282. Factorize of polynomials.

by Virgil Nicula, Jun 4, 2011, 3:01 AM

PP1 (1976 Tokyo University entrance exam). Find $k\in\mathbb Z$ such that the polynomial $f(x)=x^5-kx-1$ can be

factorized into the product of two polynomials with integer coefficients, positive degree. Then for such $k$ factorize $f(x)$ .


$\blacktriangleright\ \underline{\mathrm{Case}}\ 1+4$ . Our polynomial admits the root $1$ or $-1$ , i.e.

$\left\{\begin{array}{ccccccc}
P(1)=0 & \implies & \boxed{\ k=0\ } & \implies & P(x)\equiv x^5-1 & = & (x-1)\left(x^4+x^3+x^2+x+1\right)\\\\ 
P(-1)=0 &\implies & \boxed{\ k=2\ } & \implies & P(x)\equiv x^5-2x-1 & = & (x+1)\left(x^4-x^3+x^2-x-1\right)\end{array}\right\|$ .

$\blacktriangleright\ \underline{\mathrm{Case}}\ 2+3$ . Now appear two situations :

$\boxed 1\implies\ P(x)\equiv x^5-kx-1=$ $\left(x^2+ax+1\right)\left(x^3+bx^2+cx-1\right)\iff$ $\left\{\begin{array}{c}
b+a=0\\\
1+c+ab=0\\\
-1+b+ac=0\\\
c-a=-k\end{array}\right\|\iff$ $\left\{\begin{array}{c}
b=-a\\\
c=-1+a^2\\\
a^3-2a-1=0\\\
k=1+a-a^2\end{array}\right\|\iff$ $\left\|
\begin{array}{c}
a=-1\\\
b=1\\\
c=0\end{array}\right\|\implies \boxed{\ k=-1\ }$ and in this case our polynomial becomes $P(x)\equiv x^5+x-1=\left(x^2-x+1\right)\left(x^3+x^2-1\right)$ .

$\boxed 2\implies\ P(x)\equiv x^5-kx-1=$ $\left(x^2+ax-1\right)\left(x^3+bx^2+cx+1\right)\iff$ $\left\{\begin{array}{c}
b+a=0\\\
-1+c+ab=0\\\
1-b+ac=0\\\
a-c=-k\end{array}\right\|\iff$ $\left\{\begin{array}{c}
b=-a\\\
c=1+a^2\\\
a^3+2a+1=0\\\
k=a^2-a+1\end{array}\right\|\implies$ $a\not\in \mathbb Z$ .

PP2 (Uzbekistan NMO 2011). Find $k\in\mathbb Z$ such that $P(x)\equiv x^5-kx^3+x^2-1$ is equal to the product of two non-constant polynomials with integer coefficients.

$\blacktriangleright\ \underline{\mathrm{Case}}\ 1+4$ . Our polynomial admits the root $1$ or $-1$ , i.e. $P(1)=0\ \vee\ P(-1)=0\implies k=1$ and in this case $P(x)=(x-1)(x+1)^2\left(x^2-x+1\right)$ .

$\blacktriangleright\ \underline{\mathrm{Case}}\ 2+3$ . Now appear two situations :

$\boxed 1\implies\ P(x)\equiv x^5-kx^3+x^2-1\equiv $ $\left(x^2+ax+1\right)\left(x^3+bx^2+cx-1\right)\iff$ $\left\{\begin{array}{c}
b+a=0\\\
1+c+ab=-k\\\
-1+b+ac=1\\\
c-a=0\end{array}\right\|\iff$ $\left\{\begin{array}{c}
b=-a\\\
c=a\\\
k=a^2-a-1\\\
a^2-a-2=0\end{array}\right\|\iff$ $\left\|
\begin{array}{c}
a=-1\\\
b=1\\\
c=-1\\\
k=1\end{array}\right\|\ \ \vee\ \ \left\|\begin{array}{c}
a=2\\\
b=-2\\\
c=2\\\
k=1\end{array}\right\|$ . For $\boxed {\ k=1\ }$ our polynomial becomes $P(x)\equiv (x-1)(x+1)^2\left(x^2-x+1\right)\equiv\left(x^2-1\right)\left(x^3+1\right)$ .

$\boxed 2\implies\ P(x)\equiv x^5-kx^3+x^2-1\equiv $ $\left(x^2+ax-1\right)\left(x^3+bx^2+cx+1\right)\iff$ $\left\{\begin{array}{c}
b+a=0\\\
-1+c+ab=-k\\\
1-b+ac=1\\\
a-c=0\end{array}\right\|\iff$ $\left\{\begin{array}{c}
b=-a\\\
c=a\\\
k=a^2-a+1\\\
a^2+a=0\end{array}\right\|\iff$ $\left\|
\begin{array}{c}
a=0\\\
b=0\\\
c=0\\\
k=1\end{array}\right\|\ \ \vee\ \ \left\|\begin{array}{c}
a=-1\\\
b=1\\\
c=-1\\\
k=3\end{array}\right\|$ For $\boxed {\ k=3\ }$ our polynomial becomes $P(x)\equiv\left(x^2-x-1\right)\left(x^3+x^2-x+1\right)$ .


PP3. Find $a\in\mathbb R$ such that the polynomial equation $x^4+ax^3+1=0$ has exactly one real root.

Proof 1. $x^4+ax^3+1=0$ has exactly one real root $\stackrel{\left(x:=\frac 1x\right)}{\iff}\ x^4+ax+1=0$ has exactly one real root $\iff$ the graphs $G_f$ , $G_h$ are

tangent, where $f(x)=x^4$ and $g(x)=-ax-1$ , $x\in\mathbb R\iff$ the equations $\left\{\begin{array}{c}
f(x)=g(x)\\\
f'(x)=g'(x)\end{array}\right\|$ have exactly one common root, i.e.

$\left\{\begin{array}{c}
x^4+ax+1=0\\\
4x^3+a=0\end{array}\right\|$ have exactly one common root $\iff$ $x\left(-\frac a4\right)+ax+1=0\iff$ $x=-\frac {4}{3a}\iff$ $27a^4=256\iff$

$a\in\left\{\pm\frac {4\sqrt[4]{3}}{3}\right\}$ and in this case the unique real root (double) of the initial equation is $x_c=\left\{\begin{array}{ccc}
-\sqrt[4]3 & \mathrm{if} & a=\frac {4\sqrt[4]{3}}{3}\\\\
\sqrt[4]3 & \mathrm{if} & a=-\frac {4\sqrt[4]{3}}{3}\end{array}\right\|$

Proof 2. $x^4+ax^3+1=0$ has exactly one real root $\stackrel{\left(x:=\frac 1x\right)}{\iff}\ x^4+ax+1=0$ has exactly one real root $\iff$ $x^4+ax+1=(x-c)^2\left(x^2+bx+d\right)=$

$\left(x^2-2cx+c^2\right)\left(x^2+bx+d\right)\ ,\ b^2<4d\iff$ $\left\{\begin{array}{c}
b-2c=0\\\\
d-2bc+c^2=0\\\\
-2cd+bc^2=a\\\\
c^2d=1\end{array}\right\|\ \iff\ \left\{\begin{array}{c}
c^2=\frac {1}{\sqrt 3}\\\\
b=2c\\\\
d=\frac {1}{c^2}\\\\
a=-\frac {4}{3c}\end{array}\right\|\iff$ $a\in\left\{\pm\frac {4\sqrt[4]{3}}{3}\right\}$ and verifies $b^2<4d$ .
This post has been edited 25 times. Last edited by Virgil Nicula, Nov 21, 2015, 6:33 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a