242. A general geometrical problems.

by Virgil Nicula, Mar 4, 2011, 5:23 PM

PP1. Let $ ABC$ be a triangle. Consider the points $ D\in (AC)$ , $ M\in (BD)$ . Denote the properties :

$ \left|\ \begin{array}{cc} \mathrm{p\ : } & m(\angle {MCB})\ = \ m(\angle{MBA}) \\
 \\
\mathrm{q\ : } & AM\perp MC \\
 \\
\mathrm{r\ : } & \frac {DA}{DC} = \frac {c^2\cdot \left(a^2 + c^2 - b^2\right)}{a^2\cdot \left(b^2 + c^2\right) - \left(b^2 - c^2\right)^2}\end{array}\right|\ .$ Prove that $ (\ p\ \wedge\ q\ \rightarrow\ r\ )\ \ \wedge\ \ (\ p\ \wedge\ r\ \rightarrow\ q\ )\ \ \wedge\ \ (\ q\ \wedge\ r\ \rightarrow\ p\ )\ .$


Some interesting particular cases : $ \left|\ \begin{array}{ccc} b = c & \Longrightarrow & \frac {DA}{DC} = \frac 12 \\
 \\
A = 90^{\circ} & \Longrightarrow & \frac {DA}{DC} = \frac {c^2}{2b^2}\end{array}\ \right|$ AND $ \left|\ \begin{array}{ccc} C = 90^{\circ} & \Longrightarrow & \frac {DA}{DC} = \left(\frac cb\right)^2 \\
 \\
B = 60^{\circ} & \Longrightarrow & \frac {DA}{DC} = \frac {c^2}{a(a + c)}\end{array}\ \right|\ .$


PP2 (Toshio Seimiya). Let $ ABCD$ be a convex quadrilateral. Suppose $ OA < OC$ and $ OD < OB$ ,

where $ O\in AC\cap BD$. Construct the midpoints $ M$ , $ N$ of $ [BD]$ , $ [AC]$ respectively, the intersections

$ E\in MN\cap AB$ , $ F\in DC\cap MN$ , $ P\in CE\cap BF$ and the midpoint $ L$ of $ EF$ . Prove that $ L\in OP$ .


Proof. $ \left\|\begin{array}{c}
OA=a\ ,\ OB=b\\\\
OC=c\ ,\ OD=d\end{array}\right\|$ $ \implies$ $ \left\|\begin{array}{c}
c>a\ ;\ \frac {OA}{2a}=\frac {OC}{2c}=\frac {CA}{2(c+a)}=\frac {NA}{c+a}=\frac {ON}{c-a}\\\\
b>d\ ;\ \frac {OD}{2d}=\frac {OB}{2b}=\frac {BD}{2(b+d)}=\frac {MD}{b+d}=\frac {OM}{b-d}\end{array}\right\|\ (1)$ . Apply Menelaos' theorem to :

$ \left\|\begin{array}{cccccc}
\overline {NME}/AOB\ : & \frac {NO}{NA}\cdot\frac {EA}{EB}\cdot\frac {MB}{MO}=1 & \implies & \frac {EA}{EB}=\frac {c+a}{c-a}\cdot\frac {b-d}{b+d} & \implies & \frac {EA}{(c+a)(b-d)}=\frac {EB}{(b+d)(c-a)}=\frac {AB}{2(bc-ad)}\\\\
\overline {MNF}/DOC\ : & \frac {MO}{MD}\cdot\frac {FD}{FC}\cdot\frac {NC}{NO}=1 & \implies & \frac {FC}{FD}=\frac {b-d}{b+d}\cdot\frac {c+a}{c-a} & \implies & \frac {FC}{(c+a)(b-d)}=\frac {FD}{(b+d)(c-a)}=\frac {DC}{2(bc-ad)}\end{array}\right\|$ .
This post has been edited 11 times. Last edited by Virgil Nicula, Nov 22, 2015, 12:46 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a