135. Three strong geometrical inequalities.

by Virgil Nicula, Oct 2, 2010, 12:19 PM

PP1 (own). Let $ABC$ be a triangle for which $a\ge b$ , $a\ge c$ . Prove that $\frac {b^2+c^2}{bc}+\frac {b+c}{a}\ge \frac {1}{\sin \frac A2}\cdot\sqrt {1+\left(\frac {b-c}{2a}\right)^2}$ .

Proof. Observe that $a\ge b\ \wedge\ a\ge c$ $\Longrightarrow$ $ 2a\ge b+c\ \wedge\ A\ge 60^{\circ}$ , i.e. $1-2\cos A\ge 0$ . Thus, $2a(b+c)\ge (b+c)^2\ge 4bc$ $\Longleftrightarrow$

$2a(b+c)+bc\ge \frac {b^2c^2}{(s-b)(s-c)}+bc-\frac {b^2c^2}{(s-b)(s-c)}+4bc$ $\Longleftrightarrow$ $2a(b+c)+bc\ge \frac {b^2c^2}{(s-b)(s-c)}-\frac {bcs(s-a)}{(s-b)(s-c)}+4bc$ because

$s(s-a)+(s-b)(s-c)=bc$ . Therefore, $2a(b+c)(b-c)^2+bc(b-c)^2\ge $ $\frac {b^2c^2\left[a^2-4(s-b)(s-c)\right]}{(s-b)(s-c)}-\frac {bcs(s-a)((b-c)^2}{(s-b)(s-c)}+4bc(b-c)^2$

because $(b-c)^2=a^2-4(s-b)(s-c)$ . Thus, $2a(b+c)^2(b-c)^2+bc(b-c)^2\ge$ $ \frac {a^2b^2c^2}{(s-b)(s-c)}-4b^2c^2-\frac {bcs(s-a)(b-c)^2}{(s-b)(s-c)}+4bc(b-c)^2$

$\Longleftrightarrow$ $2a(b+c)(b-c)^2+bc(b+c)^2\ge $ $\frac {a^2b^2c^2}{(s-b)(s-c)}+bc(b-c)^2\left(4-\cot^2\frac A2\right)$ $\Longleftrightarrow$ $\frac {2(b+c)(b-c)^2}{abc}+$ $\left(\frac {b+c}{a}\right)^2\ge $

$\frac {bc}{(s-b)(s-c)}+\left(\frac {b-c}{a}\right)^2\cdot\frac {4\sin^2\frac A2-\cos^2\frac A2}{\sin^2\frac A2}$ $\Longleftrightarrow$ $\left[\frac {(b-c)^2}{bc}+\frac {b+c}{a}\right]^2-\left[\frac {(b-c)^2}{bc}\right]^2\ge \frac {1}{\sin^2\frac A2}\cdot\left[1+\left(\frac {b-c}{a}\right)^2\cdot\frac {3-5\cos A}{2}\right]$ $\Longleftrightarrow$

$\boxed{\frac {(b-c)^2}{bc}+\frac {b+c}{a}\ge\frac {1}{\sin\frac A2}\cdot\sqrt {1+\left(\frac {b-c}{a}\right)^2\cdot \frac {3-5\cos A}{2}}}\ (*)$ . From $\cos A\le\frac 12$ obtain $3-5\cos A\ge \frac 12$ .

Therefore, $\frac {b^2+c^2}{bc}+\frac {b+c}{a}\ge$ $ 2+\frac {1}{\sin \frac A2}\cdot\sqrt {1+\left(\frac {b-c}{2a}\right)^2}\ \ (1)$ . Have equality iff $b=c$ .

Remark. If $A=90^{\circ}$ , then the inequality $(1)$ becomes $\frac {a^2}{bc}+\frac {b+c}{a}\ge$ $ 2+\sqrt 2\cdot\sqrt {1+\left(\frac {b-c}{2a}\right)^2}\ge 2+\sqrt 2\ \ (2)$ . But $2+2\cdot\left(\frac {b-c}{2a}\right)^2\ge $ $\frac {9a^2-2bc}{4a^2}$ $\Longleftrightarrow$

$8a^2+2\left(a^2-2bc\right)^2\ge $ $9a^2-2bc$ $\Longleftrightarrow$ $a^2\ge 2bc$ $\Longleftrightarrow$ $(b-c)^2\ge 0$ , what is truly. Thus, the inequality $(2)$ becomes $A=90^{\circ}\implies$

$\frac {a^2}{bc}+\frac {b+c}{a}\ge$ $ 2+\frac {1}{2a}\cdot\sqrt {8a^2+(b-c)^2}\ge 2+\sqrt 2$ . In conclusion, $\boxed{\ A=90^{\circ}\ \implies\ \frac {a^2}{bc}+\frac {b+c}{a}\ \ge\ 2+\sqrt 2\ }$ (Crux Mathematicorum).



PP2. Prove that in any triangle $ABC$ the following inequality holds : $\boxed{\ \cos\frac A2+\cos\frac B2+\cos\frac C2\ \ge\ \sqrt{2\cdot\left(\sin\frac A2+\sin\frac B2+\sin\frac C2\right)^3}\ }$ .

Proof. If $X$ is an acute angle then $0<X<\frac {\pi}2\iff 0<\frac {\pi-A}2<\frac{\pi}2\iff 0<A<\pi$ . This means that $\forall\ A\in (0,\pi)$ it exists only one

$X\in\left(0,\frac {\pi}2\right)$ so that $A=\pi-2X$ . Consequently, we can make the following substitutions : $\left\|\ \begin{array}{cccc}  
A=\pi-2X \\ B=\pi-2Y \\ C=\pi-2Z\end{array}\ \right\|$ where $X+Y+Z=\pi$ and

$X,Y,Z\in \left(0,\frac {\pi}2\right)$ and thus the proposed inequality will be equivalent to : $\left[\ \sum_{\text{cyc}}\ \cos\left(\frac {\pi}2-X\right)\ \right]^2\ \ge\ 2\cdot\left[\ \sum_{\text{cyc}}\ \sin\left(\frac {\pi}2-X\right)\ \right]^3\ \iff$

$\left(\sum_{\text{cyc}}\ \sin X\right)^2\ \ge\ 2\cdot\left(\sum_{\text{cyc}}\ \cos X\right)^3$ . Using the well-known identities for a triangle $XYZ\ :\ \sum\ \sin X=\frac sR$ and $\sum\ \cos X=1+\frac rR$

the last inequality becomes : $s^2\ \ge\ \frac {2(R+r)^3}R\ (\ast)$ . Comparing this inequality to Walker's i.e. $\boxed{\ s^2\ \ge\ 2R^2+8Rr+3r^2\ }$ it is enough to

prove that : $2R^2+8Rr+3r^2\ \ge\ \frac {2(R+r)^3}R\iff (R-2r)(2R+r)\ge 0$ , what is obviously . Therefore, the inequality $(\ast)$ is truly.



PP3. Prove that in any $\triangle ABC$ there is the inequality $\boxed{\ \cos A\cdot\cos B+\cos B\cdot\cos C+\cos C\cdot\cos A\ \ge\ 6\cdot\cos A\cdot\cos B\cdot\cos C\ }$ .

Proof. Using $\left\|\ \begin{array}{cccc}
\sum\ \cos B\cdot\cos C=\frac {s^2+r^2-4R^2}{4R^2} \\ \\ 
\prod\ \cos A=\frac {s^2-(2R+r)^2}{4R^2}\ \end{array}\right\|$ the given inequality becomes $\frac {s^2+r^2-4R^2}{4R^2}\ge 6\cdot\frac {s^2-(2R+r)^2}{4R^2}\iff $

$s^2\ \le\ 4R^2+\frac {24}5\cdot Rr+\frac 75\cdot r^2$ . Using Gerrensen's inequality $\boxed{\ s^2\ \le\ 4R^2+4Rr+3r^2\ }\ (1)$ and Euler's inequality $\boxed{\ R\ge 2r}\ (2)$

obtain that $s^2\ \stackrel{(1)}{\le}\ 4R^2+4Rr+3r^2=$ $\left(4R^2+\frac {24}{5}\cdot Rr+\frac 75\cdot r^2\right)-\frac 45\cdot r(R-2r)\ \stackrel{(2)}{\implies}\ s^2$ $\le 4R^2+\frac {24}{5}\cdot Rr+\frac 75\cdot r^2$ .

Remark. If $\triangle ABC$ is acute, then our inequality is equivalently with $\sum\frac {1}{\cos A}\ge 6$ , what is truly because $\sum\frac {1}{\cos A}\ge \frac {9}{\sum \cos A}=\frac {9}{1+\frac rR}=$

$\frac {9R}{R+r}\ge 6$ because $\frac {9R}{R+r}\ge 6\iff R\ge 2r$ . Otherwise, the function $f\ :\ \left(\ 0\ ,\ \frac {\pi}{2}\ \right)\ \rightarrow\ (\ 0\ ,\ \infty\ )$ , where $f(x)=\frac {1}{\cos x}$ is convex.
This post has been edited 25 times. Last edited by Virgil Nicula, Nov 23, 2015, 6:30 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a