=\sqrt {63^2+16^2}=65\ \iff\ 65^2-63^2=(65-63)(65+63)=16^2\\\\\
y_{1,2}=\pm\left(\sqrt {\frac {65-63}{2}}-i\sqrt {\frac {65+63}{2}}\right)=\pm(1-8i)\end{array}\right\|\ .$ Therefore,

$z_{1,2}=4(1- i)\pm (1-8i)\ \implies\ z_1=5-12i$ and $z_2=3+4i\ .$ Verify Viete's relations $:\ S=z_1+z_2=-\frac ba=8(1-i)$ and $P=z_1z_2=\frac ca=63-16i\ .$

$\odot\begin{array}{cccccccc}
\nearrow & x^2=z_1=5-12i & ; & \left|z_1\right|=\sqrt{5^2+12^2}=13 & \implies & x_{1,2}=\pm\left(\sqrt{\frac {13+5}2}-i\sqrt{\frac {13-5}2}\right) & \implies & \odot\begin{array}{ccc}
\nearrow & x_1=3-2i & \searrow\\\\
\searrow & x_2=-3+2i & \nearrow\end{array}\odot\\\\
\searrow & x^2=z_2=3+4i & ; & \left|z_2\right|=\sqrt{3^2+4^2}=5 & \implies & x_{3,4}=\pm\left(\sqrt{\frac {5+3}2}
+i\sqrt{\frac {5-3}2}\right) & \implies & \odot\begin{array}{ccc}
\nearrow & x_3=2+i & \searrow\\\\
\searrow & x_4=-2-i & \nearrow\end{array}\odot\end{array}$


PP17. Let $\boxed{\ z_{1,2}\in\mathbb C\ }$ be the roots of the equation with complex coefficients $\boxed{\ az^2+bz+c=0\ ,\ a\ne 0\ }$ . Prove that $\boxed{\left|z_1\right|+\left|z_2\right|=\sqrt {\frac {|b|^2+|b^2-4ac|+4|ac|}{2|a|^2}}}$ .

Proof.

$\blacktriangleright\ \left|z_1-z_2\right|^2=$ $\left|\left(z_1+z_2\right)^2-4z_1z_2\right|\implies$ $\left|z_1-z_2\right|^2=$ $\left|\frac {b^2-4ac}{a^2}\right|\ (1)\ .$

$\blacktriangleright\ \left|z_1+z_2\right|^2+\left|z_1-z_2\right|^2=$ $2\left(\left|z_1\right|^2+\left|z_2\right|^2\right)\stackrel{(1)}{\implies}$ $\left|z_1\right|^2+\left|z_2\right|^2=$ $\frac 12\cdot \left(\left|\frac ba\right|^2+\frac {\left|b^2-4ac\right|}{|a|^2}\right)\ (2)\ .$

$\blacktriangleright\ \left(\left|z_1\right|+\left|z_2\right|\right)^2=$ $\left|z_1\right|^2+\left|z_2\right|^2+2\left|z_1z_2\right| \stackrel{(2)}{\implies}$ $\left(\left|z_1\right|+\left|z_2\right|\right)^2=$ $\frac 12\cdot\left(\left|\frac ba\right|^2+\frac {\left|b^2-4ac\right|}{|a|^2}\right)+2\cdot\left|\frac ca\right|\implies$ $\left|z_1\right|+\left|z_2\right|=$ $\sqrt {\frac {|b|^2+|b^2-4ac|+4|ac|}{2|a|^2}}$ .


Application. Let $\left\{z_1,z_2\right\}\subset\mathbb C$ be the roots of the equation $z^2-2iz+m=0$ , where $m\in\mathbb C$ is a parameter. Ascertain the values of $m$ for which $\left|z_1\right|+\left|z_2\right|=2$ .

Proof. For $a:=1\ ,\ b:=-2i$ and $c:=m\in\mathbb C$ obtain that $\left|z_1\right|+\left|z_2\right|=2\iff$ $\sqrt {\frac {4+4|1+m|+4|m|}{2}}=2\iff$ $|m|+|m+1|=1$ . Denote the

points $M(m)\ ,\ A(0)\ ,\ B(-1)$ . Therefore, $|m|+|m+1|=1\iff$ $MA+MB=AB\iff$ $M\in[AB]\iff m\in\mathbb R\ ,\ m\in [-1,0]$ . Nice exercise !


$\boxed{\begin{array}{c}
\underline{\mathrm{PROPOSED\ PROBLEM}}.\ \mathrm{Let}\ \{a,b,c\}\subset\mathbb C\ \mathrm{where}\ a\ne 0\ \mathrm{and}\ az^2+bz+c=0\begin{array}{ccc}
\nearrow & z_1 & \searrow\\\\
\searrow & z_2 & \nearrow\end{array}\odot\implies\left|z_1\right|+\left|z_2\right|=\sqrt {\frac {|b|^2+|b^2-4ac|+4|ac|}{2|a|^2}}\\\\

\underline{\mathrm{PROOF}}.\ \left|z_1-z_2\right|^2=\left|\left(z_1+z_2\right)^2-4z_1z_2\right|\implies\left|z_1-z_2\right|^2=\left|\frac {b^2-4ac}{a^2}\right|\ (1)\ .\\\\

\left|z_1+z_2\right|^2+\left|z_1-z_2\right|^2=2\left(\left|z_1\right|^2+\left|z_2\right|^2\right)\stackrel{(1)}{\implies}\left|z_1\right|^2+\left|z_2\right|^2=\frac 12\cdot \left(\left|\frac ba\right|^2+\frac {\left|b^2-4ac\right|}{|a|^2}\right)\ (2)\ .\\\\

\left(\left|z_1\right|+\left|z_2\right|\right)^2=\left|z_1\right|^2+\left|z_2\right|^2+2\left|z_1z_2\right| \stackrel{(2)}{\implies}\left(\left|z_1\right|+\left|z_2\right|\right)^2=\frac 12\cdot\left(\left|\frac ba\right|^2+\frac {\left|b^2-4ac\right|}{|a|^2}\right)+2\cdot\left|\frac ca\right|\implies\left|z_1\right|+\left|z_2\right|=\sqrt {\frac {|b|^2+|b^2-4ac|+4|ac|}{2|a|^2}}\ .\end{array}}$

PP18. Ascertain the roots of the equation $f(z)\equiv 2z^3-(7+2i)z^2+3(2-i)z+(5-i)=0\ (*)\ ,$ where $z\in\mathbb C$ and exists at least $x\in\mathbb R$ so that $f(x)=0\ .$

Proof. $(\exists )\ x\in\mathbb R$ so that $f(x)=\left(2x^3-7x^2+6x+5\right)-i\left(2x^2+3x+1\right)=0\iff$ $\left\{\begin{array}{ccc}
2x^3-7x^2+6x+5 & = & 0\\\\
2x^2+3x+1 & = & 0\end{array}\right\|$ $\iff$ $\left\{\begin{array}{ccc}
(2x+1)\left(x^2-4x+5\right) & = & 0\\\\
(2x+1)(x+1) & = & 0\end{array}\right\|\iff$

$x=-\frac 12$ . In conclusion, $f(z)=(2z+1)\left[\left(z^2-4z+5\right)-i(z+1)\right]=0\iff$ $z_1=-\frac 12$ and $z^2-(4+i)z+(5-i)=0$ . Observe that $\Delta =(4+i)^2-4(5-i)\implies$

$\boxed{\Delta=-5+12i}$ . The equation $z^2=\Delta\iff$ $z^2=-5+12i$ has the roots $z'_{1,2}=\pm\left(\sqrt{\frac {13-5}2}+\sqrt{\frac {13+5}2}\right)$ , where $r=|-5+12i|=13$ , i.e. $z^2=-5+12i\iff$

$z'_{1,2}=\boxed{\pm(2+3i)}$ . In conclusion, $z_{1,2}=\frac {(4+i)\pm(2+3i)}2\begin{array}{cccc}
\nearrow & z_2 & = & 1-i\\\\
\searrow & z_3 & = & 3+2i\end{array}\ .$


PP19. Let $BCQP$ be the trapezoid with $BP\parallel CQ\perp BC$ , where $BP=p$ and $CQ=q$ . Suppose that exists an interior point $A$

so that $AP=AQ$ and $AP\perp AQ$ . Prove that $\left\{\begin{array}{ccc}
2ap & = & a^2+b^2-c^2+4S\\\\\
2aq & = & a^2-b^2+c^2+4S\end{array}\right\|$ , where $S=[ABC]$ and $\left\{\begin{array}{ccc}
BC & = & a\\\\
CA & = & b\\\\
AB & = & c\end{array}\right\|$ .


Proof (metric). Denote $:\ D\in (BC)$ so that $AD\perp BC\ ;\ M\in (BP)$ and $N\in (CP)$ so that $A\in MN\ ,\ MN\parallel BC$ and $\left\{\begin{array}{ccccc}
DB & = & AM & = & m\\\\
DC & = & AN & = & n\end{array}\right\|$ .

Apply the generalized Pythagoras' theorem in the triangle $ABC\ :\ \left\{\begin{array}{cccc}
b^2 & = & a^2+c^2-2am & (1)\\\\
c^2 & = & a^2+b^2-2an & (2)\end{array}\right\|$ . Observe that $\triangle AMP\equiv\triangle QNA$ $\iff$ $\left\{\begin{array}{ccc}
MP=NA=DC=n\\\\
MA=NQ=DB=m\end{array}\right\|$ ,

i.e. $MB=AD=NC\iff \boxed{p-n=h_a=q-m}\ .$ In conclusion, $\left\{\begin{array}{ccccc}
2S=ah_a=a(q-m) & \implies & 2aq=4S+2am & \stackrel{(1)}{=} & 4S+a^2+c^2-b^2\\\\
2S=ah_a=a(p-n) & \implies & 2ap=4S+2an & \stackrel{(2)}{=} & 4S+a^2+b^2-c^2\end{array}\right\|
\ .$


PP20. Let $\triangle ABC$ with the orthocenter $H$ , $A=45^{\circ}$ , $D\in (BC)$ so that $AD\perp BC$ and $AD=c$ , $DB=a$ and $DC=b$ . Prove that $\frac 1{c-(a+b)}=\frac 1c+\frac 1a+\frac 1b$ .

Proof 1. Denote the symmetrical $S$ of $H$ w.r.t. $D$ . Observe that $AH=2R\cos A=2R\sin A=BC\iff AH=a+b$ . Is well known that $S$ belongs to the circumcircle $w$

of $\triangle ABC$ , $DH=DS=c-(a+b)$ and (from the power of $D$ w.r.t. $w$) $DA\cdot DS=DB\cdot DC$ , i.e. $c(c-a-b)=ab$ , what is equivalently with the required relation. Indeed,

prove easily that $\frac 1{c-(a+b)}=\frac 1c+\frac 1a+\frac 1b\iff$ $\frac 1{c-a-b}-\frac 1c =\frac 1a+\frac 1b\iff$ $\frac{a+b}{c(c-a-b)} =$ $\frac{a+b}{ab}\iff$ $c(c-a-b)=ab\iff$ $\boxed{(c+a)(c+b)=2c^2}$ .


Proof 2. I"ll apply the well-known identity $4S=\left(AC^2+AB^2-BC^2\right)\tan A\ (*)$ in any $\triangle ABC$ . Using the notations from the previous method, obtain that the relation $(*)$

for $A=45^{\circ}$ is equivalently with $2c(a+b)=\left(a^2+c^2\right)+$ $\left(b^2+c^2\right)-(a+b)^2\iff$ $c(a+b)=c^2-ab\iff$ $c(c-a-b)=ab \iff$ $\boxed{(c+a)(c+b)=2c^2}$ .

Remark. Verify for the values $c=6k\ ,\ a=2k\ ,\ b=3k$ where $k\in\mathbb R^*_{+}\ ,$ i.e. $\frac 16+\frac12+\frac 13=1$ .


PP21 (F.J. Garcia Capitan). Let an equilateral $\triangle ABC$ with $AB=a$ and circles $\beta =\mathbb C(B,a)$ , $\gamma =\mathbb C(C,a)$ . Construct the circle $w=\mathbb C(I,r)$

which is tangent to $BC$ , interior tangent to $\beta$ and exterior tangent to $\gamma$ . Prove that $2r=h$ , where $h=\frac {a\sqrt 3}2$ is the length of altitude for $\triangle ABC$ .


http://i944.photobucket.com/albums/ad288/GemenLeu/89991a3c-8d39-4d2a-bcf9-8eb347e24844_zpszheyyx4l.jpg

Proof 1. Denote the projection $K$ of $I$ on $BC$ . Prove easily that $\left\{\begin{array}{ccc}
IB & = & a-r\\\
IC & = & a+r\end{array}\right\|$ and $KB^2=IB^2-IK^2=(a-r)^2-r^2=a^2-2ar\implies$ $KB=\sqrt {a^2-2ar}\implies$

$\boxed{KC=a+\sqrt {a^2-2ar}}\ (*)$ . Apply the Pythagoras' theorem in the $K$-right triangle $IKC\ :\ IC^2=KI^2+KC^2\iff$ $(a+r)^2\ \stackrel{(*)}{=}\ r^2+$ $\left(a+\sqrt {a^2-2ar}\right)^2\iff$

$a^2+r^2+2ar=r^2+a^2+a^2-2ar+2a\sqrt{a^2-2ar}\iff$ $4r-a=2\sqrt{a^2-2ar}\iff$ $16r^2+a^2-8ar=4a^2-8ar\iff$ $2r=\frac {a\sqrt 3}2\iff$ $2r=h$ .

Remark. Denote the diameter $[KL]$ of the left circle and the midpoint $M$ of $[BC]$ . Prove easily that $AMKL$ is a square! Indeed, $MK=MA\iff$

$KB+\frac a2=h\iff$ $2\sqrt{a^2-2ar}=a\left(\sqrt 3-1\right)\iff$ $4a^2-8ar=2a^2(2-\sqrt 3)\iff$ $4r=a\sqrt 3\iff$ $2r=h$ , what is truly.

Proof 2. Let $K$ be the projection of $I$ on $BC$ . Prove easily that $\left\{\begin{array}{ccc}
IB & = & a-r\\\
IC & = & a+r\end{array}\right\|$ .Thus, $IK\perp BC\iff$ $IC^2-IB^2=KC^2-KB^2\iff$ $(a+r)^2-(a-r)^2=$

$a(2\cdot KB+a)\iff$ $4r=2\sqrt{a^2-2ar}+a\iff$ $(4r-a)^2=4\left(a^2-2ar\right)\iff$ $16r^2+a^2-8ar=4a^2-8ar\iff$ $2r=\frac {a\sqrt 3}2$ . In conclusion, $2r=h$ .


PP22 (F.J. Garcia Capitan). Let a line $d$ and four points $\{A,C,B,D\}\subset d$ in this order so that $AB=CD=2R$ . Denote the midpoints $K$ , $L$ of $[AB]$ , $[CD]$ respectively and construct

the semicircles $\alpha =\mathbb C(K,R)$ , $\beta =\mathbb C(L,R)$ and the circles $w=\mathbb C(I,r)$ , $w_1=\mathbb C(I_1,r)$ , $w_2=\mathbb C(I_2,r)$ which are tangent to the line $d$ so that $:$ the circle $w$ is interior tangent to the

circles $\alpha$ and $\beta\ ;$ the circle $w_1$ (left) is interior tangent to $\alpha$ and exterior tangent to $\beta\ ;$ the circle $w_2$ (right) is exterior tangent to $\alpha$ and interior tangent to $\beta\ .$ Prove that $5r=2R$ .


http://i944.photobucket.com/albums/ad288/GemenLeu/0545f130-bf94-43bf-bb61-78e627f70aed_zpsaebrthqt.jpg

Proof. Denote the projections $T$ and $T_1$ of $I$ and $I_1$ on $d$ . Thus, $KI=R-r\implies KT=TL=\sqrt {R^2-2Rr}$ . Therefore, $KI_1=R+r$

and $KT_1=3\sqrt{R^2-2Rr}$ . In conclusion, $KI_1^2=T_1I_1^2+T_1K^2\iff$ $(R+r)^2=r^2+9\left(R^2-2Rr\right)\iff$ $8R^2=20Rr\iff$ $\frac rR=\frac 25$ .


PP23. ascertain the sum of the real numbers $a$ , $b$ which verify the relations $\left\|\ \begin{array}{ccc}
a^3+3a^2+4a+1 & = & 0\\\\
b^3+3b^2+4b+3 & = & 0\end{array}\ \right\|$ .

Proof. Let the function $f(x)=x^3+3x^2+4x+5\ ,\ x\in\mathbb R$ . Observe that $f(a)=4$ and $f(b)=2$ . Prove easily that $f$ is strict increasing $(\nearrow )$

and its graph $G_f$ has the symmetry point $S(-1,3)$ , i.e. $f(-2-x)=6-f(x)$ . For $x:=a$ get $f(-2-a)=6-f(a)=2=f(b)$ , i.e.

$f(-2-a)=f(b)$ . Since function $f$ is strict increasing $\implies$ $f$ is injective obtain that $f(-2-a)=f(b)\implies$ $-2-a=b$ , i.e. $a+b=-2$ .


PP24. Let the "triangle" of all odd natural numbers $\begin{array}{ccc}
L_1 & : &  1\\\
L_2 & : & 3\ \ 5\\\
L_3 & : & 7\ \ 9\ 11\\\
L_4 & : & 13\ 15\ 17\ 19\\\
\ldots & : & \ldots\ \ldots\ \ldots\ \ldots\end{array}$ . Ascertain $:$

$\blacktriangleright$ The first term and the last term of the $\mathrm{n^{th}}$ line, where $n\in \mathbb N^*\ ;$

$\blacktriangleright$ The sum of the terms from the $\mathrm{n^{th}}$ line $\ ;$

$\blacktriangleright$ Prove that $1^3+2^3+\ \ldots\ +(n-1)^3+n^3=\left[1+2+3+\ \ldots\ +(n-1)+n\right]^2\ ;$

$\blacktriangleright$ Find the "coordinates" of the number $1001$ , i.e. find the line that belongs to and where is number the $1001$ in this line.


PP25. Let $\triangle ABC$ with the circumcircle $\alpha=C(O,R)$ and the incircle $w=C(I,r)$ for which denote $E\in AC\cap w$ ,

$F\in AB\cap w$ and $\{A,S\}=\{A,I\}\cap \alpha$ . Prove that $\widehat{SEC}\equiv\widehat{SFB}$ and $\boxed{SF^2+s(s-a)=SA^2}\ (*)\ .$


Proof. Prove easily that $AESF$ is a deltoid, i.e. $AS$ is a symmetry axis. Suppose w.l.o.g. $c<b$ and denote $\left\{\begin{array}{ccc}
P\in AB & ; & SP\perp AB\\\\
R\in AC & ; & SR\perp AC\end{array}\right\|$ . Observe that $B\in (AP)\ ,\ R\in (AC)$

and $\triangle SBP\ \stackrel{s.s}{\equiv}\ \triangle SCR$ , i.e. $PB=RC=x$ and $c+x=AP=AR=b-x\iff$ $ c+x=b-x\iff $ $\left\{\begin{array}{cccc}
x & = & \frac {b-c}2 &  (1)\\\\
PA & = & \frac {b+c}2 & (2)\end{array}\right\|$ . Thus, $SP\perp AF\iff$ $SA^2-SF^2=$

$PA^2-PF^2=$ $(PA-PF)(PA+PF)=$ $AF\cdot (2\cdot PA-AF)=$ $(s-a)[(b+c)-(s-a)]=s(s-a)$ $\implies$ $SA^2-SF^2=s(s-a)\iff$ $SA^2=SF^2+s(s-a)\ .$

Remark 1. Let $K\in AC$ so that $I_aK\perp AB$ , where $I_a$ is the $A$-excenter of $\triangle ABC$ . Thus, $\left\{\begin{array}{ccc}
SK & = & SF\\\\
PK & = & PF\end{array}\right\|$ . So $SP\perp AK\iff $ $SA^2-SF^2=SA^2-SK^2=$

$PA^2-PK^2=$ $(PA+PK)(PA-PK)=AK\cdot (PA-PF)=$ $AK\cdot AF=s(s-a)\implies$ $SA^2-SF^2=s(s-a)$ , i.e. $SA^2=SF^2+s(s-a)\ .$

Remark 2. $AS\cos\frac A2=2R\sin\left(B+\frac A2\right)\cos\frac A2=$ $R(\sin C+\sin B)=\frac {b+c}2\implies \boxed{AS\cos\frac A2=\frac {b+c}2}\ (1)\ .$ Apply the generalized Pythagoras' theorem to $\triangle ASF\ :$

$SF^2=AS^2+AF^2-2\cdot AF\cdot AS\cos\frac A2\ \stackrel{(1)}{=}\ AS^2+AF^2-(b+c)\cdot AF=$ $AS^2-AF(b+c-AF)=(s-a)[b+c)-(s-a)]\implies$ $SF^2=SA^2-s(s-a)$ .


PP26. Let the parabola $w$ with the equation $y=x^2$ and the line $d$ with the equation $y=2x-3$ . For a mobile point $P(a,b)\in d$ , where $a^2>b$ denote

$\{M,N\}\subset w$ so that $P\in MM\cap NN$ (for $X\in w$ let $XX$ - the tangent line to $w$). Find the minimum value of the area $[PMN]$ , letting $P$ moves on $d$ .


Proof. $P\in d\iff \boxed{b=2a-3}\ (*)$ and the equations of $MM$ , $NN$ are $:\ \left\{\begin{array}{ccccc}
M\left(m,m^2\right) & \implies & MM\ :\ y-m^2=2m(x-m) & \implies & y=2mx-m^2\\\\
N\left(n,n^2\right) & \implies & NN\ :\ y-n^2=2n(x-n) & \implies & y=2nx-n^2\end{array}\right\|$ ,

where $m\ne n\ .$ Thus, $\left\{\begin{array}{ccc}
P\in MM & \implies & b=2ma-m^2\\\\
P\in NN & \implies & b=2na-n^2\end{array}\right\|$ $\implies$ $\left\{\begin{array}{cccccccc}
2ma-m^2=2na-n^2 & \implies & 2a(m-n)=m^2-n^2 & \implies & m+n & = & 2a & (1)\\\\
n\left(b+m^2\right)=m\left(b+n^2\right)  & \implies & b(m-n)=mn(m-n) & \implies & mn & = & b & (2)\end{array}\right\|\ .$

The area $S=[PMN]=\frac 12\cdot|\Delta|$ , where $\Delta =\left|\begin{array}{ccc}
a & b & 1\\\\
m & m^2 & 1\\\\
n & n^2 & 1\end{array}\right|\ \stackrel{1\wedge 2}{=}\ \left|\begin{array}{ccc}
\frac {m+n}2 & mn & 1\\\\
m & m^2 & 1\\\\
n & n^2 & 1\end{array}\right|\ \stackrel{\begin{array}{c}
L_2:=L_2-L_1\\\
L_3:=L_3-L_1\end{array}}{=}\ \left|\begin{array}{ccc}
\frac {m+n}2 & mn & 1\\\\
\frac{m-n}2 & m(m-n) & 0\\\\
\frac{n-m}2 & n(n-m) & 0\end{array}\right|=$ $\left|\begin{array}{cc}
\frac{m-n}2 & m(m-n)\\\\
\frac{n-m}2 & n(n-m)\end{array}\right|=$

$\frac {(m-n)^2}2\cdot \left|\begin{array}{cc}
1 & m\\\\
-1 & -n\end{array}\right|\implies$ $\Delta=\frac {(m-n)^3}2$ and $\boxed{S=\frac 14\cdot |m-n|^3}\ (3)\ .$ In conclusion, $S$ is $\min\iff$ $|m-n|$ is $\min\iff$ $|m-n|^2=(m-n)^2$ is $\min\iff$

$(m+n)^2-4mn$ is $\min\iff$ $4a^2-4b$ is $\min\iff$ $a^2-b$ is $\min\stackrel{*}{\iff} a^2-2a+3$ is $\min\iff$ $\boxed{a=1\ \wedge\ b=-1}$ , i.e. $P(1,-1)$ $\iff$ $m+n=2\ \wedge\ mn=-1\iff$

$|m-n|=2\sqrt 2\ \stackrel{3}{\iff}\ 4S=16\sqrt 2\iff$ $\boxed{S=4\sqrt 2}\ .$ I denoted $L_k$ - the line $k\in \overline{1,3}$ in the determinant $\Delta$ .


PP27. Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and the circumcircle $\alpha =\mathbb C(O,R)$ . Denote $D\in BC\cap AI$ ,

$F\in AB\cap w$ , $\{A,S\}=\{A,I\}\cap \alpha$ and $X\in BC\cap FS$ . Prove that $\frac {SA}{SD}=\left(\frac {b+c}2\right)^2$ and find the ratio $\frac {XB}{XD}$ .


Proof. I"ll use the well known properties $:\ \left\|\begin{array}{cccc}
DS\cdot DA & = & DB\cdot DC & (0)\\\\
AD^2 & = & bc-DB\cdot DC & (2)\end{array}\right\|\ \ \wedge\ \ \left\|\begin{array}{cccc}
\frac {IA}{ID} & = & \frac {b+c}a & (1)\\\\
\frac {DA}{DS} & = & \frac {BA\cdot CA}{SB\cdot SC} & (3)\end{array}\right\|$ . Thus, $\frac {DA}{DS}=\frac {DA^2}{DS\cdot DA}\ \stackrel{0\wedge 2}{=}\ \frac {bc-DB\cdot DC}{DB\cdot DC}=$

$\frac {bc}{DB\cdot DC}-1$ $\implies$ $1+\frac {DA}{DS}=\frac {bc}{DB\cdot DC}$ $\implies$ $\frac {SA}{SD}=$ $\frac {CA}{CD}\cdot \frac {BA}{BD}=\frac {IA}{ID}\cdot\frac {IA}{ID}=$ $\left(\frac {IA}{ID}\right)^2\ \stackrel{1}{\implies}\ \boxed{\frac {SA}{SD}=\left(\frac {b+c}a\right)^2}\ (4)\ .$ Apply the Menelaus' theorem to the

transversal $\overline{SXF}/\triangle ABD\ :\ \frac {SD}{SA}\cdot \frac {FA}{FB}\cdot\frac {XB}{XD}=1\iff$ $\frac {XB}{XD}=\frac {FB}{FA}\cdot\frac {SA}{SD}\ \stackrel{4}{\implies}\ \boxed{\frac {XB}{XD}=\frac {s-b}{s-a}\cdot \left(\frac {b+c}a\right)^2}\ .$ See and the proposed problem PP25 from
here.

Remark. If $I_a$ is the $A$-excenter of $\triangle ABC$ , then $\left(A,I,D,I_a\right)$ is an harmonic division and $S$ is the midpoint of $[I_aI]$ . From well-known property get that $\frac {SA}{SD}=\left(\frac {IA}{ID}\right)^2=\left(\frac {b+c}a\right)^2$ .


PP28. Prove the identity $C_{2k+3}^{k+1}-C_{2k+1}^k=\frac {3k+4}{k+2}\cdot C_{2k+1}^{k+1}$ and calculate the sum $\sum_{k=0}^n\frac {3k+4}{k+2}\cdot C_{2k+1}^{k+1}$ .

Proof 1.1 $C_{2k+3}^{k+1}-C_{2k+1}^k=\frac {(2k+3)!}{(k+1)!(k+2)!}-\frac {(2k+1)!}{k!(k+1)!}=$ $\left[\frac {2(k+1)(2k+3)}{(k+1)(k+2)}-1\right]\cdot\frac {(2k+1)!}{k!(k+1)!}=$ $\left[\frac {2(2k+3)}{k+2}-1\right]\cdot\mathrm C_{2k+1}^{k}\implies$ $\boxed{C_{2k+3}^{k+1}-C_{2k+1}^k=\frac {3k+4}{k+2}\cdot C_{2k+1}^{k+1}}$

Proof 1.2 $C_{2k+3}^{k+1}=$ $C_{2k+2}^{k+1}+C_{2k+2}^{k}=$ $\left(C_{2k+1}^{k+1}+C_{2k+1}^{k}\right)+\left(C_{2k+1}^{k}+C_{2k+1}^{k-1}\right)=$ $3C_{2k+1}^{k}+C_{2k+1}^{k-1}$ $\implies$ $C_{2k+3}^{k+1}-C_{2k+1}^{k}=2C_{2k+1}^{k}+C_{2k+1}^{k-1}=C_{2k+1}^{k}+C_{2k+2}^{k}=$

$\frac {(2k+1)!}{k!(k+1)!}+\frac {(2k+2)!}{k!(k+2)!}=$ $\left(1+\frac {2k+2}{k+2}\right)\cdot \frac {(2k+1)!}{k!(k+1)!}=$ $\frac {3k+4}{k+2}\cdot\mathrm C_{2k+1}^k$ $\implies$ $\boxed{C_{2k+3}^{k+1}-C_{2k+1}^{k}=\frac {3k+4}{k+2}\cdot\mathrm C_{2k+1}^k}$

Proof 2. $\sum_{k=0}^n\frac {3k+4}{k+2}\cdot C_{2k+1}^{k+1}=$ $\sum_{k=0}^n\left(C_{2k+3}^{k+1}-C_{2k+1}^k\right)=$ $\left(C_{3}^{1}-C_{1}^0\right)+\left(C_{5}^{2}-C_{3}^1\right)+\left(C_{7}^{3}-C_{5}^2\right)+\ \ldots\ +\left(C_{2n+1}^{n}-C_{2n-1}^{n-1}\right)+\left(C_{2n+3}^{n+1}-C_{2n+1}^n\right)=\mathrm C_{2n+3}^{n+1}-1\ .$


PP29. Let the equation $x^2+x+1=0$ with $x_{1,2}\in\mathbb C\ .$ Denote $S_n=x_1^n+x_2^n\ ,\ n\in\mathbb N\ .$ Calculate "instant" $S_{1001}$ without complex numbers. Hint: $1001=7\cdot 11\cdot 13\ .$

Proof 1.


PP30. Let $\triangle ABC$ with $A$-excircle $w_a=\mathbb C\left(I_a,r_a\right)$ for what denote $\left\{\begin{array}{ccccccc}
U & \in & AB\cap w_a & ; & M & \in & I_aB\cap UV\\\\
V & \in & AC\cap w_a & ; & N & \in & I_aC\cap UV\end{array}\right\|\ .$ Prove that $\boxed{MN=BC\cdot\sin\frac A2}\ (*)\ .$

Proof. Let incenter $I\ ,$ $W\in BC\cap w_a$ and $L\in UV\cap AI_a\ .$ Thus, $\overline{AII_a}_a\perp UV$ and $IBI_aC$ is inscribed in circle with the diameter $\left[II_a\right]$ $\implies$

$\left\{\begin{array}{ccccc}
m\left(\widehat{BI_aI}\right)=m\left(\widehat{BCI}\right) & \implies & m\left(\widehat{MI_aL}\right)=\frac C2 & \implies & m\left(\widehat{NMI_a}\right)=90^{\circ}-\frac C2\\\\
 m\left(\widehat{CI_aI}\right)=m\left(\widehat{CBI}\right) & \implies & m\left(\widehat{NI_aL}\right)=\frac B2& \implies & m\left(\widehat{MNI_a}\right)=90^{\circ}-\frac B2\end{array}\right\|\ .$ $\implies$ $\triangle MI_aN\sim\triangle CI_aB\ ,$ i.e. $MN$ is antiparallel

to $BC$ in the triangle $BI_aC\ .$ In conclusion, $\frac {MN}{BC}=\frac {I_aL}{I_aW}\implies$ $MN=BC\cdot \frac {I_aL}{I_aU}=BC\cdot\sin\widehat {LUI_a}\implies$ $MN=BC\cdot\sin \frac A2\ ,$ i.e. the relation $(*)\ .$


$$\mathrm{END}$$
This post has been edited 432 times. Last edited by Virgil Nicula, Feb 19, 2018, 9:29 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a