359. Ptolemy's theorem and generalized Ptolemy's relation.

by Virgil Nicula, Oct 23, 2012, 9:07 AM

Generalized Ptolemy's relation. Let a convex $ABCD$ . Prove that $\boxed{AC^2\cdot BD^2=AB^2\cdot CD^2+AD^2\cdot BC^2-2\cdot AB\cdot BC\cdot CD\cdot DA\cdot\cos (B+D)}\ (*)$ .

Proof. Let $\left\{\begin{array}{ccc}
AB=a & ; & BC=b\\\\
CD=c & ; & DA=d\\\\
AC=e & ; & BD=f\end{array}\right\|$ . Construct outside of $ABCD$ the point $E$ so that $\triangle CDE\sim\triangle CBA$ , i.e. $\left\{\begin{array}{c}
\widehat{CDE}\equiv\widehat{CBA}\\\\
\widehat{DCE}\equiv\widehat{BCA}\end{array}\right\|$ . Thus, $\frac {CD}{CB}=\frac {DE}{BA}=\frac {EC}{AC}\iff$

$\frac cb=\frac {DE}{a}=\frac {EC}{e}\implies$ $\boxed{DE=\frac {ac}{b}}$ and $EC=\frac {ce}{b}$ . Therefore, $\left\{\begin{array}{ccc}
\widehat{BCA}\equiv\widehat{DCE} & \implies & \widehat{BCD}\equiv\widehat{ACE}\\\\
\frac {CD}{CB}=\frac {EC}{AC} & \implies & \frac {BC}{AC}=\frac {CD}{CE}\end{array}\right\|$ $\implies$ $\triangle BCD\sim\triangle ACE\implies$$\frac {BC}{AC}=\frac {CD}{CE}=\frac{DB}{EA}\implies$

$\frac be=\frac {c}{CE}=\frac {f}{EA}\implies$ $\boxed{AE=\frac {ef}{b}}$ and $EC=\frac {ce}{b}$ . Apply the Pythagoras' theorem in $\triangle ADE\ :\ AE^2=AD^2+DE^2-2\cdot AD\cdot DE\cdot\cos \widehat{ADE}\iff$

$\frac {e^2f^2}{b^2}=d^2+\frac {a^2c^2}{b^2}-2\cdot\frac {acd}{b}\cdot\cos \left|\begin{array}{c}
B+D\\\
\mathrm{or}\\\
360^{\circ}-(B+D)\end{array}\right|\iff$ $e^2f^2=b^2d^2+a^2c^2-2abcd\cos (B+D)$ .

Remark. Here are two remarkable particular cases :

$\blacktriangleright\ A+C=B+D$ , i.e. $ABCD$ is a cyclical quadrilateral $\implies \boxed{ef=ac+bd}$ , i.e. the Ptolemy's relation.

$\blacktriangleright\ B+D\in\left\{90^{\circ},270^{\circ}\right\}$ . In this case there is the relation $\boxed{e^2f^2=a^2c^2+b^2d^2}$ .



PP1. Let a convex cyclical $ABCDE$ with $\left\{\begin{array}{c}
AB=BC=CD=a\ ;\ DE=EA=b\ ;\ b\ge a\sqrt 2\\\\
AD=z\ ;\ EB=EC=x\ ;\ AC=BD=y\end{array}\right\|$ . Determine $(x,y,z)=F(a,b,c)$ . Particular case : $a=2\ ,\ b=3$ .

Proof (particular case). Exists $0<x<\frac {\pi}{8}$ so that $m(<BAD)=4x$ and $m(<DAE)=90^{\circ}-3x$ . Thus, $\boxed{AD=2(1+2\cos 4x)=6\sin 3x}\ (*)\ \implies$

$1+$ $2(1-2\sin^22x)=3\sin x\left(3-4\sin^2x\right)\implies$ $3-16\sin^2x\left(1-\sin^2x\right)=9\sin x-12\sin^3x$ . Denote $\sin x=t$ . Therefore,

$16t^4+12t^3-16t^2-9t+3=0\iff$ $t\in \left\{-1 , \frac 14 , \frac{\sqrt 3}2 , -\frac {\sqrt 3}2\right\}$ . Since $0<x<\frac {\pi}8$ obtain only $\boxed{\sin x=\frac 14}$ . In conclusion, from the relation $(*)$ obtain that

$AD=6\sin 3x=6\sin x\left(3-4\sin^2x\right)=\frac 32\cdot\left(3-\frac 4{16}\right)=\frac {33}{8}$ .

Proof (general case). Apply the Ptolemy's theorem to $\left\{\begin{array}{ccc}
ABCD\ : & \boxed{y^2=a^2+az} & (1)\\\\
ACDE\ : & \boxed{xz=ab+by} & (2)\end{array}\right\|$ . Is well-known $(*)$ the relation in $ACDE\ :\ \frac {AD}{CE}=\frac {AC\cdot AE+DE\cdot DC}{CA\cdot CD+EA\cdot ED}\implies$

$\frac zx=\frac {ab+by}{b^2+ay}\ (3)$ . Therefore, $(2)\ \wedge\ (3)\implies$ $\boxed{z^2=\frac {b^2(a+y)^2}{b^2+ay}}\ (4)\implies$ $a^2z^2=\frac {a^2b^2(a+y)^2}{b^2+ay}\stackrel{(1)}{\implies}$ $\left(y^2-a^2\right)^2=\frac {a^2b^2(a+y)^2}{b^2+ay}\implies$ $\left(y-a\right)^2=\frac {a^2b^2}{b^2+ay}\implies$

$\left(ay+b^2\right)(y-a)^2=a^2b^2\iff$ $ay^2+\left(b^2-2a^2\right)y+a\left(a^2-2b^2\right)=0\iff$ $\boxed{y=\frac {2a^2-b^2+b\sqrt{b^2+4a^2}}{2a}}$ . Prove easily that $a+y=\frac {4a^2-b^2+\sqrt{b^2+4a^2}}{2a}$ and

$x^2=b^2+ay=\frac {2a^2+b^2+b\sqrt{b^2+4a^2}}{2}\implies$ $x=\sqrt{b^2+ay}=\frac {b+\sqrt{b^2+4a^2}}{2}\implies$ $\boxed{x=\frac {b+\sqrt{b^2+4a^2}}{2}}$ and from $(4)$ obtain $z=\frac {2b(a+y)}{b+\sqrt{b^2+4a^2}}\implies$

$\boxed{z=\frac ba\cdot\frac {4a^2-b^2+b\sqrt{b^2+4a^2}}{b+\sqrt{b^2+4a^2}}}$ . Particular case. $\left\{\begin{array}{c}
a=2\\\
b=3\end{array}\right\|\implies$ $\left\{\begin{array}{c}
x=4\\\\
y=\frac 72\\\\
z=\frac {33}{8}\end{array}\right\|$ .

Remark. Let cyclic $ABCD\ ,\ \left\{\begin{array}{ccc}
AB=a & ; & BC=b\\\\
CD=c & ; & DA=d\\\\
AC=e & ; & BD=f\end{array}\right\|$ and $I\in AC\cap BD$ . Prove easily that

$\frac {IA}{da}=\frac {IB}{ab}=\frac {IC}{bc}=\frac {ID}{cd}=$ $\frac {e}{da+bc}\stackrel{(*)}{=}\frac {f}{ab+cd}=\sqrt {\frac {-p_w(I)}{abcd}}$ and $p_w(I)$ - power of $I$ w.r.t. $w=C(O,R)$ .



PP2. Let $ABCDEFGHI$ be a regular nonagon with $X\in AD\cap CE$ and $Y\in EH\cap GI$ . Find $m\left(\widehat{EXY}\right)$ .

Proof. Suppose w.l.o.g. $2R=1$ . Denote $x=m\left(\widehat{EXY}\right)$ and $\left\{\begin{array}{ccc}
AB=a=\sin 20^{\circ} & ; & AC=b=\sin 40^{\circ}\\\\
AD=c=\sin 60^{\circ} & ; & AE=d=\sin 80^{\circ}\end{array}\right\|$ . Therefore,

$\left\{\begin{array}{ccccc}
ACDE\ : & \frac {XE}{d}=\frac {XC}{b}=\frac {CE}{b+d}=\frac {b}{b+d} & \implies & XE=\frac {bd}{b+d}\\\\
EGHI\ : & \frac {YE}{bd}=\frac {YH}{a^2}=\frac {HE}{bd+a^2}=\frac {c}{a^2+bd} & \implies & YE=\frac {bcd}{a^2+bd}\end{array}\right\|\implies$ $\frac {EX}{EY}=\frac {\frac {bd}{b+d}}{\frac {bcd}{a^2+bd}}\implies$ $\frac {EX}{EY}=\frac {a^2+bd}{c(b+d)}\implies$ $\frac {EX}{EY}=\frac {\sin^220^{\circ}+\sin40^{\circ}\sin80^{\circ}}{\sin 60^{\circ}(\sin 40^{\circ}+\sin 80^{\circ})}=$

$\frac {1-\cos40^{\circ}+\cos 40^{\circ}-\cos 120^{\circ}}{2\sqrt 3\sin 60^{\circ}\cos 20^{\circ}}\implies$ $\boxed{\frac {EX}{EY}=\frac 1{2\cos 20^{\circ}}}\ (1)$ . Theorem of Sines $\triangle XEY\ :\ \frac {EX}{EY}=\frac {\sin\widehat{EYX}}{\sin\widehat{EXY}}=$ $\frac {\sin (100^{\circ}-x)}{\sin x}\implies$ $\boxed{\frac {EX}{EY}=\frac {\cos (10^{\circ}-x)}{\sin x}}\ (2)$ .

In conclusion, $\frac {\cos (10^{\circ}-x)}{\sin x}= \frac 1{2\cos 20^{\circ}}\implies$ $2\cos 20^{\circ}\cos (10^{\circ}-x)=\sin x\implies$ $\cos (x+10^{\circ})+\cos (x-30^{\circ})=\cos(90^{\circ}-x)=$ $\cos(90^{\circ}-x)-\cos (x-30^{\circ})\implies$

$\cos (x+10^{\circ})=2\sin 30\sin (x-60^{\circ})\implies$ $\cos (x+10^{\circ})=\cos (150^{\circ}-x)\implies$ $x+10^{\circ}=150^{\circ}-x\implies$ $\boxed{x=70^{\circ}}$ .
This post has been edited 41 times. Last edited by Virgil Nicula, Nov 16, 2015, 2:00 PM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Thanks a ton this is very nice!

by Mikazoid, Oct 26, 2012, 11:04 PM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a