427. Selected nice or well-known geometry problems.

by Virgil Nicula, Jul 25, 2015, 3:43 PM

Lemma 1. Let a circle $w=\mathcal C(O,r)$ and two points $A\in \mathrm{ext} w$ , $B\in \mathrm{int} w$ , where denote $\{C,D\}=AB\cap w$ and $p_w(X)$ - the power of $X$ w.r.t. $w$ . Prove

that $p_w(A)+p_w(B)=AB^2\iff $ $\frac {CA}{CB}=\frac {DA}{DB}$ , i.e. $C$ , $D$ are harmonic conjugate w.r.t. $A$ , $B$ and mark it that $(C,D;A,B)$ is a harmonic division.


Proof 1. Suppose w.l.o.g. that $C\in (AB)$ and denote $\left\{\begin{array}{ccc}
AC & = & x\\\
CB & = & y\\\
BD & = & z\end{array}\right\|$ . Observe that $\left\{\begin{array}{ccc}
DA & = & x+y+z\\\
AB & = & x+y\end{array}\right\|$ and $\left\{\begin{array}{ccccc}
p_w(A) & = & \overline{AC}\cdot \overline{AD} & = & x(x+y+z)\\\\
p_w(B) & = & \overline{BC}\cdot \overline{BD} & = & -yz\end{array}\right\|$

In conclusion, $p_w(A)+p_w(B)=AB^2$ $\iff$ $x(x+y+z)-yz=(x+y)^2\ (*)$ $\iff$ $xz=y(x+y+z)\iff$ $\frac xy=\frac {x+y+z}z$ $\iff$ $\frac {CA}{CB}=\frac {DA}{DB}$ .

Proof 2. Denote $\{M,N\}\subset w$ so that $A\in MM\cap NN$ , where $XX$ is the tangent line in the point $X\in w$ to the circle $w$ . Thus, $p_w(A)+p_w(B)=AB^2\iff$

$AM^2+BO^2-r^2=AB^2\iff$ $BA^2-BO^2=MA^2-MO^2\iff$ $BM\perp AO\iff$ $B\in MN\iff$ $(A,B;C,D)$ is a harmonic division.



P1. Let $\triangle ABC$ with the orthocenter $H$ , the circumcircle $\alpha =\mathbb C(O,R)$ , the incircle $w=\mathbb C(I,r)$ and the $A$-excircle $w_a$ . Denote $:$

$\left\{\begin{array}{ccc}
P\in AH\cap BC & ; & D\in BC\cap w\\\\
L\in AI\cap BC & ; & D'\in BC\cap w_a\end{array}\right\|$ and $\left\{\begin{array}{c}
\{A,S\}=AI\cap \alpha\\\\
\{A,A'\}=AO\cap\alpha\end{array}\right\|$ . Define $\left\{\begin{array}{c}
X\in SP\cap LA'\\\\
Y\in SD\cap A'I\\\\
Z\in SD'\cap A'I_a\end{array}\right\|$ . Prove that $\{X,Y,Z\}\subset \alpha$ .


Proof. Prove easily or is well-known $:\ SB=SI=SC\ ;\ \boxed{IA\cdot IS=2Rr\ ;\ I_aA\cdot I_aS=2Rr_a}\ ($power of $I$ , $I_a$ w.r.t. $\alpha )\ ;\ \boxed{2Rh_a=bc=AL\cdot AS=AI\cdot AI_a}\ (*)$ . Thus $:$

$\blacktriangleright\ \triangle APS\sim ALA'\iff\frac {AP}{AS}=\frac {AL}{AA'}\iff\frac {h_a}{AS}=$ $\frac {AL}{2R}\iff AL\cdot AS=2Rh_a\ \mathrm{(\underline{truly})}\implies$ $\widehat{ASP}\equiv\widehat {AA'L}\implies$ $\widehat{ASX}\equiv\widehat {AA'X}\implies X\in\odot(ASA')\equiv\alpha\ .$

$\blacktriangleright\ \triangle IDS\sim AIA'\iff\frac {ID}{AI}=\frac {IS}{AA'}\iff\frac r{AI}=$ $\frac {IS}{2R}\iff IA\cdot IS=2Rr\ \mathrm{(\underline{truly})}\implies$ $\widehat{ISD}\equiv\widehat {AA'I}\implies$ $ \widehat{ASY}\equiv\widehat {AA'Y}\implies Y\in \odot (ASA')\equiv\alpha\ .$

$\blacktriangleright\ \triangle I_aD'S\sim AI_aA'\iff\frac {I_aD'}{AI_a}=\frac {IS}{AA'}\iff\frac {r_a}{AI_a}=$ $\frac {IS}{2R}\iff I_aA\cdot IS=2Rr_a\ \mathrm{(\underline{truly})}\implies$ $\widehat{I_aSD'}\equiv\widehat {AA'I_a}\implies$ $ \widehat{ASZ}\equiv\widehat {AA'Z}\implies Z\in \odot (ASA')\equiv\alpha\ .$

Remark. $\left\{\begin{array}{ccccccccccc}
\frac r{IA} & = & \sin\frac A2 & = & \frac {SC}{2R} & = & \frac {IS}{2R} & \implies & IA\cdot IS & = & 2Rr\\\\
\frac {r_a}{I_aA} & = & \sin\frac A2 & = & \frac {SC}{2R} & = & \frac {I_aS}{2R} & \implies & I_aA\cdot I_aS & = & 2Rr_a\end{array}\right\|$ . Now I"ll prove the relations $(*)\ :$

$\left\{\begin{array}{ccccccc}
\triangle ABP\sim\triangle AA'C & \iff & \frac {AB}{AA'}=\frac {AP}{AC} & \iff & \frac c{2R}=\frac {h_a}b & \iff & 2R\cdot h_a=bc\\\\
\triangle ABS\sim\triangle ALC & \iff & \frac {AB}{AL}=\frac {AS}{AC} & \iff & \frac c{AL}=\frac {AS}b & \iff & AL\cdot AS=bc\\\\
\triangle ABI_a\sim\triangle AIC & \iff & \frac {AB}{AI}=\frac {AI_a}{AC} & \iff & \frac c{AI}=\frac {AI_a}b & \iff & AI\cdot AI_a=bc\end{array}\right\|$ $\implies 2R\cdot h_a=bc=AL\cdot AS=AI\cdot AI_a$ .



P2. Let $\triangle ABC$ with orthocenter $H$ , circumcircle $\alpha =\mathbb C(O,R)$ , incircle $w=\mathbb C(I,r)$ and $A$-excircle $w_a$ . Let $\{A,S\}=AI\cap \alpha$ , $D\in BC\cap w$

and $\odot\begin{array}{cccc}
\nearrow & P\in AH\cap BC & ; & X\in SP\cap \alpha\\\\
\rightarrow & L\in AI\cap BC & ; & Y\in SD\cap \alpha\\\\
\searrow & D'\in BC\cap w_a & ; & Z\in SD'\cap\alpha\end{array}$ . Prove that $LX\cap IY\cap I_aZ\ne\emptyset$ and $[AT]$ is a diameter of $\alpha$ , where $T\in LX\cap IY\cap I_aZ$ .



P3. Let $\triangle ABC$ with the circumcircle $\alpha$ and a mobile point $M\in\alpha$ . Denote $\left\{\begin{array}{ccc}
N & \in & MB\cap AC\\\\
P & \in & MC\cap AB\end{array}\right\|$ . Prove that the line $NP$ passes by a fixed point.


Proof. Denote $F\in BB\cap CC$ , where $XX$ means the line what is tangent to the circle $\alpha$ at the point $X\in\alpha$ . I"ll apply the

Pascal's theorem to the degenerated cyclical hexagon $ABBMCC\ :\ \odot\begin{array}{ccc}
\nearrow & P\in AB\cap MC & \searrow\\\\
\rightarrow & F\in BB\cap CC & \rightarrow\\\\
\searrow & N\in BM\cap CA & \nearrow\end{array}\odot \implies F\in NP$ .



P4 (European Mathematical Cup - 2012). Let an acute $\triangle ABC$ with $B>C$ , the orthocentre $H$ and the orthic triangle $H_aH_bH_c$ . Denote the midpoint $M$ of $[AH]$ ,

the intersection $D\in AH\cap H_bH_c$ and the symmetrical point $E$ of $D$ w.r.t. $BC$ . Prove that $D$ is the orthocenter of $BMC$ an $MBEC$ is a cyclical quadrilateral.

Lemma. Let $\triangle ABC$ with $A$-altitude $AD$ , where $D\in BC$ and $X\in AD$ . Then $X$ is the orthocenter of $\triangle ABC\iff$ $\frac {AD}{XD}=\tan B\tan C\iff$ $DB\cdot DC=AD\cdot XD\ .$


Proof of the lemma. Denote $E\in BX\cap AC$ and apply the Menelaus' theorem to the transversal $\overline{BXE}/\triangle ADC\ :\ \frac{BD}{BC}\cdot\frac {EC}{EA}\cdot\frac {XA}{XD}=1\ (1)\ .$ Therefore, $X$ is the

orthocenter of $\triangle ABC\iff$ $BE\perp AC\ \stackrel{(1)}{\iff}\ \frac{c\cos B}{a}\cdot\frac {a\cos C}{c\cos A}\cdot\frac {XA}{XD}=1\iff$ $\frac {XA}{XD}=\frac {\cos A}{\cos B\cos C}\iff$ $\frac {AD}{XD}=\tan B\tan C\iff$ $DB\cdot DC=AD\cdot XD\ .$


Proof 1. Let the midpoint $L$ of $[BC]$ . The Euler's circle of $\triangle ABC$ is the circumcircle of $MH_aH_bH_cL$ with the diameter $[ML]$ , the ray $[H_aM$ is the bisector of the angle $\widehat{H_bH_aH_c}$

and $MH_b=MH=MH_c\implies$ $H$ is the incenter of $\triangle H_aH_bH_c$ . Observe that $H_aBH_c\sim H_aH_bC$ , i.e. $\frac {H_aB}{H_aH_b}=\frac {H_aH_c}{H_aC}\iff$ $\boxed{H_aH_b\cdot H_aH_c=H_aB\cdot H_aC}\ (*)\ .$ Apply

an well known identity $\boxed{H_aD\cdot H_aM=H_aH_b\cdot H_aH_c}\ (1)$ , i.e. $H_aE\cdot H_aM=H_aH_b\cdot H_aH_c\ \stackrel{(*)}{=}\ H_aB\cdot H_aC$ , i.e. $H_aE\cdot H_aM=H_aB\cdot H_aC\iff MBEC$ is cyclic.

$\blacktriangleright$ Apply upper lemma to $\triangle BMC\ :\ D$ is orthocenter of $\triangle BMC\ \iff\ \frac {AH_a}{DH_a}=\tan \widehat{MBC}\tan \widehat{MCB}\iff$ $H_aB\cdot H_aC=MH_a\cdot DH_a$ - true, see relations $(*\wedge 1)\ .$

Remark. The relations $(*)$ and $(1)$ appear as application of the property PP10 from here.

Proof 2. I"ll use an well known implication $\ :\ \boxed{D\in H_bH_c\implies \frac {H_cB}{H_cA}\cdot H_aC+\frac {H_bC}{H_bA}\cdot H_aB=\frac {DH_a}{DA}\cdot BC}\ .$ So $\frac {a\cos B}{b\cos A}\cdot b\cos C+\frac {a\cos C}{a\cos A}\cdot c\cos B=\frac {DH_a}{DA}\cdot a\iff$

$\frac {DH_a}{DA}=\frac {2\cos B\cos C}{\cos A}\iff$ $\frac {DA}{\cos A}=\frac {DH_a}{2\cos B\cos C}=\frac {h_a}{\cos (B-C)}\implies$ $\boxed{DH_a=\frac {2h_a\cos B\cos C}{\cos (B-C)}}\ (1)$ . Let the midpoint $L$ of $[BC]$ and the diameter $[AA']$ of the

circumcircle $\mathbb C(O,R)$ . Is well known or prove easily that $[ML]$ is the diameter of the Euler's circle w.r.t. $\triangle ABC$ , $ML=R$ and $ML\parallel AO$ with $m\left(\widehat{HAO}\right)=B-C$ $\implies$

$MH_a=ML\cos (B-C)$ i.e. $\boxed{MH_a=R\cos (B-C)}\ (2)$ . Thus $H_aM\cdot H_aE=H_aM\cdot H_aD\ \stackrel{(1\wedge 2)}{=}\ R\cos (B-C)\cdot \frac {2h_a\cos B\cos C}{\cos (B-C)}=2Rh_a\cos B\cos C\implies$

$H_aM\cdot H_aE=bc\cos B\cos C=c\cos B\cdot b\cos C=H_aB\cdot H_aC\implies$ $H_aM\cdot H_aE=H_aB\cdot H_aC\implies\  MBEC$ is cyclic. I used the well known identity $\boxed{2Rh_a=bc}$ .

$\blacktriangleright$ (Stefan Tudose) Division $(A, D,H,H_a)$ is harmonically. Apply its characterization $MD\cdot MH_a=MH^2$ , i.e. $\boxed{4\cdot MD\cdot MH_a=AH^2}\ (3)$ . Let $X\in MC\ , BX\perp MC$ .

Then $MX\cdot MC=\frac{MB^2+MC^2-BC^2}2=$ $\frac{\frac{2\cdot \left(AB^2+HB^2\right)-AH^2}4+\frac{2\cdot \left(AC^2+HC^2\right)-AH^2}4-BC^2}2=$ $\frac{BA^2+CA^2-2\cdot BC^2+HB^2+HC^2-HA^2}4$ . Therefore,

$\left\{\begin{array}{c}
CH\perp AB\iff HA^2-HB^2=CA^2-CB^2\\\\
BH\perp AC\iff HA^2-HC^2=BA^2-BC^2\end{array}\right\|$ $\implies$ $MX\cdot MC=\frac{AH^2}{4}\ \stackrel{(3)}{=}\ MD\cdot MH_a$ , i.e. $DXCH_a$ is cyclic. But $D\in MH_a\implies$ $D$ is orthocenter of $\triangle BMC$ .



P5 (Kvant M734). Let $\triangle ABC$ with the circumcircle $w$ and the $A$-bisector $AD$ , where $D\in w$ . Denote $E\in AB$ so that $DE\perp AB$ . Prove that $2\cdot AE=AB+AC$ .

Proof 1. Denote $F\in AB$ so that $B\in (AF)$ and $BF=AC$ . Observe that $ABDC$ is cyclically $\implies \boxed{\widehat{DBF}\equiv\widehat{DCA}}\ (*)$ . Therefore, $\left\{\begin{array}{ccc}
BD & = & CD\\\
BF & = & CA\end{array}\right\|\ \stackrel{(*)}{\implies}$

$\triangle BDF\ \stackrel{(s.a.s)}{\equiv}\ \triangle  CDA$ $\implies$ $DF=DA$ , i.e. the triangle $ADF$ is $D$-isosceles $\implies$ the point $E$ is the midpoint of $[AF]$ , i.e. $2\cdot AE=AB+AC\ .$

Proof 2. Suppose w.l.o.g. $B\ne C$ , i.e. $b\ne c$ . Prove easily that $\left\{\begin{array}{ccc}
B>C & \iff & B\in (AE)\\\
B<C & \iff & E\in (AB)\end{array}\right\|$ . Suppose w.l.o.g. $B>C$ , i.e. $B\in (AE)$ . Let $F\in (AC)$

so that $DF\perp AC$ . Observe that $\left\{\begin{array}{ccc}
DB & = & DC\\\
DE & = & DF\end{array}\right\|$ $\implies\triangle DBE\ \stackrel{(s.a.s)}{\equiv}\ \triangle DCF\implies$ $BE=CF=x$ . In conclusion, $AE=AF\iff$

$AB+BE=AC-CF\iff$ $c+x=b-x\iff$ $2x=b-c\iff$ $AE=c+x=c+\frac {b-c}2\iff$ $AE=\frac {b+c}2$ , i.e. $2\cdot AE=AB+AC\ .$



P6 (M. O. Sanchez). Let a trapezoid $ABCD$ with $AD\parallel BC\ ,\ BC<AD$ and the midpoints $M\ ,\ N$ of $[BC]\ ,\ [AD]$ respectively, where $\left\{\begin{array}{ccc}
AC & = & 10\\\\
BD & = & 12\\\\
MN & = & 5\end{array}\right\|\ .$ Find $[ABCD]\ .$

Proof 1 (Baris Altay). Let $X\in AB\ ,\ Y\in CD$ so that $I\in XY$ and $XY\parallel AD$ . Hince $IX=IY$ obtain that $I\in MN$ . Denote $\left\{\begin{array}{ccc}
E\in AD & ; & BE\parallel AC\\\\
F\in AD & ; & BF\parallel MN\end{array}\right\|$ . Observe that

$\left\{\begin{array}{ccc}
:\  [ABE] & = & [ABC]\\\\
:\  [ABD] & = & [ACD]\end{array}\right\|$ $\bigoplus\implies$ $[EBD]=[ABE]+[ABD]=[ABC]+[ACD]=[ABCD]\implies$ $\boxed{[EBD]=[ABCD]}\ (*)\ .$ Prove easily that

$FE=FD=AD+BC\ ,\ BF=MN=5$ and $BE=AC=10$ . Apply the theorem of $B$-median $BF$ in $\triangle EBD\ :\ 4\cdot BF^2=2\cdot \left(BE^2+BD^2\right)-ED^2\iff$

$4\cdot 5^2=2\cdot\left(10^2+12^2\right)-ED^2\iff$ $\boxed{ED=2\sqrt{97}}\ (1)\ .$ Apply theorem of Cosines $:\ 2\cdot BE\cdot BD\cdot\cos\widehat{EBD}=$ $BE^2+BD^2-ED^2\ \stackrel{(1)}{\iff}\ 2\cdot 10\cdot 12\cdot\cos\widehat{EBD}=$

$10^2+12^2-4\cdot 97\iff$ $\cos\widehat{EBD}=-\frac 35\iff$ $\sin\widehat{EBD}=\frac 45\implies$ $2\cdot[ABCD]\ \stackrel{(*)}{=}\ 2\cdot [EBD]=BE\cdot BD\cdot\sin\widehat{EBD}=10\cdot 12\cdot\frac 45\implies [ABCD]=48\ .$

Proof 2. Denote $\left\{\begin{array}{ccc}
AD=2a & ; & BC=2b\\\
AB=c & ; & CD=d\\\
AC=e & ; & BD=f\end{array}\right\|$ and two points $\left\{\begin{array}{ccc}
E\in AD & ; & ME\parallel AC\\\\
F\in AD & ; & MF\parallel BD\end{array}\right\|$ . Observe that $MCAE$ and $MBDF$ are parallelograms $\implies$

$\left\{\begin{array}{ccc}
AE=MC=DF=MB=a & ; & ME=AC=e=10\\\
MF=BD=f=12 & ; & NE=NF=a+b\\\
EF=2(a+b) & = & AD+BC\end{array}\right\|$ , i.e. $MN$ is the $M$-median in the $\triangle EMF$ . Apply the theorem of $M$-median $MN$ in

$\triangle EMF\ :\ \boxed{4\cdot MN^2+EF^2=2\cdot \left(ME^2+MF^2\right)}\ (*)\iff$ $4\cdot 5^2+EF^2=2\cdot\left(10^2+12^2\right)\iff$ $\boxed{EF=2\sqrt{97}}\ (1)\ .$ Apply theorem of Cosines $:$

$2\cdot ME\cdot MF\cdot\cos\widehat{EMF}=$ $ME^2+MF^2-EF^2\ \stackrel{(1)}{\iff}\ 2\cdot 10\cdot 12\cdot\cos\widehat{EMF}=$ $10^2+12^2-4\cdot 97\iff$ $\cos\widehat{EBD}=-\frac 35\iff$

$\sin\widehat{EMF}=\frac 45\implies$ $[ABCD]=[EMF]=\frac 12\cdot ME\cdot MF\cdot\sin\widehat{EMF}=\frac 12\cdot 10\cdot 12\cdot\frac 45\implies [ABCD]=48\ .$

Remark 1. The relation $\boxed{4\cdot MN^2+(AD+BC)^2=2\cdot \left(AC^2+BD^2\right)}\ (*)$ is well known. I"ll present its another proof. Denoted the midpoints

$M$ , $N$ of $[BC]$ , $[AD]$ respectively $,\  \left\{\begin{array}{ccccc}
AD=a & ; & AB=c & ; &  AC=e\\\\
BC=b & ; & CD=d & ; & BD=f\end{array}\right\|$ and apply Euler's relations in the trapezoid $ABCD\ :$

$\left\{\begin{array}{ccc}
\left(a^2+b^2\right)+\left(c^2+d^2\right) & = & \left(e^2+f^2\right)+(a-b)^2\\\\
\left(a^2+b^2\right)+4\cdot MN^2 & = & \left(c^2+d^2\right)+\left(e^2+f^2\right)\end{array}\right\|$ $\bigoplus\implies$ $\boxed{(AD+BC)^2+4\cdot MN^2=2\cdot \left(AC^2+BD^2\right)}\ (*)\ .$

Remark 2. I'll find the area $S=f\left(b,c,m_a\right)$ of $\triangle ABC$, where $b\ ,\ c\ ,\ m_a$ are known. Denote the midpoint $M$ of $[BC]$ and the projection $D$ of $A$ on $BC$ . Prove easily

that $AD\perp BC\iff$ $b^2-c^2=DC^2-DB^2=2a\cdot DM\iff \boxed{DM=\frac {b^2-c^2}{2a}}$ . Thus, $AM^2=AD^2+DM^2\iff$ $m_a^2=h_a^2+\left(\frac {b^2-c^2}{2a}\right)^2\iff$

$4a^2m_a^2=4a^2h_a^2+\left(b^2-c^2\right)^2\iff$ $\boxed{4a^2m_a^2=16S^2+\left(b^2-c^2\right)^2}\iff$ $4m_a^2\left[2\left(b^2+c^2\right)-4m_a^2\right]=16S^2+\left(b^2-c^2\right)^2\iff$

$\boxed{16\left(S^2+m_a^4\right)+\left(b^2-c^2\right)^2=8m_a^2\left(b^2+c^2\right)}$ . Example. $b=12\ ,\ c=10$ and $m_a=5\implies$ $16S^2+16\cdot 5^4+\left(12^2-10^2\right)^2=$ $8\cdot 5^2\left(12^2+10^2\right)$ $\implies$

$S^2+625+(36-25)^2=50(36+25)$ $\iff$ $S^2=3050-746$ $\iff$ $S^2=2304=12\cdot 12\cdot 16=48^2\iff \boxed{\ S=48\ }$ .



P7. Let $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R)$ and a mobile point $M\in \mathcal P$ (plane). The lines $MA$ , $MB$ ,

$MC$ meet again $w$ in $X$ , $Y$ , $Z$ respectively. Find the locus of $M$ for which $\frac {MA}{MX}+\frac {MB}{MY}+\frac {MC}{MZ}=3$ .


Proof. $\overline{MA}\cdot\overline{MX}=\overline{MB}\cdot \overline{MY}=\overline{MC}\cdot\overline{MZ}=p_w(M)=MO^2-R^2$ - the power of $M$ w.r.t. $w\implies$ $3=\frac {MA}{MX}+\frac {MB}{MY}+\frac {MC}{MZ}=$ $\frac {MA^2+MB^2+MC^2}{\left|p_w(M)\right|}=$

$\frac 1{\left|MO^2-R^2\right|}\cdot\left[3\cdot MG^2+\frac {a^2+b^2+c^2}3\right]$ , where $G$ is the centroid of $\triangle ABC\implies$ $\boxed{\left|MO^2-R^2\right|=MG^2+\frac {a^2+b^2+c^2}9}\ (*)$ . Appear two cases $:$

$\blacktriangleright\ M\in \mathrm{ext}(w)\iff MO>R\iff MO^2-MG^2=R^2+\frac {a^2+b^2+c^2}9$ (constant) $\iff$ the locus is a line $d\perp OG\ ;$

$\blacktriangleright\ M\in \mathrm{int}(w)\iff MO<R\iff MO^2+MG^2=R^2-\frac {a^2+b^2+c^2}9$ (constant) $\iff$ the locus is a circle with the center in the midpoint of $[OG]\ .$



P8. Let the cyclical convex quadrilateral $ABC$ with the circumcircle $w=\mathbb C(O,R)$ and a mobile point $M\in \mathcal P$ (plane). The lines $MA$ , $MB$ ,

$MC$ and $MD$ meet again $w$ in $X$ , $Y$ , $Z$ and $T$ respectively. Find the locus of $M$ for which $\frac {MA}{MX}+\frac {MB}{MY}+\frac {MC}{MZ}+\frac {MD}{MT}=4$ .


Proof. Denote the midpoints $E$ , $F$ and $G$ $($centroid of $ABCD)$ of $[AC]$ , $[BD]$ and $[EF]$ respectively and $\left\{\begin{array}{ccccc}
AB=a &  ; & BC=b & ; & AC=e\\\\
CD=c & ; & DA=d & ; & BD=f\end{array}\right\|$ . Apply the theorem of median

in the triangles $:\ \left\{\begin{array}{cccc}
 \triangle AMC\ : & 2\cdot\left(MA^2+MC^2\right) & = & 4\cdot ME^2+e^2\\\\
 \triangle BMD\ : & 2\cdot\left(MB^2+MD^2\right) & = & 4\cdot MF^2+f^2\end{array}\right\|$ $\bigoplus\implies$ $\sum MA^2=$ $2\left(ME^2+MF^2\right)+\frac {e^2+f^2}2=$ $4\cdot MG^2+EF^2+\frac {e^2+f^2}2=$

$4\cdot MG^2+\frac {\sum a^2-\left(e^2+f^2\right)}4+\frac {e^2+f^2}2\implies$ $\boxed{\sum MA^2=4\cdot MG^2+\frac 14\cdot\left[\sum a^2+\left(e^2+f^2\right)\right]}\ (*)$ . From the power $p_w(M)$ of the point $M$ w.r.t. the circle $w$ obtain $:$

$\overline{MA}\cdot\overline{MX}=\overline{MB}\cdot \overline{MY}=\overline{MC}\cdot\overline{MZ}=\overline {MD}\cdot\overline{MT}=p_w(M)=MO^2-R^2$ $\implies$ $4=\frac {MA}{MX}+\frac {MB}{MY}+\frac {MC}{MZ}+\frac {MD}{MT}=$ $\frac {MA^2+MB^2+MC^2+MD^2}{\left|p_w(M)\right|}=$

$\frac {4\cdot MG^2+4k}{\left|MO^2-R^2\right|}$ , where $G$ is the centroid of $\triangle ABC$ and $16k\ \stackrel{(*)}{=}\ \sum a^2+\left(e^2+f^2\right)$ $\implies$ $\boxed{\left|MO^2-R^2\right|=MG^2+k}$ . Appear two cases $:$

$\blacktriangleright\ M\in \mathrm{ext}(w)\iff MO>R\iff MO^2-MG^2=R^2+k$ (constant) $\iff$ the locus is a line $d\perp OG\ ;$

$\blacktriangleright\ M\in \mathrm{int}(w)\iff MO<R\iff MO^2+MG^2=R^2-k$ (constant) $\iff$ the locus is a circle with the center in the midpoint of $[OG]\ .$



Lemma. Let $\triangle ABC$ with the circumcircle $w=\mathcal C(O,R)$ and $U\in AB$ , $V\in AC$ . Then $AO\perp UV$ $\iff$ $BUVC$ is cyclically.

.Proof. Let $L\in AA$ so that $AC$ separates $B$ and $L$ . Thus, $\underline{AO\perp UV}\iff$ $\underline{UV\parallel AA}\iff$ $\widehat{UBC}\equiv\widehat{ABC}\equiv\underline{\widehat{LAC}\equiv \widehat{AVU}}\iff$ $\widehat{UBC}\equiv\widehat{AVU}\iff$ $\underline{BUVC}$ is cyclically.

P9. Consider $\triangle ABC$ and let $D\in (BC)$ be the foot of the altitude from the vertex $A$. The circle with diameter $[AD]$ intersects the sides $AB$

and $AC$ at points $X$ and $Y$ respectively. Prove that the altitude from $A$ in triangle $AXY$ passes through the circumcenter $O$ of triangle $ABC$ .


.Method 1. Let $P\in XY\ ,\ AP\perp XY$ . Thus, $\widehat{AXY}\equiv\widehat{ADY}\equiv\widehat{ACD}\equiv\widehat{ACB}\implies$ $\widehat{AXY}\equiv\widehat{ACB}\implies$ $BXYC$ is cyclic $\implies\ XY$ is antiparallel to $BC\ \stackrel{\mathrm{lemma}}{\implies}\ O\in AP$ .

.Method 2. $\left\{\begin{array}{ccccc}
DX\perp AB & \implies & AX\cdot AB=AD^2\\\\
DY\perp AC & \implies & AY\cdot AC=AD^2\end{array}\right\|\implies$ $AX\cdot AB=AY\cdot AC\implies$ $BXYC$ is cyclic $\implies XY$ is antiparallel to $BC\ \stackrel{\mathrm{lemma}}{\implies}\ O\in AP$ .



Lemma (Ruben Dario). Let $\triangle ABC$ with the circumcircle $\alpha =\mathcal (O,R)$ and the incircle $w=\mathcal C(I,r)$ . Denote $\left\{\begin{array}{ccc}
E\in BI\cap AC\\\\
F\in CI\cap AB\end{array}\right\|$ .

Prove that $P\in (EF)\ \iff\ \delta_{CA}(P)+\delta_{AB}(P)=\delta_{BC}(P)$ , where $\delta_d(X)$ is the distance of the point $X$ to the line $d$ .


.Proof. Denote $\left\{\begin{array}{ccc}
\delta_{BC}(P) & = & x\\\\
\delta_{CA}(P) & = & y\\\\
\delta_{AB}(P) & = & z\end{array}\right\|$ . Thus, $[BPC]+[CPA]+[APB]=2\cdot [ABC]\iff$ $\boxed{ax+by+cz=2S}\ (*)$ and $\left\{\begin{array}{cccc}
\frac {FA}b=\frac {FB}a=\frac c{a+b} & \implies & AF=\frac {bc}{a+b} & (1)\\\\
\frac {EA}c=\frac {EC}a=\frac b{a+c} & \implies & AE=\frac {bc}{a+c} & (2)\end{array}\right\|$ .

Therefore, $P\in (EF)\iff$ $[AFP]+[AEP]=[AFE]\iff$ $z\cdot AF+y\cdot AE=AF\cdot AE\cdot\sin A\iff\ \stackrel{1\wedge 2}{\iff}\ z\cdot \frac {bc}{a+b}+y\cdot \frac {bc}{a+c}=\frac {bc}{a+b}\cdot \frac {bc}{a+c}\cdot\sin A\iff$

$\frac z{a+b}+\frac y{a+c}=\frac {bc}{(a+b)(a+c)}\cdot\sin A\iff$ $z(a+c)+y(a+b)=2S\iff$ $a(y+z)+(by+cz)=2S\stackrel{(*)}{\iff}\ a(y+z)+(2S-ax)=2S\iff$ $\boxed{y+z=x}\ .$

Remark. I"ll present some particular cases $:$

$\blacktriangleright\ P:=O$ (circumcenter). Hence $O\in (EF)\iff$ $2R\cos B+2R\cos C=2R\cos A\iff$ $\boxed{\cos B+\cos C=\cos A}\iff 1+\frac rR=2\cos A\iff$

$2R\cos A=R+r\iff$ $2\left(R-\frac {r_a-r}{2}\right)=R+r\iff$ $2R-r_a+r=R=r\iff$ $\boxed{\ R=r_a\ }\ .$ I used the well-known identity $\boxed{\cos A+\cos B+\cos C=1+\frac rR}\ .$

$\blacktriangleright\ P:=G$ (centroid). Hence $G\in (EF)\iff$ $\left\{\begin{array}{ccc}
3x & = & h_a\\\\
3y & = & h_b\\\\
3z & = & h_c\end{array}\right\|\iff$ $h_b+h_c=h_a\iff \boxed{\frac 1b+\frac 1c=\frac 1a}\ .$

$\blacktriangleright\ P:=H$ (orthocenter). Hence $H\in (EF)\iff$ $\left\{\begin{array}{ccc}
x & = & 2R\cos B\cos C\\\\
y & = & 2R\cos C\cos A\\\\
z & = & 2R\cos A\cos B\end{array}\right\|\iff$ $\cos C\cos A+\cos A\cos B=\cos B\cos C\iff$ $\boxed{\frac 1{\cos B}+\frac 1{\cos C}=\frac 1{\cos A}}\ .$


P10. Let $\triangle ABC$ with circumcircle $\alpha =\mathcal (O,R)$ and incircle $w=\mathcal C(I,r)$ . Denote $\left\{\begin{array}{ccc}
E\in BI\cap AC\\\\
F\in CI\cap AB\end{array}\right\|$ . Prove that $O\in EF\ \iff\ \cos B+\cos C=\cos A\ \iff\ R=r_a$ .

.Method 1. Let $\boxed{b\cos B+c\cos C=k}\ (*)$ and apply Cristea's relation $:\ O\in EF\iff \frac {FB}{FA}\cdot DC+\frac {EC}{EA}\cdot DB=\frac {OD}{OA}\cdot BC\iff$ $\frac ab\cdot DC+\frac ac\cdot DB=\frac {OD}{OA}\cdot a\iff$

$\boxed{\frac {DC}b+\frac {DB}c=\frac {OD}{OA}}\ (1)$ . Observe that $\frac {DB}{c\cos C}=\frac {DC}{b\cos B}\ \stackrel{*}{=}\ \frac ak\implies$ $\odot\begin{array}{cccccc}
\nearrow & \frac {DB}c & = & \frac {a\cos C}k & (2) & \searrow\\\\
\searrow & \frac {DC}b & = & \frac {a\cos B}k & (3) & \nearrow\end{array}\odot$ and $\frac {OD}{OA}=\frac {BD}{BA}\cdot\frac {\sin\widehat{OBD}}{\\sin\widehat{OBA}}\ \stackrel{2}{=}\ \frac {a\cos C}k\cdot\frac {\cos A}{\cos C}$ $\iff$

$\boxed{\frac {OD}{OA}=\frac {a\cos A}k}\ (4)$ . Therefore, the relation $(1)$ becomes $\frac {a\cos B}k+\frac {a\cos C}k=\frac {a\cos A}k$ , i.e. $\boxed{\cos B+\cos C=\cos A}\ \iff$ $2\cos\frac {B-C}2\sin\frac A2=1-2\sin^2\frac A2\iff$

$2\sin\frac A2\left(\cos\frac {B-c}2+\cos\frac {B+C}2\right)=1\iff$ $4\sin\frac A2\cos\frac B2\cos\frac C2=1\iff$ $4\sqrt {\frac {(s-b)(s-c)}{bc}\cdot\frac{s(s-b)}{ac}\cdot\frac {s(s-c)}{ab}} =1\iff$ $4s(s-b)(s-c)=abc\iff$

$4s\cdot (s-a)(s-b)(s-c)=abc\cdot (s-a)\iff$ $4s\cdot sr^2=4Rsr\cdot (s-a)\iff$ $sr=R(s-a)\iff$ $\boxed{\ R=r_a\ }\ .$

.Method 2. I"ll use barycentrical coordinates $:\ O(\sin 2A,\sin 2B,\sin 2C)\ ;\ E(a.0.c)\ ;\ F(a,b,0)$ . Thus, $O\in EF\iff$ $\left|\begin{array}{ccc}
\sin 2A & \sin 2B & \sin 2C\\\\
a & b & 0\\\\
a & 0 & c\end{array}\right|=0\iff$ $bc\sin 2A=$

$ac\sin2B+ab\sin 2C\iff$ $bc\sin A\cdot \cos A=ac\sin B\cdot\cos B+ab\sin C\cdot\cos C\iff$ $2S\cdot \cos A=2S\cdot \cos B+2S\cdot \cos C\iff$ $\cos A=\cos B+\cos C$ a.s.o.

Remark. If $P(\alpha ,\beta ,\gamma )$ , then $P\in (EF)\iff$ $\left|\begin{array}{ccc}
\alpha & \beta & \gamma\\\\
a & b & 0\\\\
a & 0 & c\end{array}\right|=0\iff$ $\gamma ab+\beta ac=\alpha bc\iff$ $\boxed{\frac {\beta}b+\frac {\gamma}c=\frac {\alpha}a}\ .$



P11. Let $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R)$ . The $A$-bisector cut the sideline $BC$ at $D$ and meet again

the circle $w$ at $M\ .$ Denote the projection $P$ of the midpoint $S$ of $[BC]$ on $AM$ . Prove that $4\cdot AP\cdot DM=BC^2\ .$


Proof 1. Suppose $b>c\ ,$ denote the diameter $[MN]$ of $w\ ,$ the midpoint $S$ of $[BC]\ ,$ $m(\angle ADB)=\phi$ and $L\in AN\cap BC\ .$ Since $\triangle SDM\sim\triangle SNL$ obtain that $\frac {SD}{SM}=\frac {SN}{SL}$

and $BS^2=SM\cdot SN\implies$ $SD\cdot SL=BS^2\ .$ Observe that $AP=SL\cos\phi$ and $DM\cos\phi =SD\ .$ In conclusion, $AP\cdot DM=SL\cdot SD=SB^2\implies AP\cdot DM=\frac {a^2}{4}\ .$

Proof 2. $\frac {DB}c=\frac {DC}b=\frac a{b+c}\implies$ $\left\{\begin{array}{ccc}
DB & = & \frac {ac}{b+c}\\\\
DC & = & \frac {ab}{b+c}\end{array}\right\|$ $\bigodot\implies$ $DB\cdot DC=\frac {a^2bc}{(b+c)^2}\ .$ Is well known that $AD=\frac {2bc\cos\frac A2}{b+c}\ .$ From the power of the point $D$

w.r.t. $w$ obtain that $DB\cdot DC=DA\cdot DM\implies$ $\frac {a^2bc}{(b+c)^2}=DM\cdot\frac {2bc\cos\frac A2}{b+c}\implies$ $\boxed{DM=\frac{a^2}{2(b+c)\cdot\cos\frac{A}{2}}}\ (1)\ .$ Denote $\left\{\begin{array}{ccc}
R\in AD & ; & BR\perp AD\\\\
Q\in AD & ; & CQ\perp AD\end{array}\right\|\ .$

Prove easily that the point $P$ is the midpoint of $[RQ]\implies$ $\boxed{AP=\frac{AR+AQ}{2}=\frac {b+c}2\cdot\cos\frac{A}{2}}\ (2)\ .$ From the relations $(1)$ and $(2)$ obtain that the required relation.



P12. Let a convex $ABCD$ with $I\in AC\cap BD$ so that $AB=BC=CD$ and $IA=ID$ . Prove that $IB\ne IC\implies$ $m\left(\widehat{AIB}\right)=60^{\circ}$ .

Proof. Denote $\left\{\begin{array}{c}
AB=BC=CD=x\\\\
IA=ID=y\\\\
IB=u\ ;\ IC=v\end{array}\right\|$ . Apply the Stewart's theorem to the isosceles $:\ \left\{\begin{array}{cccc}
\triangle ABC\ : & BI^2+IA\cdot IC=BA^2 & \implies & u^2+yv=x^2\\\\
\triangle DCB\ : & CI^2+IB\cdot ID=CD^2 & \implies & v^2+yu=x^2\end{array}\right\|$ $\implies$

$u^2+yv=x^2=v^2+yu\iff$ $\left(u^2-v^2\right)=y(u-v)\ \stackrel{u\ne v}{\iff}\ y=u+v\iff$ $x^2=u^2+v(u+v)\iff$ $x^2=u^2+uv+v^2\iff$ $m\left(\widehat{AIB}\right)=60^{\circ}$ .



P13. Let an acute $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R)\ ;\ [AT]\ -$ the diameter of $w\ ;\ TT\ -$ the tangent

line to $w\ ;$ the points $X\in AB\ ,\ Y\in AC$ so that $O\in XY$ and $OX=OY$ . Prove that $XY\cap TT\cap BC\ne\emptyset$ .


Proof 1. Denote $\left\{\begin{array}{c}
P\in XY\cap BC\\\\
R\in TT\cap BC\end{array}\right\|$ . So $\left\{\begin{array}{ccccc}
OX=OY & \iff & \frac {YA}{XA}=\frac {\sin\widehat{TAB}}{\sin\widehat{TAC}} & \iff & \boxed{\frac {YA}{XA}=\frac {\cos C}{\cos B}}\\\\
OX=OY & \iff & p_w(X)=p_w(Y) & \iff & \boxed{\frac {XB}{YC}=\frac {YA}{XA}}\end{array}\right\|$ $\implies$ $\boxed{\frac {YA}{XA}=\frac {\cos C}{\cos B}=\frac {XB}{YC}}\ (*)$ . Apply Menelaus' theorem

to $\overline{XYP}/\triangle ABC\ :\ \frac {PC}{PB}\cdot\frac {XB}{XA}\cdot\frac {YA}{YC}=1\iff$ $\frac {PB}{PC}=\frac {XB}{XA}\cdot \frac {YA}{YC}$ $\implies$ $\frac {PB}{PC}=\frac {XB}{YC}\cdot \frac {YA}{XA}\ \stackrel{(*)}{\iff}$ $\boxed{\frac {PB}{PC}=\left(\frac {\cos C}{\cos B}\right)^2}\ (1)$ . Apply an well known relation to the ray $[TR$

and $\triangle BTC\ :\ \frac {RB}{RC}=$ $\frac {TB}{TC}\cdot\frac {\sin\widehat{RTB}}{\sin\widehat{RTC}}=$ $\left[\frac {\sin\left(90^{\circ}-C\right)}{\sin\left(90^{\circ}-C\right)}\right]^2$ $\implies$ $\boxed{\frac {RB}{RC}=\left(\frac {\cos C}{\cos B}\right)^2}\ (2)$ . From the relations $(2)$ and $(3)$ obtain that $P\equiv R$ , i.e. $XY\cap TT\cap BC\ne\emptyset\ .$

Proof 2 (E.V. Diaz). I"ll use same notations from previous proof. Denote $\{U,V\}\subset w$ so that $X\in TU\cap AB$ and $Y\in TV\cap AC$ .

Apply the Pascal's theorem to $ABCUTT\ :\ \odot\begin{array}{cccc}
\nearrow & X\in AB\cap UT & \searrow\\\\
\rightarrow & R\in BC\cap TT & \rightarrow\\\\
 \searrow & O\in CU\cap TA & \nearrow\end{array}\odot\implies$ $ R\in OX\implies XY\cap TT\cap BC\ne\emptyset\ .$

Proof 3. I"ll use same notations from previous proofs. Denote $S\in XY$ so that $TS\perp XY$ and $Z\in TS\cap BC$ , i.e. $\boxed{ZS\perp XY}\ (1)$ . Observe that $BXST$ is inscribed in the circle

with the diameter $[TX]$ and $CYST$ is inscribed in the circle with the diameter $[TY]$ . Thus, $\widehat{ZSC}\equiv \widehat {TSC}\equiv\widehat{TYC}\equiv\widehat{BAC}\equiv$ $\widehat{TXB}\equiv\widehat{TSB}\equiv\widehat{ZSB}$ $\implies$ $\boxed{\widehat{ZSC}\equiv\widehat{ZSB}}\ (2)$ .

Therefore, the relations $(1)$ and $(2)$ together means that the division $(B,C;Z,P)$ is harmonically, i.e. $TS$ is the polar of the point $P$ . In conclusion, $P\in TT$ .

Remark. Prove easily that $:\ O\in CU\cap BV\cap AT\ ;\ \left\{\begin{array}{ccc}
XU=YC & ; & XB=YV\\\\
TB=AV & ; & TC=AU\end{array}\right\|\ ;\ \frac {PB}{PC}=$ $\left(\frac {TB}{TC}\right)^2=\left(\frac {\cos C}{\cos B}\right)^2$ .



P14 (Kadir Altintas - Turkey). Let $\triangle ABC$ with $\frac A4=\frac B2=C=\frac {\pi}7$ and incircle $w=\mathbb C(I,r)$ what touches $(BC,CA,AB)$ at $(D,E,F)$ respectively. Prove $DE=DF\ .$

Proof. Let $G\in AB\ ,$ $IG\parallel BC\ .$ By a simple angle chase obtain that $BG=GI=IE=IA=AF$ and $BF=AG=AE$ $\implies $ $\triangle DBF\ \stackrel{(s.a.s)}{\equiv}\ \triangle DAE$ $\implies DE=DF\ .$


P15 (M. O. Sanchez). Chord $CD\ ,$ $QT$ of a given circle $w$ meet at $P\ .$ The tangents at $Q\ ,$ $T$ cross $CD$ extended at $A\ ,$ $B$ respectively. Prove that $\frac 1{PA}-\frac 1{PB}=\frac 1{PC}-\frac 1{PD}\ .$

Proof. Denote $\left\{\begin{array}{ccc}
PC=m & ; & PD=n\\\\
PA=a & ; & PB=b\end{array}\right\|$ and $S\in QT$ so that $BS=BT\ ,$ $T\in (PS)\ .$ Thus, $\left\{\begin{array}{ccc}
AD=a+n & ; & AC=a-m\\\\
BD=b-n & ; & BC=b+m\end{array}\right\|$ and $\frac ab=$ $\frac {PA}{PB}=$ $\frac {AQ}{BS}=$ $\frac {AQ}{BT}$ $\implies$

$\left(\frac ab\right)^2=\left(\frac {AQ}{BT}\right)^2=$ $\frac {AD\cdot AC}{BD\cdot BC}=$ $\frac {(a+n)(a-m)}{(b-n)(b+m)}$ $\implies$ $\frac {(a+n)(a-m)}{a^2}=$ $\frac {(b+m)(b-n)}{b^2}\implies$ $\frac {a^2-a(m-n)-mn}{a^2}=$ $\frac {b^2+b(m-n)-mn}{b^2}$ $\implies$

$1-\frac {m-n}a-\frac {mn}{a^2}=$ $1+\frac {m-n}b-\frac {mn}{b^2}$ $\implies$ $(m-n)\left(\frac 1b+\frac 1a\right)=$ $mn\left(\frac 1{b^2}-\frac 1{a^2}\right)$ $\implies$ $\frac 1n-\frac 1m=\frac 1b-\frac 1a\implies$ $\frac 1a-\frac 1b=\frac 1m-\frac 1n\implies$ $\frac 1{PA}-\frac 1{PB}=\frac 1{PC}-\frac 1{PD}\ .$



P16 (Czech-Polish-Slovak, Match 2016). Let $ABC$ be an acute-angled triangle with $AB < AC$. Tangent to its circumcircle $\Omega$ at $A$ intersects the line $BC$ at $D$. Let $G$

be the centroid of $\triangle ABC$ and let $AG$ meet $\Omega$ again at $H \neq A\ .$ Suppose the line $DG$ intersects the lines $AB\ ,$ $AC$ at $E\ ,\ F$ respectively. Prove that $\widehat{EHG}\equiv\widehat{GHF}\ .$



P17. Let $\triangle ABC$ with $AB\ne AC$ , the circumcircle $w$ and the midpoint $S$ of the arc $\overarc{BC}\subset w$ for which $BC$ separates $A$ and $S$ . Prove that the relation

$SA^2=AB\cdot AC+SB\cdot SC$ and $(\forall )\ M\in\overarc{BC}\ ,\ MA^2=AB\cdot AC+MB\cdot MC\iff MB=MC$ , i.e. $AM$ is the $A$-bisector of $\triangle ABC$ .


Proof.

$\blacktriangleleft  1\blacktriangleright\ SB=SI=SC\implies$ $SA^2=bc+SB\cdot SC=bc+SI^2\iff$ $SA^2-SI^2=bc\iff$ $(SA-SI)(SA+SI)=bc\iff$ $IA\cdot (SA+SI)=bc\iff$

$IA\cdot (2\cdot IS+IA)=bc\iff$ $2\cdot IA\cdot IS+IA^2=bc\iff$ $2\cdot p_w(I)+IA^2=bc\iff$ $4Rr+IA^2=bc\iff$ $IA^2=bc-4Rr\ ,$ what is true. Indeed, $s-a=IA\cdot\cos\frac A2$

$\iff$ $(s-a)^{\cancel 2}=$ $IA^2\cdot\frac {s\cancel{(s-a)}}{bc}\iff$ $\boxed{IA^2=\frac {bc(s-a)}s}\ (*)\ .$ Otherwise 1. $\underline{\underline{s\cdot IA}}^2=$ $s\left[(s-a)^2+r^2\right]=$ $s(s-a)^2+(s-a)(s-b)(s-c)=$

$(s-a)\left[s(s-a)+(s-b)(s-c)\right]=\underline{\underline{(s-a)bc}}\iff$ $\boxed{IA^2=\frac {bc(s-a)}s}\ .$ Otherwise 2. Let $D\in AS\cap BC$ and $\boxed{SB=SI=SC}\ (*)\ .$ Therefore,

$\left\{\begin{array}{cccc}
AD\cdot AS & = & AB\cdot AC & (1)\\\\
\frac {DA}{DS} & = & \frac {AB\cdot AC}{SB\cdot SC} & (2)\end{array}\right\|$ $\implies$ $\underline{\underline{\frac 1{SA}}}\ \stackrel{(1)}{=}\ \frac {DA}{bc}\ \stackrel{(2)}{=}$ $\frac {DS}{SB\cdot SC}\ \stackrel{(*)}{=}\ \frac {DA+DS}{bc+SI^2}=$ $\underline{\underline{\frac {SA}{AB\cdot AC+SB\cdot SC}}}\implies$ $SA^2=AB\cdot AC+SB\cdot SC\ .$

$\blacktriangleleft 2\blacktriangleright$ I"ll use the relation $4RS=abc$ for $\triangle ABC$ with the area $S=[ABC]$. Let $AM=m$ and $\left\{\begin{array}{ccc}
MB & = & u\\\\
MC & = & v\end{array}\right\|$ . Thus, $[MAB]+[MAC]=[BAC]+[BMC]\iff$

$mcu+mbv=abc+auv\iff$ $\boxed{m(cu+bv)=a(bc+uv)}\ (*)$ . Apply Ptolemy's theorem $\boxed{bu+cv=am}\ (1)\ .$ Therefore, $MA^2=AB\cdot AC+MB\cdot MC\iff$

$m^2=bc+uv\ \stackrel{(*)}{\iff}\ am^2=m(cu+bv)\iff$ $cu+bv=am\ \stackrel{(1)}{\iff}\ cu+bv=bu+cv\iff$ $u(b-c)=v(b-c)\stackrel{(b\ne c)}{\iff}\ u=v\iff$ $MB=MC$ .



P18. Let $P$ be an interior point of $\triangle ABC$ for which denote $\left\{\begin{array}{ccc}
D & \in & BC\cap AP\\\\
E & \in & CA\cap BP\\\\
F & \in & AB\cap CP\end{array}\right\|\ .$ Prove that $\frac {PA}{PD}\cdot\frac {PB}{PE}\cdot \frac {PC}{PF} =2+\frac {PA}{PD}+\frac {PB}{PE}+\frac {PC}{PF}\ .$

Proof. Since $\frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=1$ then there are $(x,y,z)\subset\mathbb R^*_+$ so that $\left\{\begin{array}{ccc}
\frac {DB}{DC} & = & \frac yz\\\\
\frac {EC}{EA} & = & \frac zx\\\\
\frac {FA}{FB} & = & \frac xy\end{array}\right\|\ .$ I''ll use Van Aubel's relation $:\ \frac {PA}{PD}=\frac {EA}{EC}+\frac {FA}{FB}\iff$

$\frac {PA}{PD}=\frac xz+\frac xy\ \mathrm{a.s.o.}$ Thus, $\prod\frac {PA}{PD}=2+\sum\frac {PA}{PE}\iff$ $\prod\frac{x(y+z)}{yz} =2+\sum\frac{x(y+z)}{yz}\iff$ $\prod (y+z)=2xyz+\sum x^2(y+z)\ ,$ what is true.



P19 (M.O. Sanchez). Let an acute $\triangle ABC$ with $A=60^{\circ}$ and the orthocenter $H.$ Prove that $\frac {AB+BC+CA}{HA+HB+HC}=\sqrt 3.$

Proof 1 (Baris Altay}. Denote the orthic $\triangle DEF,$ where $D\in (BC),$ $E\in (CA),$ $F\in (AB)$ and $HA=x,$ $HB=y,$ $HC=z.$ Observe that $\triangle BCE\sim\triangle AHE\iff$

$\frac {BC}{AH}=\frac {CE}{HE}\implies$ $\frac ax=\frac {\frac {z\sqrt 3}2}{\frac z2}$ $\implies$ $\boxed{a=x\sqrt 3}\ (1)$ and $\left\{\begin{array}{cccccc}
b=AC=AE+EC & \implies & b=\frac c2+\frac {z\sqrt 3}2 & \implies & \boxed{2b=c+z\sqrt 3} & (2)\\\\
c=AB=AF+FB & \implies & c=\frac b2+\frac {y\sqrt 3}2 & \implies & \boxed{2c=b+y\sqrt 3} & (3)\end{array}\right\|\ \stackrel{\oplus 1\wedge 2\wedge 3}{\implies}\ \frac {a+b+c}{x+y+z}=\sqrt 3.$


Proof 2 (own). Observe that $\left(\frac B2+\frac C2\right)+\frac A2=\frac {\pi}2$ $\implies$ $\tan\frac A2\cdot \tan\left(\frac B2+\frac C2\right)=1$ $\implies$ $\tan\frac A2\cdot \frac {\tan\frac B2+\tan\frac C2}{1-\tan \frac B2\tan\frac C2}=1$ $\implies$ $\boxed{\sum\tan\frac B2\tan\frac C2=1}\ (1)$ and

$\left\{\begin{array}{cccccc}
\sum \tan\frac A2 & = & \sum\frac {r_a}s=\frac 1s\cdot\sum r_a=\frac {4R+r}{s} & \implies & \boxed{\sum\tan\frac A2=\frac {4R+r}s} & (2)\\\\
\prod \tan\frac A2 & = & \prod\frac r{s-a}=\frac {r^3}{\prod (s-a)}=\frac {r^3}{sr^2} & \implies & \boxed{\prod\tan\frac A2=\frac rs} & (3)\end{array}\right\|\ \stackrel{1\wedge 2\wedge 3}{\implies}\ \boxed{f(t)\equiv st^3-(4R+r)t^2+st-r=0}\ (*)$ $\odot\begin{array}{ccc}
\nearrow & \tan\frac A2 & \searrow\\\\
\rightarrow & \tan\frac B2 & \rightarrow\\\\
\searrow & \tan\frac C2 & \nearrow\end{array}\odot$

Thus, $\frac {a+b+c}{x+y+z}=\frac {2s}{2R(\cos A+\cos B+\cos C)}=\frac {s}{R\left(1+\frac rR\right)}=\frac s{R+r}.$ Thus, $\boxed{\frac {a+b+c}{x+y+z}=\sqrt 3\iff s=(R+r)\sqrt 3}\ .$ On other hand $60^{\circ}\in \{A,B,C\}\iff$

$f\left(\frac {\sqrt 3}{3}\right)=0\iff$ $\frac {s\sqrt 3}9-\frac {4R+r}3+\frac {s\sqrt 3}3-r=0\iff$ $s\sqrt 3-3(4R+r)+3s\sqrt 3-9r=0\iff$ $4s\sqrt 3-12(R+r)=0\iff$ $\boxed{s=(R+r)\sqrt 3}.$



P20. Let $\triangle ABC$ with the orthocenter $H.$ Prove that the chain of the equivalencies $:\ s=2R+r\iff$ $ABC$ is $A$-right triangle $\iff$ $HA+r_a=s$ (standard notations).

Proof. $\boxed{HA+r_a=2R+r}\iff$ $2R(1-\cos A)=r_a-r\iff$ $4R\cdot\frac {(s-b)(s-c)}{bc}=\frac S{s-a}-\frac Ss\iff$ $4Rs(s-a)(s-b)(s-c)=abcS\iff$

$4RS^2=4RS^2$ what is true. Hence $HA+r_a=s\iff 2R+r=s$ a.s.o. Generally, in any triangle $ABC$ there is the identity $\boxed{\frac {AB+BC+CA}{HA+HB+HC}=\frac {2R+r}{R+r}}\ .$



P21. Let $\triangle ABC$ with $\left\{\begin{array}{c}
AB=c=6\\\
BC=a=7\\\
AC=b=8\end{array}\right\|$ and $w=\mathbb C(X,x)$ with the center $X\in (BC)$ , $B\in w$ and which is tangent to $AC$ . Find the length $x$ of its radius.

Proof. Show easily that $\triangle ABC$ is acute. Let the projection $D$ of $A$ on $BC$ and $AD=h_a$. Since $BX=x=\delta_{AC}(X)$ , i.e. $DC=a-x$ obtain that $h_a(a-x)=2[ADC]=xb,$ i.e.

$\boxed{x=\frac {ah_a}{b+h_a}}\ (*)$ . Thus, $DB=u\ ,\ DC=v$ and $AD\perp BC\iff$ $DC^2-DB^2=AC^2-AB^2\iff$ $v^2-u^2=28$ and $u+v=7$ . Hence $\left\{\begin{array}{ccc}
v+u & = & 7\\\
v-u & = & 4\end{array}\right\|$ , i.e.

$\frac u3=\frac v{11}=\frac 12$ . Obtain easily that $h_a^2+u^2=c^2\iff$ $h_a^2=6^2-\frac 94=$ $\frac {12^2-3^2}{4}=\frac {15\cdot 9}{4}$ $\implies \boxed{h_a=\frac {3\sqrt{15}}2}$ . Using the relation $(*)$ obtain that $\boxed{x=\frac {21\left(16\sqrt{15}-45\right)}{121}}$ .
This post has been edited 486 times. Last edited by Virgil Nicula, Nov 16, 2016, 6:57 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a