410. Geometry 3.

by Virgil Nicula, Mar 20, 2015, 1:42 PM

P2 (Miguel Ochoa Sanchez) - for the middle school. Let $ABC$ be an $A$-isosceles triangle for what its orthocenter $H$ belongs to the incircle $w=\mathbb C(I,r).$ Prove that $4\cdot AB=3\cdot BC.$

Proof. Denote $D\in AH\cap BC$ and the diameter $[AS]$ of the circumcircle $\Omega =\mathbb C(O,R).$ Thus, $\{H,I\}\subset (AS)$ and $H\in w\implies$ $HD=DS=2r,$ $HI=r$ and

$IA=AS-IS=2R-3r.$ Hence $IS\cdot IA=2Rr\iff$ $3r(2R-3r)=2Rr,$ i.e. $\boxed{9r=4R}$ and $AH=AS-HS=2R-4r=\frac {9r}2-4r,$ i.e. $\boxed{AH=\frac r2}.$

From the $B$-right $\triangle ABS$ obtain that $:\ \left\{\begin{array}{ccccc}
\mathrm{theorem\ of\ the\ cathetus} & : & AB^2=AS\cdot AD=\frac {9r}2\cdot \left(2r+\frac r2\right)=\frac {45r^2}4 &\implies & \boxed{AB=\frac {3r\sqrt 5}2}\\\\
\mathrm{theorem\ of\ the\ altitude} & : & BD^2=DS\cdot DA=2r\cdot \left(2r+\frac r2\right)=5r^2 & \implies & \boxed{BC=2r\sqrt 5}\end{array}\right\| .$ In conclusion, $\frac {AB}{BC}=\frac 34.$

Remark. Suppose w.l.o.g. $AH=1.$ Hence $\left\{\begin{array}{ccccc}
HI & = & ID & = & 2\\\\
HD & = & DS & = & 4\\\\
AD & = & AH+HD & = & 5\\\\
AS & = & AD+DS & = & 9\end{array}\right|\implies$ $\left\{\begin{array}{ccccccc}
AB^2=AS\cdot AD=9\cdot 5 & \implies & AB=3\sqrt 5\\\\
BD^2=DS\cdot DA=4\cdot 5 & \implies & BD=2\sqrt 5\end{array}\right\|\implies$ $\frac {AB}{BC}=\frac {AB}{2\cdot BD}=\frac 34.$


P3.Let $\triangle ABC$ with the incircle $\omega=\mathbb C(I,r)$ and the circumcircle $\phi =\mathbb C(O,R)$. Let the midpoint $M$ of $\overarc{BAC}$ w.r.t. $\phi$. Denote $D\in BC\cap \omega$ , $P\in MI\cap AD$ ,

$K\in BC\cap AI$ and $L\in PK\cap \phi$ such that $L\in \overarc{BC}$ what doesn't contain $A$ w.r.t. $\phi$. Prove that the rays $[AL$ and $[AD$ are isogonal conjugate w.r.t. $\widehat{ BAC}$.


Proof. I"ll use the same notations as above and let $X=\in ML'\cap AN$ , $L'\in MI_a\cap \phi$ and $Q\in AL'\cap MI$ . Claim: $AID\sim AL'X$. $ADI=90-ADC=90-ABL=$

$90-AML'=AXM$ combined with $IAD=L'AX$ we get the desired result. Now: $AID\sim AL'X$ and $ABL'\sim ADC$ . Therefore: $\frac{AX}{AD}=\frac{AL'}{AI}$ and $\frac{AL'}{AC}=\frac {AB}{AD}$. Hence,

one gets that $AX\cdot AI=AB\cdot AC$ $\implies$ $X=I_a$ because $AIC\sim ABI_a$. Since $ACI=ICK$ & $ICI_a=90$ obtain that $(A,K;I,I_a)=-1$ $\implies$ $L'(A,K;I,I_a)=-1$

$\implies$ $(Q,R';I,M)=-1$ where $R'\in L'K\cap AD$. However $(Q,R;I,M)=-1$. Since $QAI=IAR$ & $MAI=90$ get $R=R'$ which ends the proof.



P4. Circles of radii $r_{1}, r_{2}$ and $r_{3}$ touch each other externally, and they have a common tangent at $A, B$ and $C$

respectively, where $B$ lies between $A$ and $C$. Prove that $16(r_{1} + r_{2} + r_{3}) \geq 9(AB+BC +CA)$.


Proof. Let $AB=x,BC=y$. Then by Pythagoras we have $\left\{\begin{array}{ccccc}
(r_1+r_2)^2 & = & x^2+(r_1-r_2)^2 & \implies & 4r_1r_2=x^2\\\\
(r_2+r_3)^2 & = & y^2+(r_2-r_3)^2 & \implies & 4r_2r_3=y^2\\\\
(r_3+r_1)^2 & = & (x+y)^2+(r_3-r_1)^2 & \implies & 4r_3r_1=(x+y)^2\end{array}\right\|$. From $(1)$ and $(2)$, we can get

$r_2=\frac{x^2+y^2}{4(r_1+r_3)}$. The inequality becomes $16\frac{4r_1^2+4r_3^2+8r_1r_3+x^2+y^2}{4(r_1+r_3)}\ge$ $ 18(x+y)$ $\iff $ $2\left(4r_1^2+4r_3^2+8r_1r_3+x^2+y^2\right)\ge$ $ 9(x+y)(r_1+r_3).$ We can rearrange

to $(x-r_1)^2+(x-r_3)^2+(y-r_1)^2+(y-r_3)^2+6(r_1^2+r_3^2)+16r_1r_3\ge$ $7(x+y)(r_1+r_3).$ By SOS and $(3)$, it suffices to show that $3(r_1^2+r_3^2)+8r_1r_3\ge$

$7\sqrt{r_1r_3}(r_1+r_3).$ But squaring and rearranging, this drops to $9(r_1^4+r_3^4)\geq r_1^3r_3+r_1r_3^3+16r_1^2r_3^2\iff$ $\left(r_1-r_3\right)^2\left(9r_1^2+17r_1r_3+9r_3^2\right)\ge 0$ what is truly.



P5. In an acute $\triangle ABC$ define an interior $P$ so that $A+m(\angle APB)=B+m(\angle BPC)=C+m(\angle CPA)=180^{\circ}$. Prove that $\frac{PA}{PB} \cdot a^3 = \frac{PB}{PC} \cdot b^3 = \frac{PC}{PA} \cdot c^3$ .

Proof. Denote $S\in AB\cap CP$ , $R\in CP$ so that $AR\parallel BC$ . Since $m(\angle RAB)=m(\angle RCB)=B$ the quadrilateral $APBR$ is cyclic. Thus $m(\angle RBA)=C$ ,

$m(\angle ARB)=A$ and $\frac {RA}{\sin C}=\frac {AB}{\sin A}$ $\implies$ $\boxed {RA=\frac {c^2}{a}}\ (1)$ . Thus, $\frac {SA}{SB}=\frac {RA}{a}$ and $\frac {SA}{SB}=\frac {PA}{PB}\cdot \frac {\sin C}{\sin B}$ $\implies$ $\frac {RA}{a}=\frac {PA}{PB}\cdot \frac cb$ $\implies$ $\frac {PA}{PB}=\frac {b}{ac}\cdot RA\ \stackrel{(1)}{\implies}$

$\frac {PA}{PB}=\frac {bc}{a^2}$ $\implies$ $\frac {PA}{PB}\cdot a^3=abc$ what is symmetrical expresion w.r.t. $\triangle ABC$ . In conclusion $\frac{PA}{PB} \cdot a^3 =$ $ \frac{PB}{PC} \cdot b^3 = $ $\frac{PC}{PA} \cdot c^3=abc$ .



P6. Let an acute $\triangle ABC$ with the orthocenter $H$ . Denote $E\in BH\cap AC$ and the points $\left\{\begin{array}{ccc}
F\ : & FE\perp BA\ ,\ FA\perp AC\\\\
D\ : & DE\perp BC\ ,\ DC\perp CA\end{array}\right\|$ . Prove that $H\in DF$ .

Proof (with areas). Denote $\left\{\begin{array}{c}
FA=x\\\\
HE=y\\\\
DC=z\end{array}\right\|$ and $\left\{\begin{array}{c}
EA=u\\\\
EC=v\\\\
BE=h\end{array}\right\|$ , where $u+v=b$ . Prove easily that $H\in DF\iff [AFHE]+[CDHE]=[AFDC]\iff$

$u(y+x)+v(y+z)=(u+v)(x+z)\iff$ $\boxed{xv+uz=by}\ (*)$ . Observe that $\left\{\begin{array}{ccccc}
\triangle AEF\sim\triangle EBA & \implies & \frac {AF}{AE}=\frac {EA}{EB} & \implies & \frac xu=\frac uh\\\\
\triangle CED\sim\triangle EBC & \implies & \frac {CD}{CE}=\frac {EC}{EB} & \implies & \frac zv=\frac vh\end{array}\right\|$ $\bigoplus\implies\boxed{\frac xu+\frac zv=\frac bh}\ (1)$

and $\triangle CEH\sim\triangle BEA\implies$ $\frac {EC}{EB}=\frac {EH}{EA}$ $\implies\frac vh=\frac yu\implies$ $\boxed{uv=yh}\ (2)$ . From the product of the relations $(1)$ and $(2)$ obtain that $xv+uz=by\ \stackrel{(*)}{\iff}\ H\in DF$ .



P7 (M.O.Sanchez). Let $\triangle ABC$ with $B=90^{\circ}$ and the incenter $I$ . Denote $\left\{\begin{array}{c}
D\in BC\cap AI\\\\
E\in AB\cap CI\end{array}\right\|$ . Prove that $\tan C=\sqrt {\frac {IA^2+ID^2}{IC^2+IE^2}}$ .

Proof 1. Observe that $\frac {IA^2}{IC^2}=\frac {\sin^2\frac C2}{\sin^2\frac A2}=$ $\frac {\frac {(s-a)(s-b)}{ab}}{\frac {(s-b)(s-c)}{bc}}\implies$ $\boxed{\frac {IA}{IC}=\sqrt{\frac {c(s-a)}{a(s-c)}}}\ (1)$ . Otherwise, $\frac {IA^2}{IC^2}=\frac {\frac {bc(s-a)}{s}}{\frac {ab(s-c)}{s}}=\frac {c(s-a)}{a(s-c)}$ . With the Aubel's relations $\boxed{\begin{array}{c}
\frac {ID}{IA}=\frac a{b+c}=\frac {b-c}{a}\\\\
\frac {IE}{IC}=\frac c{b+a}=\frac {b-a}{c}\end{array}}\ (2)$

get $\tan C=\sqrt {\frac {IA^2+ID^2}{IC^2+IE^2}}\iff$ $\tan^2C=\left(\frac {IA}{IC}\right)^2\cdot \frac {1+\left(\frac {ID}{IA}\right)^2}{1+\left(\frac {IE}{IC}\right)^2}\ \stackrel{(1\wedge 2)}{\iff}\ \frac {c^2}{a^2}=$ $\frac {c(s-a)}{a(s-c)}\cdot \frac {1+\left(\frac {a}{b+c}\right)^2}{1+\left(\frac {c}{a+b}\right)^2}\ \stackrel{(a^2+c^2=b^2)}{\iff}\ \frac ca=$ $\frac {s-a}{s-c}\cdot \left(\frac {b+a}{b+c}\right)^2\cdot \frac {2b(b+c)}{2b(b+a)}\iff$

$c(s-c)(b+c)=a(s-a)(b+a)\iff$ $c(b+a-c)(b+c)=a(b+c-a)(b+a)\iff$ $ac(b+c)+c\left(b^2-c^2\right)=ac(b+a)+a\left(b^2-a^2\right)\iff$

$ac^2+ca^2=a^2c+ac^2$ , what is truly.

Proof 2. $\left\{\begin{array}{c}
\frac {IA}{s-a}=\frac {ID}{s-b}=\frac 1{\cos\frac A2}\\\\
\frac {IC}{s-c}=\frac {IE}{s-b}=\frac 1{\cos\frac C2}\end{array}\right\|\implies$ $\frac {IA^2+ID^2}{IC^2+IE^2}=\frac {(s-a)^2+(s-b)^2}{(s-c)^2+(s-b)^2}\cdot\frac {\cos^2\frac C2}{\cos^2\frac A2}=$ $\frac {[(s-a)+(s-b)]^2+[(s-a)-(s-b)]^2}{[(s-c)+(s-b)]^2+[(s-c)-(s-b)]^2}\cdot\frac {\frac {s(s-c)}{ab}}{\frac {s(s-a)}{bc}}=$ $\frac {c^2+(b-a)^2}{a^2+(b-c)^2}\cdot\frac {c(s-c)}{a(s-a)}=$

$\frac ca\cdot\frac {s-c}{s-a}\cdot\frac {b-a}{b-c}$ . In conclusion, $\tan C=\sqrt {\frac {IA^2+ID^2}{IC^2+IE^2}}\iff$ $\left(\frac ca\right)^2=\frac ca\cdot\frac {s-c}{s-a}\cdot\frac {b-a}{b-c}\iff$ $c(b-c)(b+c-a)=a(b-a)(b+a-c)\iff$

$c\left(b^2-c^2\right)-ac(b-c)=a\left(b^2-a^2\right)-ac(b-a)\ \stackrel{\left(a^2+c^2=b^2\right)}{\iff}$ $ca^2+ac^2=ac^2+a^2c$ , what is truly.



P8. Let an acute $\triangle ABC$ with $b\ne c$ and let $ V$ and $ D$ be the feet of the altitude and the angle bisector from $A$ , let $E$ , $F$

be the intersection points of the circumcircle of $ \triangle AVD$ with $ AC$ , $ AB$ respectively. Prove that $ AV\cap BE\cap CF\ne\emptyset$ .


Here is an easy extension which generates and another interesting problem !

An easy extension. Let acute $\triangle ABC$ with $ c < b$ and $ \left\{\begin{array}{cccc} 
M\in (BC)\ ; & x & = & m\left(\widehat {AMC}\right)\\\\
N\in (MC)\ ; & y & = & m\left(\widehat {ANB}\right)\end{array}\right\|$ . The circumcircle of $\triangle  AMN$ cut

again $AB$ , $AC$ in $ F$ , $ E$ respectively. Then $ BE\cap CF\cap AM\ne\emptyset \Longleftrightarrow$ $ \cos (C - B + x - 2y) + \cos A\cos x = 0$ .


Particular cases.

$ 1\blacktriangleright\ x: = 90^{\circ}$ , i.e. $ AM\perp BC$ . In this case, $ \left\{\begin{array}{c} C - B + 90^{\circ} - 2y = \pm 90^{\circ}\\\\
(\ C\ < \ B\ )\end{array}\right\|$ $ \Longleftrightarrow$ $ y = C + \frac A2$ $ \Longleftrightarrow$ $ \widehat {NAB}\equiv\widehat {NAC}$ .

$ 2\blacktriangleright\ A: = 90^{\circ}$ . In this case obtain the following nice problem :


Let $\triangle ABC$ with $ AB\perp AC$ and $c < b$ . Choose $ \left\{\begin{array}{c} M\in (BC)\\\\
N\in (MC)\end{array}\right\|$ . The circumcircle of $\triangle AMN$ cut

again $ AB$ , $AC$ in $ F$ , $ E$ respectively. Then the lines $ BE\cap CF\cap AM\ne\emptyset \Longleftrightarrow$ $ m(\widehat {AMC}) = 2\cdot m(\widehat {ANC})$ .


$ 3\blacktriangleright$ Here is a very easy problem which, for $ A = 90^{\circ}$, is equivalently with the previous problem :

Let $ ABC$ be a triangle. For a point $ M\in (BC)$ denote the points $ \left\{\begin{array}{c} F\in (AB)\ ,\ \widehat {FMA}\equiv\widehat {FMB} \\
 \\
E\in (AC)\ ,\ \widehat {EMA}\equiv\widehat {EMC}\end{array}\right\|$ . Then the lines $ BE$ , $ CF$ , $ AM$ are concurently.


P9. Let $A$-right $ABC$, $D\in (BC)$ so that $AD\perp BC$ and incircles $w_1=C(I_1,r_1)$ , $w_2=C(I_2,r_2)$ of the triangles $\triangle ABD$ , $\triangle ACD$ respectively. Let the common

tangent $UV$ of $w_1$ , $w_2$ so that $\left\{\begin{array}{c}
U\in (AB)\\\\
V\in (AC)\end{array}\right\|$ and $\left\{\begin{array}{cc}
X\in (BC)\cap w_1\ ,\ M\in (AB)\ ;& I_1\in MX\\\\
Y\in (BC)\cap w_2\ ,\ N\in (AC)\ ; & I_2\in NY\end{array}\right\|$ . Prove that $\tan\widehat {AUV}=\frac {r_1}{r_2}=\frac cb$ and $2\cdot MX\cdot NY=AD^2$ .


Proof. I"ll use relations $S=(s-b)(s-c)=s(s-a)$ and $2S=bc=ah$ , where $S$ is the area of $\triangle ABC$ and $AD=h\ ,\ a+b+c=2s$ . Let $\left\{\begin{array}{c}
MX=m\\\\
NY=n\end{array}\right\|$ . Thus,

$\left\{\begin{array}{ccc}
\triangle MBX\sim\triangle CNY & \implies & \frac m{BX}=\frac {CY}n\\\\
\triangle ABD\sim\triangle CBA & \implies & \frac {BX}{s-b}=\frac ca\\\\
\triangle ACD\sim\triangle BCA & \implies & \frac {CY}{s-c}=\frac ba\end{array}\right\|\ \bigodot\ \implies a^2mn=bc(s-b)(s-c)$ $\implies$ $a^2mn=2S^2\implies$ $mn=2\cdot\left(\frac Sa\right)^2\implies$ $mn=2\cdot\left(\frac h2\right)^2\implies$ $\boxed{2mn=h^2}$ .

Let $L\in UV\cap BC$ and $m\left(\widehat{VLC}\right)=2\phi$ . Observe that $\tan B=\frac bc$ and $\triangle DAB\sim\triangle DCA\iff\boxed{\frac {r_1}{c}=\frac {r_2}{b}=\frac ra}$ . Thus, $\tan\phi =\frac {\left|r_2-r_1\right|}{r_2+r_1}=\frac {|b-c|}{b+c}\implies$

$\tan 2\phi =\frac {\left|b^2-c^2\right|}{2bc}$ . Suppose w.l.o.g. that $b>c$ . In conclusion, $m\left(\widehat{AUV}\right)=B-2\phi\implies$ $\tan\widehat {AUV}=\tan(B-2\phi )=$

$\frac {\tan B-\tan 2\phi}{1+\tan B\tan2\phi}=$ $\frac {\frac bc-\frac{b^2-c^2}{2bc}}{1+\frac bc\cdot\frac {b^2-c^2}{2bc}}=$ $\frac {b^2+c^2}{2bc}\cdot\frac {2bc^2}{b\left(c^2+b^2\right)}\implies$ $\boxed{\tan\widehat {AUV}=\frac cb=\frac {r_1}{r_2}}$ .



P10 (BMO - 2003). Let $\triangle ABC$ the tangent to the circumcircle of $\triangle ABC$ at $ A$ meet the line $ BC$ at $ D$. The perpendicular to $ BC$ at $ B$ meets the

perpendicular bisector of $ AB$ at $ E$. The perpendicular to $ BC$ at $ C$ meets the perpendicular bisector of $ AC$ at $ F$. Prove that $D$ , $ E$ and $ F$ are collinear.


Proof 1. I"ll use the well-known property $\frac {DB}{DC}=\frac {c^2}{b^2}$ . From $\left\|\ \begin{array}{c}
BE=\frac {c}{2\sin B}\\\\
CF=\frac {b}{2\sin C}\end{array}\ \right\|$ obtain that $\frac {BE}{CF}=\frac {DB}{DC}\ \Longrightarrow\ D\in EF$ .

Proof 2. From $\frac {DB}{DC}=\frac {c^2}{b^2}$ and $BOE\sim ACB\sim CFO$ get $\left\|\ \begin{array}{ccccc}
\frac Rb=\frac {OE}a=\frac {BE}c & \implies & OE=\frac {aR}b & ; & BE=\frac {cR}b\\\\
\frac Rc=\frac {OF}a=\frac {CF}b & \implies & OF=\frac {aR}c & ; & CF=\frac {bR}c\end{array}\right\|\implies$

$\boxed{\frac {BE}{CF}=\left(\frac cb\right)^2\ \wedge\ BE\cdot CF=R^2}\implies$ $\frac {BE}{CF}=\frac {DB}{DC}\ \Longrightarrow\ D\in EF$ . The area $S=[BEFC]=\frac a2\cdot (BE+CF)$ and

$BE\cdot CF=R^2$ (constant). Hence $S$ is $\min.\ \iff (BE+CF)$ is $\min.\ \stackrel{\left(BE\cdot CF=R^2\right)}{\iff}\ BE=CF=R$ .
This post has been edited 59 times. Last edited by Virgil Nicula, Sep 23, 2016, 1:15 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a